We consider the cubic Nonlinear Schrödinger Equation (NLS) and the Korteweg-de Vries equation in one space dimension. We prove that the solutions of NLS satisfy a-priori local in time bounds in terms of the size of the initial data for (joint work with D. Tataru, [15, 14]) , and the solutions to KdV satisfy global a priori estimate in (joint work with T. Buckmaster [2]).
@article{SLSEDP_2011-2012____A11_0, author = {Koch, Herbert}, title = {Bounds for {KdV} and the 1-d cubic {NLS} equation in rough function spaces}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:11}, pages = {1--10}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2011-2012}, doi = {10.5802/slsedp.8}, language = {en}, url = {http://www.numdam.org./articles/10.5802/slsedp.8/} }
TY - JOUR AU - Koch, Herbert TI - Bounds for KdV and the 1-d cubic NLS equation in rough function spaces JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:11 PY - 2011-2012 SP - 1 EP - 10 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org./articles/10.5802/slsedp.8/ DO - 10.5802/slsedp.8 LA - en ID - SLSEDP_2011-2012____A11_0 ER -
%0 Journal Article %A Koch, Herbert %T Bounds for KdV and the 1-d cubic NLS equation in rough function spaces %J Séminaire Laurent Schwartz — EDP et applications %Z talk:11 %D 2011-2012 %P 1-10 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org./articles/10.5802/slsedp.8/ %R 10.5802/slsedp.8 %G en %F SLSEDP_2011-2012____A11_0
Koch, Herbert. Bounds for KdV and the 1-d cubic NLS equation in rough function spaces. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exposé no. 11, 10 p. doi : 10.5802/slsedp.8. http://www.numdam.org./articles/10.5802/slsedp.8/
[1] S. A. Akhmanov, R.V. Khokhlov, and A. P. Sukhorukov. Self-focusing and self-trapping of intense light beams in a nonlinear medium. Zh. Eksp. Teor. Fiz., 50:1537–1549, 1966.
[2] T. Buckmaster and H. Koch. The korteweg-de-vries equation at regularity. arXiv:1112.4657, 2011.
[3] Michael Christ, James Colliander, and Terrence Tao. A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order. Preprint arXiv:math.AP/0612457. | Zbl
[4] Michael Christ, James Colliander, and Terrence Tao. Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math., 125(6):1235–1293, 2003. | MR | Zbl
[5] P. Deift and X. Zhou. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. of Math. (2), 137(2):295–368, 1993. | MR | Zbl
[6] E. Grenier. Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Amer. Math. Soc., 126(2):523–530, 1998. | MR | Zbl
[7] Zihua Guo. Global well-posedness of Korteweg-de Vries equation in . J. Math. Pures Appl. (9), 91(6):583–597, 2009. | MR | Zbl
[8] Shan Jin, C. David Levermore, and David W. McLaughlin. The semiclassical limit of the defocusing NLS hierarchy. Comm. Pure Appl. Math., 52(5):613–654, 1999. | MR | Zbl
[9] S. Kamvissis. Long time behavior for semiclassical NLS. Appl. Math. Lett., 12(8):35–57, 1999. | MR | Zbl
[10] Spyridon Kamvissis, Kenneth D. T.-R. McLaughlin, and Peter D. Miller. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation, volume 154 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2003. | MR | Zbl
[11] T. Kappeler and P. Topalov. Global wellposedness of KdV in . Duke Math. J., 135(2):327–360, 2006. | MR | Zbl
[12] Thomas Kappeler, Peter Perry, Mikhail Shubin, and Peter Topalov. The Miura map on the line. Int. Math. Res. Not., (50):3091–3133, 2005. | MR | Zbl
[13] Carlos E. Kenig, Gustavo Ponce, and Luis Vega. On the ill-posedness of some canonical dispersive equations. Duke Math. J., 106(3):617–633, 2001. | MR | Zbl
[14] H. Koch and D. Tataru. Energy and local energy bounds for the 1-d cubic NLS equation in . arxiv:1012.0148, 2010.
[15] Herbert Koch and Daniel Tataru. A priori bounds for the 1D cubic NLS in negative Sobolev spaces. Int. Math. Res. Not. IMRN, 16:Art. ID rnm053, 36, 2007. | MR | Zbl
[16] Yvan Martel and Frank Merle. Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal., 157(3):219–254, 2001. | MR | Zbl
[17] F. Merle and L. Vega. stability of solitons for KdV equation. Int. Math. Res. Not., (13):735–753, 2003. | MR | Zbl
[18] Luc Molinet. A note on ill posedness for the KdV equation. Differential Integral Equations, 24(7-8):759–765, 2011. | MR | Zbl
[19] Junkichi Satsuma and Nobuo Yajima. Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Progr. Theoret. Phys. Suppl. No. 55, pages 284–306, 1974. | MR
[20] Laurent Thomann. Instabilities for supercritical Schrödinger equations in analytic manifolds. J. Differential Equations, 245(1):249–280, 2008. | MR | Zbl
Cité par Sources :