We prove by giving an example that when the asymptotic behavior of functionals is quite different with respect to the planar case. In particular we show that the one-dimensional ansatz due to Aviles and Giga in the planar case (see [2]) is no longer true in higher dimensions.
Mots clés : phase transitions, $\Gamma $-convergence, asymptotic analysis, singular perturbation, Ginzburg-Landau
@article{COCV_2002__7__285_0, author = {Lellis, Camillo De}, title = {An example in the gradient theory of phase transitions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {285--289}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002012}, mrnumber = {1925030}, zbl = {1037.49010}, language = {en}, url = {http://www.numdam.org./articles/10.1051/cocv:2002012/} }
TY - JOUR AU - Lellis, Camillo De TI - An example in the gradient theory of phase transitions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 285 EP - 289 VL - 7 PB - EDP-Sciences UR - http://www.numdam.org./articles/10.1051/cocv:2002012/ DO - 10.1051/cocv:2002012 LA - en ID - COCV_2002__7__285_0 ER -
%0 Journal Article %A Lellis, Camillo De %T An example in the gradient theory of phase transitions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 285-289 %V 7 %I EDP-Sciences %U http://www.numdam.org./articles/10.1051/cocv:2002012/ %R 10.1051/cocv:2002012 %G en %F COCV_2002__7__285_0
Lellis, Camillo De. An example in the gradient theory of phase transitions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 285-289. doi : 10.1051/cocv:2002012. http://www.numdam.org./articles/10.1051/cocv:2002012/
[1] Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9 (1999) 327-355. | MR | Zbl
, and ,[2] A mathematical problem related to the physical theory of liquid crystal configurations. Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987) 1-16. | MR
and ,[3] On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 1-17. | Zbl
and ,[4] Energie di linea per campi di gradienti, Ba. D. Thesis. University of Pisa (1999).
,[5] A compactness result in the gradient theory of phase transition. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 833-844. | MR | Zbl
, , and ,[6] Compactness in Ginzburg-Landau energy by kinetic averaging. Comm. Pure Appl. Math. 54 (2001) 1096-1109. | Zbl
and ,[7] Singular perturbation and the energy of folds, Ph.D. Thesis. Courant Insitute, New York (1999).
,[8] Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000) 355-390. | MR | Zbl
and ,[9] The morphology and folding patterns of buckling driven thin-film blisters. J. Mech. Phys. Solids 42 (1994) 531-559. | MR | Zbl
and ,Cité par Sources :