We provide some new explicit expressions for the linearized non-cutoff radially symmetric Boltzmann operator with Maxwellian molecules, proving that this operator is a simple function of the standard harmonic oscillator. A detailed article is available on arXiv [15].
@article{SLSEDP_2011-2012____A23_0, author = {Lerner, N. and Morimoto, Y. and Pravda-Starov, K. and Xu, C.-J.}, title = {Hermite basis diagonalization for the non-cutoff radially symmetric linearized {Boltzmann} operator}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:23}, pages = {1--10}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2011-2012}, doi = {10.5802/slsedp.18}, language = {en}, url = {http://www.numdam.org./articles/10.5802/slsedp.18/} }
TY - JOUR AU - Lerner, N. AU - Morimoto, Y. AU - Pravda-Starov, K. AU - Xu, C.-J. TI - Hermite basis diagonalization for the non-cutoff radially symmetric linearized Boltzmann operator JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:23 PY - 2011-2012 SP - 1 EP - 10 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org./articles/10.5802/slsedp.18/ DO - 10.5802/slsedp.18 LA - en ID - SLSEDP_2011-2012____A23_0 ER -
%0 Journal Article %A Lerner, N. %A Morimoto, Y. %A Pravda-Starov, K. %A Xu, C.-J. %T Hermite basis diagonalization for the non-cutoff radially symmetric linearized Boltzmann operator %J Séminaire Laurent Schwartz — EDP et applications %Z talk:23 %D 2011-2012 %P 1-10 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org./articles/10.5802/slsedp.18/ %R 10.5802/slsedp.18 %G en %F SLSEDP_2011-2012____A23_0
Lerner, N.; Morimoto, Y.; Pravda-Starov, K.; Xu, C.-J. Hermite basis diagonalization for the non-cutoff radially symmetric linearized Boltzmann operator. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exposé no. 23, 10 p. doi : 10.5802/slsedp.18. http://www.numdam.org./articles/10.5802/slsedp.18/
[1] Alexandre, R.: Remarks on 3D Boltzmann linear operator without cutoff. Transport Theory Statist. Phys. 28-5, 433Ð473 (1999). | MR | Zbl
[2] R. Alexandre, L. Desvillettes, C. Villani, B. Wennberg, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal. 152 (2000) 327-355. | MR | Zbl
[3] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T.Yang, Uncertainty principle and kinetic equations, J. Funct. Anal. 255 (2008) 2013-2066. | MR | Zbl
[4] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys. 304 (2011), 513-581. | MR | Zbl
[5] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., Vol. 262 (2012), 915-1010. | MR | Zbl
[6] C. Cercignani, The Boltzmann Equation and its Applications, Applied Mathematical Sciences, vol. 67 (1988), Springer-Verlag, New York | MR | Zbl
[7] L. Desvillettes, About the regularization properties of the non cut-off Kac equation, Comm. Math. Phys. 168 (1995) 417-440. | MR | Zbl
[8] L. Desvillettes, G. Furioli, E. Terraneo, Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules, Trans. Amer. Math. Soc. 361 (2009) 1731–1747. | MR | Zbl
[9] P.-T. Gressman, R.-M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc. 24 (2011), 771-847. | MR | Zbl
[10] L. Hörmander, The analysis of linear partial differential operators, vol. I–IV, (1985) Springer Verlag. | Zbl
[11] L. Hörmander, Symplectic classification of quadratic forms and general Mehler formulas, Math. Z. 219, 3 (1995) 413–449. | EuDML | MR | Zbl
[12] N. Lekrine, C.-J. Xu, Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac’s equation, Kinetic and Related Models, 2 (2009), 647-666. | MR | Zbl
[13] N. Lerner, Metrics on the phase space and non-selfadjoint pseudodifferential operators, (2010) Pseudo-Differential Operators. Theory and Applications, Birkhäuser Verlag, Basel. | MR | Zbl
[14] N. Lerner, Y. Morimoto, K. Pravda-Starov, Hypoelliptic estimates for a linear model of the Boltzmann equation without angular cutoff, (2011) to appear in Comm. Partial Differential Equations, arXiv:1012.4915. | MR | Zbl
[15] N. Lerner, Y. Morimoto, K. Pravda-Starov, C.-J. Xu, Diagonalization of the Linearized Non-Cutoff Radially Symmetric Boltzmann Operator, preprint, arXiv:1111.0423v1.
[16] Y. Morimoto, C.-J. Xu, Hypoellipticity for a class of kinetic equations, J. Math. Kyoto Univ. 47, no. 1 (2007), 129-152. | MR | Zbl
[17] Y. Morimoto, C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009) 596-617. | MR | Zbl
[18] C. Mouhot, Explicit coercivity estimates for the Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006) 1321-1348. | MR | Zbl
[19] C. Mouhot, R.M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9) 87 (2007), no. 5, 515-535. | MR
[20] Y.P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. I, Comm. Pure Appl. Math. 27 (1974) 407-428. | MR | Zbl
[21] Y.P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. II, Comm. Pure Appl. Math. 27 (1974) 559-581. | MR | Zbl
[22] A. Unterberger, Oscillateur harmonique et opérateurs pseudodifférentiels, Ann. Institut Fourier, 29 (3) (1979), 201-221. | EuDML | Numdam | MR | Zbl
[23] C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam (2002) 71-305. | MR | Zbl
[24] B. Wennberg, Regularity in the Boltzmann equation and the Radon transform, Comm. Partial Differential Equations, 19 (1994) 2057-2074. | MR | Zbl
Cité par Sources :