Regularizing estimates for Schrödinger and wave equations
Journées équations aux dérivées partielles (1993), article no. 5, 12 p.
@article{JEDP_1993____A5_0,
     author = {Ruiz, Alberto},
     title = {Regularizing estimates for {Schr\"odinger} and wave equations},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {5},
     pages = {1--12},
     publisher = {Ecole polytechnique},
     year = {1993},
     zbl = {0797.35020},
     language = {en},
     url = {http://www.numdam.org./item/JEDP_1993____A5_0/}
}
TY  - JOUR
AU  - Ruiz, Alberto
TI  - Regularizing estimates for Schrödinger and wave equations
JO  - Journées équations aux dérivées partielles
PY  - 1993
SP  - 1
EP  - 12
PB  - Ecole polytechnique
UR  - http://www.numdam.org./item/JEDP_1993____A5_0/
LA  - en
ID  - JEDP_1993____A5_0
ER  - 
%0 Journal Article
%A Ruiz, Alberto
%T Regularizing estimates for Schrödinger and wave equations
%J Journées équations aux dérivées partielles
%D 1993
%P 1-12
%I Ecole polytechnique
%U http://www.numdam.org./item/JEDP_1993____A5_0/
%G en
%F JEDP_1993____A5_0
Ruiz, Alberto. Regularizing estimates for Schrödinger and wave equations. Journées équations aux dérivées partielles (1993), article  no. 5, 12 p. http://www.numdam.org./item/JEDP_1993____A5_0/

[AH] Agmon S., Hörmander L., Asymptotic properties of solutions of differential equations with simple characteristics. J. d'Analyse Mathématique, Vol. 30, 1976, 1-28 | MR | Zbl

[ChR] Chiarenza F., Ruiz A., Uniform L2 weighted Sobolev inequalities. Proc. AMS., 112, (1), 1991, 53-64. | MR | Zbl

[ChF] Chiarenza, Frasca, A remark on a paper by C. Fefferman. Proc AMS, 1990 | Zbl

[CS1] Constantin P., Saut J.C., Local smoothing properties of dispersive equations. J. of the AMS, 1, 1988, 413-139. | MR | Zbl

[CS2] Constantin P., Saut J.C., Local smoothing properties of Schrödinger equations. Indiana U. Math. J., 38, 3, 1989, 791-810. | MR | Zbl

[FP] C. Fefferman, P.Phong, Lower bounds for Schrödinger equations. Journes Eqs. D. P. St. Jean de Monts 1982. | Numdam | Zbl

[H] Harmse, J. On Lebesgue space estimates for the wave equation. Indiana University Math Journal 39.1 1990 | MR | Zbl

[LP] Lions P.L., Perthame B., Lemmes de moments, de moyenne et de dispersion. C.R. Acad. Sci. Paris, t 314, Série, p. 801-806. 1992. | MR | Zbl

[K] Kato T. On the Cauchy problem for the (generalized) KdV equation. Adv. in Math. Supplementary Studies, Studies in Applied Math., 8, 1983, 93-128. | MR | Zbl

[KY] Kato T., Yajima K., Some examples of smooth operators and the associated smoothing effect. Review in Math. Physics, 1, 4, 1989. | MR | Zbl

[KPV2] Kenig C., Ponce G., Vega L., Small solutions for non linear Schrödinger equations. To appear in Ann. I. Henri Poincaré. | Numdam | Zbl

[KRS] Kenig C., Ruiz A., Sogge C., Uniform Sobolev inequalities and unique continuation for second order constant coefficients differential operators. Duke Math. J., 55, 1987, 329-347. | MR | Zbl

[RV] Ruiz A., Vega L., Unique continuation for Schrödinger operators with potential in Morrey spaces. Publications Matemátiques, 35, 1991, 291-298. | MR | Zbl

[RV2] Ruiz A., Vega L., On local regularity of Schrödinger equations. Int. Math. Research Notices. N 1. 13-27. Duke Math. J. 1993 | MR | Zbl

[RV3] Smoothing effect for Schródinger and wave equations. In preparation

[SSj] Sjögren P., Sjölin P., Convergence properties for the time dependent Schrödinger equation. To appear in Ann. Acad. Sci. Fenn.. | Zbl

[Sj] Sjölin P., Regularity of solutions to the Schrödinger equations. Duke Math. J., 55, 1987, 699-715. | Zbl

[So] Soffer A., Phase space analysis of non linear waves and global existence. Preprint.

[T] Tomas P., A restriction theorem for the Fourier transform. Bull. AMS, 81, 1975, 477-478. | MR | Zbl

[V1] Vega L., Schrödinger equations : pointwise convergence to the initial data. Proc. AMS, 102, 1988, 874-878. | MR | Zbl

[V2] Vega L., El multiplicador de Schrödinger : la función maximal y los operadores de restricción. Tesis doctoral. Universidad Autónoma de Madrid. 1988.

[Y] Yajima K., Existence of solutions for Schrödinger Evolution Equations. Comm. Math. Phys., 110 (1987), 415-426. | MR | Zbl