
ESAIM: Control, Optimisation and Calculus of Variations April 2002, Vol. 7, 285–289

URL: http://www.emath.fr/cocv/ DOI: 10.1051/cocv:2002012

AN EXAMPLE IN THE GRADIENT THEORY OF PHASE TRANSITIONS

Camillo De Lellis
1

Abstract. We prove by giving an example that when n ≥ 3 the asymptotic behavior of functionalsR
Ω
ε|∇2u|2 + (1 − |∇u|2)2/ε is quite different with respect to the planar case. In particular we show

that the one-dimensional ansatz due to Aviles and Giga in the planar case (see [2]) is no longer true
in higher dimensions.
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1. Introduction

This paper is devoted to the study of the asymptotic behavior of functionals

FΩ
ε (u) :=

∫
Ω

(
ε|∇2u|2 +

(1− |∇u|2)2

ε

)
Ω ⊂ Rn (1)

as ε ↓ 0, where u maps Ω into R. This problem was raised by Aviles and Giga in [2] in connection with the
mathematical theory of liquid crystals and more recently by Gioia and Ortiz in [9] for modeling the behavior
of thin film blisters. Recently many authors have studied the planar case giving strong evidences that, as
conjectured by Aviles and Giga in [2], the sequence (Fε) Γ-converge (in the strong topology of W 1,3: see [1] for
a discussion of such a choice and a rigorous setting) to the functional

FΩ
∞(u) :=


1
3

∫
J∇u

|∇u+ −∇u−|3dHn−1 if |∇u| = 1, u ∈W 1,∞

+∞ otherwise.

Here J∇u denotes the set of points where ∇u has a jump and |∇u+ − ∇u−| is the amount of this jump. Of
course the first line of the previous definition makes sense only for particular choices of u, such as piecewise C1.
For a rigorous setting the reader should think about a suitable function space S which contains piecewise C1

functions and on which we can give a precise meaning to the above integral (for example a natural choice would
be {u|∇u ∈ BV }; however this space turns out not to be the natural one: we refer again to [1] for a discussion
of this topic).

Partial results in proving Aviles and Giga’s conjecture (i.e. compactness of minimizers of FΩ
ε , estimates from

below on FΩ
ε (uε) and a suitable weak formulation for the problem of minimizing F subject to some boundary

conditions) can be found in [1, 3, 5–8].
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In their first work Aviles and Giga based their conjecture on the following ansatz (which they made in the
case n = 2):

Conjecture 1.1. Let us choose a map w : Ω→ R (with Ω ⊂ Rn bounded open set containing 0) such that:

(a) w is Lipschitz and satisfies the eikonal equation |∇w| = 1;
(b) ∇w is constant in {x1 < 0} and in {x1 > 0}.

Let us define E := inf{lim infε FΩ
ε (uε) : ‖uε − w‖W1,3 → 0}. Then there exists a family of functions wε such

that:

(i) the component of ∇wε perpendicular to (1, 0, . . . , 0) is constant;
(ii) wε → w in W 1,3;
(iii) limFΩ

ε (wε) = E.

This ansatz has been proved by Jin and Kohn in [8] for n = 2. It reduces the problem of finding E to a one
dimensional problem in the calculus of variations which can be explicitly solved. This analysis leads to the
result E = FΩ

∞(w), which means that at w the Γ-limit of FΩ
ε exists and coincides with FΩ

∞(w). With a standard
cut and paste argument (see [4]) it can be proved that the same happens for every w which is piecewise affine.
In the next section we will prove the following theorem:

Theorem 1.2. Let u be the function u(x1, x2, x3) = |x3| and C the cylinder {|x1|2 + |x2|2 < 1}. Then there
exists (uk) such that:

(a) every uk is piecewise affine (being the union of a finite number of affine pieces) and satisfies the eikonal
equation;

(b) limk F
C
∞(uk) < FC∞(u);

(c) uk → u strongly in W 1,p for every p <∞.

The proof can be easily generalized to every n ≥ 3. As an easy corollary we get that the one-dimensional ansatz
fails for n ≥ 3. Moreover this failure means that F cannot be the Γ-limit of FΩ

ε for n ≥ 3.

Corollary 1.3. The one-dimensional ansatz is not true for n ≥ 3.

Proof. As already observed, being every uk piecewise affine, there is a family of functions uk,ε such that uk,ε
converge to uk in W 1,p (for every p <∞) and limε F

C
ε (uk,ε) = FC∞(uk). A standard diagonal argument gives a

sequence (uk,ε(k)) strongly converging to u in W 1,p such that limk F
C
ε(k)(uk,ε(k)) < FC∞(u).

2. The example

In this section we prove Theorem 1.2. First of all we recall the following fact:

(Curl) If v : Rn → Rn is a piecewise constant vector field, then v is a gradient if and only if for every
hyperplane of discontinuity π the right trace and the left trace of v have same component parallel to π.

The building block of the construction of Theorem 1.2 is the following vector field, depending on a parameter
φ ∈ (0, π/2). First of all we fix in R3 a system of cylindrical coordinates (r, θ, z) and then we call A the cone
given by {z > 0, r < 1, (1− r) > z tanφ} and A′ the reflection of A with respect to the plane {z = 0}. Hence
we put

v(r, θ, z) = (0, 0, 1) if z > 0 and (r, θ, z) 6∈ A
v(r, θ, z) = (sin(2φ), θ + π, cos(2φ)) if z > 0 and z ∈ A
v(r, θ, z) = (0, 0,−1) if z < 0 and (r, θ, z) 6∈ A′
v(r, θ, z) = (sin(2φ), θ + π,− cos(2φ)) if z < 0 and z ∈ A′.
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It is easy to see that v maps every plane {θ = α} ∪ {θ = α + π} into itself. Moreover the restrictions of v to
these planes all look like as in the following picture

z
v

r

planar section
of the field v

φ

Lemma 2.1. The vector field v is the gradient of a function w. Moreover there is a sequence of piecewise affine
functions wk such that:

(a) wk → w strongly in W 1,p
loc for every p;

(b) FΩ
∞(wk)→ FΩ

∞(w) for every open set Ω ⊂⊂ R3.

Proof. We consider the restriction of v to the plane P := {θ = 0} ∪ {θ = π}. As already noticed v maps this
plane into itself. Moreover its restriction to it satisfies condition (Curl), hence on P v is the gradient of a scalar
function w. Moreover we can find such a w so that it is identically zero on the line {z = 0} ∩ P . Hence w is
symmetric with respect to the z axis and so we can extend w to the whole three-dimensional space so to build
a cylindrically symmetric function. It is easy to check that the gradient of such a function is equal to v.

We call this function w as well and we will prove that it satisfies conditions (a) and (b) written above.

(a) Our goal is approximating v with piecewise constant gradient fields. First of all we do it in the upper
half-space {z > 0}. For every n we take a regular n-agon Bn which is inscribed to the circle of radius 1 and lies
on the plane {z = 0}. The vertices of this n-agon are given by Vi := (1, 2iπ/n, 0).

Hence we construct the pyramid An with vertex V := (0, 0, cotφ) and base Bn. In the pyramid we identify
n different regions An1 , . . . , A

n
n, where every Ani is given by the tetrahedron with vertices (0, 0, 0), V , Vi, Vi+1.

After this we put vn equal to (0, 0, 1) outside An and in every Ani we put

vn(r, θ, z) ≡ (sin 2φ, π + (2i+ 1)π/n, cos 2φ).

It is easy to see that vn satisfies condition (Curl), hence it is the gradient of some function wn. Moreover we
can choose wn in such a way that it is identically 0 on {z = 0}. Then we extend wn to the lower half space
{z < 0} just by imposing wn(r, θ,−z) = wn(r, θ, z). It is not difficult to see that ∇wn converges strongly to ∇w
in Lploc for every p.

(b) Now we check that the previous construction satisfies also the second condition of the lemma. We fix an
open set Ω ⊂⊂ R3 and we observe that both wk and w satisfy the eikonal equation in Ω. Moreover we call Lni
the triangle with vertices V , Vi, Vi+1 and Ln the union of Lni (so Ln is the “lateral surface” of the pyramid
An). Finally we denote by L the lateral surface of the cone A, i.e. the set {(1− r) = z tanφ}.

(i) The amount of jump of vn (i.e. |v+
n − v−n |) on Ln is constant and equal to the value of |v+ − v−| on L.

Moreover the area of Ln is converging to the area of L. The same happens on the symmetric sets in the
lower half-space {z < 0}.
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(ii) Let us call B the base of the cone. The right and left traces of vn coincides with those of v on Bn ∪ ({z =
0} \B). Moreover the area of B \Bn is converging to zero.

(iii) The vector fields vn are discontinuous also on the triangles T ni joining V , (0, 0, 0) and Vi (and on the
symmetric triangles lying on {z < 0}). The amount of jump of vn on each of these triangles is given by

|v+
n − v−n | = 2 sin(π/n).

Moreover the area of everyone is given by (cotφ)/2. Hence∫
∪iTni

|v+
n − v−n |3dH2 = 4n cotφ sin3 π/n.

The right hand side goes to zero as n→∞ and this completes the proof.

Proof of Theorem 1.2. First of all we pass from the cartesian coordinates of the statement to the cylindrical
coordinates (r, θ, z) given by x3 = z, x1 = r cos θ, x2 = r sin θ (and sometimes we will denote the elements
of R3 with (y, z), where y ∈ R2 and z ∈ R).

We take w as in the previous lemma. First of all let us compute FC∞(w) where C is the cylinder {r < 1}. As
in the previous proof we call L the lateral surface of the cone, that is the set {r − 1 = z tanφ}. The value of
|∇w+−∇w−| on the surface L is given by 2 sinφ and the area of L is given by π/ sinφ: the same happens for the
symmetric of L lying on the half-space {z < 0}. On the base of the cylinder we have |∇w+−∇w−| = 2| cos 2φ|.
Hence

a(φ) := FC∞(u)− FC∞(w) =
π

3
[8− 8 cos3 2φ− 16 sin2 φ]

and it can be easily checked that for φ close enough to zero, a(φ) is positive.
Therefore let us fix an α for which a(α) > 0 and let us agree that w is constructed as in the previous lemma

by choosing φ = α. Given ρ > 0 and x ∈ R2 we define wx,ρ in the cylinder Cx,ρ := {(y, z) : |y − x| ≤ ρ} ⊂ R3

as wx,ρ(y, z) = ρw((y − x)/ρ, z/ρ). It is easy to see that

FCx,ρ∞ (u)− FCx,ρ∞ (wx,ρ) = a(α)ρ2. (2)

Let us fix ε and take ρ such that ρ cotα < ε. Thanks to Besicovitch Covering lemma we can cover H2 almost
all D := {z = 0, r ≤ 1} with a disjoint countable family of closed discs Di such that every Di has radius ri < ρ,
center xi and is contained in D. We construct uε by putting uε ≡ wxi,ρi in the cylinder Cxi,ρi .

Since ∇uε coincides with ∇u in {z ≥ ε} and satisfies the eikonal equation, it is easy to see that uε → u
locally in the strong topology of W 1,p. Moreover equation (2) implies that

FC∞(u)− FC∞(uε) =
∑
i

a(α)r2
i = a(α).

At this point, using the previous lemma we can approximate the function uε in the cylinders Cxi,ρi with piecewise
affine functions in such a way that their traces coincide with the trace of uε on the boundary of Cxi,ρi . Using
standard diagonal arguments for every ε we can find a sequence of piecewise affine functions ukε which converge
in W 1,p to uε and such that FC∞(ukε) → FC∞(uε). Moreover, again using diagonal arguments, we can construct
the sequence ukε so that each one is a finite union of affine pieces.

Finally, one last diagonal argument, gives a sequence ũk suh that:
(a) ũk is a finite union of affine pieces;
(b) limk F

C
∞(ũk) < FC∞(u);

(c) ũk → u strongly in W 1,p for every p <∞.
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