Multiplicity results for a class of semilinear elliptic equations on m
Rendiconti del Seminario Matematico della Università di Padova, Tome 95 (1996), pp. 217-252.
@article{RSMUP_1996__95__217_0,
     author = {Montecchiari, Piero},
     title = {Multiplicity results for a class of semilinear elliptic equations on $\mathbb {R}^m$},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {217--252},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {95},
     year = {1996},
     mrnumber = {1405365},
     zbl = {0866.35043},
     language = {en},
     url = {http://www.numdam.org./item/RSMUP_1996__95__217_0/}
}
TY  - JOUR
AU  - Montecchiari, Piero
TI  - Multiplicity results for a class of semilinear elliptic equations on $\mathbb {R}^m$
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1996
SP  - 217
EP  - 252
VL  - 95
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org./item/RSMUP_1996__95__217_0/
LA  - en
ID  - RSMUP_1996__95__217_0
ER  - 
%0 Journal Article
%A Montecchiari, Piero
%T Multiplicity results for a class of semilinear elliptic equations on $\mathbb {R}^m$
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1996
%P 217-252
%V 95
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org./item/RSMUP_1996__95__217_0/
%G en
%F RSMUP_1996__95__217_0
Montecchiari, Piero. Multiplicity results for a class of semilinear elliptic equations on $\mathbb {R}^m$. Rendiconti del Seminario Matematico della Università di Padova, Tome 95 (1996), pp. 217-252. http://www.numdam.org./item/RSMUP_1996__95__217_0/

[1] S. Abenda - P. Caldiroli - P. Montecchiari, Multibump solutions for Duffing-like systems, Preprint S.I.S.S.A. (1994). | MR | Zbl

[2] R.A. Adams, Sobolev Spaces, Academic Press, New York (1975). | MR | Zbl

[3] S. Alama - Y.Y. LI, On «Multibump» Bound States for Certain Semilinear Elliptic Equations, Research Report No. 92-NA-012, Carnegie Mellon University (1992). | MR | Zbl

[4] S. Alama - G. TARANTELLO, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var., 1 (1993), pp. 439-475. | MR | Zbl

[5] A. Ambrosetti, Critical points and nonlinear variational problems, Bul. Soc. Math. France, 120 (1992). | Numdam | MR | Zbl

[6] S. Angenent, The shadowing lemma for elliptic PDE, in Dynamics of Infinite Dimensional Systems, S. N. Chow and J. K. Hale eds., F37(1987). | MR | Zbl

[7] P. Caldiroli - P. MONTECCHIARI, Homoclinic orbits for second order Hamiltonian systems with potential changing sign, Comm. Appl. Nonlinear Anal., 1 (1994), pp. 97-129. | MR | Zbl

[8] V. Coti Zelati - I. Ekeland - E. Séré, A Variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), pp. 133-160. | MR | Zbl

[9] V. Coti Zelati - P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), pp. 693-727. | MR | Zbl

[10] V. Coti Zelati - P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., 45 (1992), pp. 1217-1269. | MR | Zbl

[11] W.Y. Ding - W.M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rat. Mech. Anal., 91 (1986), pp. 283-308. | MR | Zbl

[12] M.J. Esteban - P.L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, 93 (1982), pp. 1-14. | MR | Zbl

[13] M.K. Kwong, Uniqueness positive solutions of Δu - u + uP = 0 in Rn, Arch. Rat. Mech. Anal., 105 (1985), pp. 243-266. | Zbl

[14] L. Lassoued, Periodic solution of a second order superquadratic system with change of sign of potential, J. Diff. Eq., 93(1991), pp. 1-18. | MR | Zbl

[15] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. Henri Poincaré, 1 (1984), pp. 109-145. | Numdam | MR | Zbl

[16] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. Henri Poincaré, 1 (1984), pp. 223-283. | Numdam | MR | Zbl

[17] C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), pp. 5-7. | JFM | MR

[18] P. Montecchiari, Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (to appear). See also: Multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Rend. Mat. Ace. Lincei, s. 9, 4 (1993), pp. 265-271. | MR | Zbl

[19] P. Pucci - J. Serrin, The structure of the critical set in the mountain pass theorem, Tran. Am. Math. Soc., 299 (1987), pp. 115-132. | MR | Zbl

[20] P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, 114-A (1990), pp. 33-38. | MR | Zbl

[21] P.H. Rabinowitz, A note on a semilinear elliptic equation on Rm, in A tribute in honour of Giovanni Prodi, A. Ambrosetti and A. Marino eds., Quaderni Scuola Normale Superiore, Pisa (1991). | MR | Zbl

[22] E. Sere, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), pp. 27-42. | MR | Zbl

[23] E. Sere, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 10 (1993), pp. 561-590. | Numdam | MR | Zbl

[24] A. Weinstein, Bifurcations And Hamilton's principle, Math. Z., 159 (1978), pp. 235-248. | MR | Zbl