L 2 -stability of multi-solitons
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exposé no. 4, 9 p.

The aim of this note is to give a short review of our recent work (see [5]) with Miguel A. Alejo and Luis Vega, concerning the L 2 -stability, and asymptotic stability, of the N-soliton of the Korteweg-de Vries (KdV) equation.

DOI : 10.5802/slsedp.4
Muñoz, Claudio 1

1 Department of Mathematics The University of Chicago 5734 S. University Avenue Chicago, Illinois 60637 USA
@article{SLSEDP_2011-2012____A4_0,
     author = {Mu\~noz, Claudio},
     title = {$L^2$-stability of multi-solitons},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:4},
     pages = {1--9},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2011-2012},
     doi = {10.5802/slsedp.4},
     mrnumber = {3379845},
     language = {en},
     url = {http://www.numdam.org./articles/10.5802/slsedp.4/}
}
TY  - JOUR
AU  - Muñoz, Claudio
TI  - $L^2$-stability of multi-solitons
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:4
PY  - 2011-2012
SP  - 1
EP  - 9
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org./articles/10.5802/slsedp.4/
DO  - 10.5802/slsedp.4
LA  - en
ID  - SLSEDP_2011-2012____A4_0
ER  - 
%0 Journal Article
%A Muñoz, Claudio
%T $L^2$-stability of multi-solitons
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:4
%D 2011-2012
%P 1-9
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org./articles/10.5802/slsedp.4/
%R 10.5802/slsedp.4
%G en
%F SLSEDP_2011-2012____A4_0
Muñoz, Claudio. $L^2$-stability of multi-solitons. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exposé no. 4, 9 p. doi : 10.5802/slsedp.4. http://www.numdam.org./articles/10.5802/slsedp.4/

[1] M. Ablowitz, and P. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149. Cambridge University Press, Cambridge, 1991. | MR | Zbl

[2] M. Ablowitz, D. Kaup, A. Newell, and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974), no. 4, 249–315. | MR | Zbl

[3] M. Ablowitz, and H. Segur, Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. x+425 pp. | MR | Zbl

[4] J. Albert, J. Bona, and N. Nguyen, On the stability of KdV multisolitons, Differential Integral Equations 20 (2007), no. 8, 841–878. | MR | Zbl

[5] Alejo, Miguel A., Muñoz C., and Vega, Luis, The Gardner equation and the L 2 -stability of the N-soliton solution of the Korteweg–de Vries equation, to appear in Transactions of the AMS (arXiv:1012.5290).

[6] T.B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London A 328, (1972) 153–183. | MR

[7] J.L. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London 411 (1987), 395–412. | MR | Zbl

[8] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV equation, Geom. Funct. Anal. 3 (1993), no. 3, 209-262. | MR | Zbl

[9] K.W. Chow, R.H.J Grimshaw, and E. Ding, Interactions of breathers and solitons in the extended Korteweg-de Vries equation, Wave Motion 43 (2005) 158–166. | MR | Zbl

[10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T.Tao, Sharp global well-posedness for KdV and modified KdV on and 𝕋, J. Amer. Math. Soc. 16 (2003), no. 3, 705–749 (electronic). | MR | Zbl

[11] C.S. Gardner, M.D. Kruskal, and R. Miura, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys. 9, no. 8 (1968), 1204–1209. | MR | Zbl

[12] F. Gesztesy, and B. Simon, Constructing solutions of the mKdV-equation, J. Funct. Anal. 89 (1990), no. 1, 53–60. | MR | Zbl

[13] E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell, ed., Am. Math. Soc., Providence, R. I., 1974, pp. 143–156. | Zbl

[14] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. | Zbl

[15] C.E. Kenig, and Y. Martel, Global well-posedness in the energy space for a modified KP II equation via the Miura transform, Trans. Amer. Math. Soc. 358 no. 6, pp. 2447–2488. | MR | Zbl

[16] C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527–620. | MR | Zbl

[17] C.E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617–633. | MR | Zbl

[18] D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of stationary waves, Philos. Mag. Ser. 5, 39 (1895), 422–443. | MR

[19] M.D. Kruskal and N.J. Zabusky, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243. | Zbl

[20] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467–490. | MR | Zbl

[21] J.H. Maddocks, and R.L. Sachs, On the stability of KdV multi-solitons, Comm. Pure Appl. Math. 46, 867–901 (1993). | MR | Zbl

[22] Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18 (2005) 55–80. | MR | Zbl

[23] Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equation, preprint arXiv:0709.2672 (2007), to appear in Annals of Mathematics. | MR

[24] Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations, Comm. Math. Phys. 286 (2009), 39–79. | MR | Zbl

[25] Y. Martel and F. Merle, Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math. 183 (2011), no. 3, 563–648. | MR | Zbl

[26] Y. Martel, and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann. 341 (2008), no. 2, 391–427. | MR | Zbl

[27] Y. Martel, F. Merle and T. P. Tsai, Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Comm. Math. Phys. 231 (2002) 347–373. | MR | Zbl

[28] F. Merle; and L. Vega, L 2 stability of solitons for KdV equation, Int. Math. Res. Not. 2003, no. 13, 735–753. | MR | Zbl

[29] R.M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9, no. 8 (1968), 1202–1204. | MR | Zbl

[30] R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. | MR | Zbl

[31] T. Mizumachi, and D. Pelinovsky, Bäcklund transformation and L 2 -stability of NLS solitons, preprint. | MR

[32] T. Mizumachi, and N. Tzvetkov, Stability of the line soliton of the KP–II equation under periodic transverse perturbations, preprint. | MR | Zbl

[33] C. Muñoz, On the inelastic 2-soliton collision for gKdV equations with general nonlinearity, Int. Math. Research Notices (2010) 2010 (9): 1624–1719. | MR | Zbl

[34] C. Muñoz, The Gardner equation and the stability of multi-kink solutions of the mKdV equation, preprint arXiv:1106.0648.

[35] R.L. Pego, and M.I. Weinstein, Asymptotic stability of solitary waves, Commun. Math. Phys. 164, 305–349 (1994). | MR | Zbl

[36] B. Thaller, The Dirac equation, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992. xviii+357 pp. | MR | Zbl

[37] M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure. Appl. Math. 39, (1986) 51—68. | MR | Zbl

[38] M.V. Wickerhauser, Inverse scattering for the heat operator and evolutions in 2+1 variables, Comm. Math. Phys. 108 (1987), 67–89. | MR | Zbl

[39] P. E. Zhidkov, Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Mathematics, vol. 1756, Springer-Verlag, Berlin, 2001. | MR | Zbl

Cité par Sources :