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MEASURES ON THE GEOMETRIC LIMIT SET IN
HIGHER RANK SYMMETRIC SPACES

Gabriele LINK

Abstract

For a discrete isometry group of a higher rank symmetric space we present cer-
tain families of measures on its geometric limit set. We further introduce a notion
of Hausdorff measure and give an estimate of the Hausdorff dimension of the radial
limit set.

1. Introduction

Let X be a globally symmetric space of noncompact type and 92X its geometric
boundary endowed with the cone topology (see [Ba, chapter II]). We denote by G =
Isom?(X) the connected component of the identity, and letI' C G be a discrete sub-
group. The geometric limit set of I' is defined by I := I 0 N 89X where 0 € X is an
arbitrary point. In order to measure the size of the limit set of discrete isometry groups
of real hyperbolic spaces, S. J. Patterson ([P]) and D. Sullivan ([S]) developed a theory of
conformal densities. These densities allow to relate the Hausdorff dimension of the limit
set to the critical exponent of I

5 = inf{s >0 Z e~ sdloyo) o oo}.

yel

Part of the theory has been extended by P. Albuquerque ([Al]) to Zariski dense discrete
isometry groups of arbitrary symmetric spaces X = G/K of noncompact type. How-
ever, if the rank of X is greater than one, the support of a §(I)-dimensional conformal
density is a proper I[-invariant subset of the limit set. In order to obtain densities sup-
ported on every [-invariant subset of the geometric limit set, we recently constructed
so-called (b, I &)-densities ([Li]). We remark that the projection of these densities to the
Furstenberg boundary gives precisely the “(I, @) Patterson measures” constructed inde-
pendently by J. E Quint ([Q]) using different methods. The measures on the Furstenberg
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boundary, however, do not allow to capture an essential piece of information concerning
the geometry of I-orbits.

In this note we are going to describe the ideas of our construction of (b,I: E)-
densities and give some estimates on the Hausdorff dimension of the limit set. For a
detailed description and more general results we refer the reader to [Li].

The paper is organized as follows: In section 2 we recall some basic facts about
Riemannian symmetric spaces of noncompact type. We describe the G-orbit structure
of the geometric boundary 9X and introduce a family of (possibly nonsymmetric) G-
invariant pseudo distances on X. In section 3 we give a definition and describe our
construction of (b, I £)-densities. In section 4 we introduce an appropriate notion of
Hausdorff measure and estimate the Hausdorff dimension of the radial limit set.

2. Preliminaries

In this section we recall some basic facts about symmetric spaces of noncompact
type (see also [H], [BGS], [E]) and fix some notations for the sequel.

2.1. Polar coordinates

Let X be a simply connected symmetric space of noncompact type with base point
0 € X, G = Isom?(X), and K the isotropy subgroup of 0in G. Itis well-known that G
is a semisimple Lie group with trivial center and no compact factors, and K a maximal
compact subgroup of G. Denote by g and £ the Lie algebras of G and K. Since G acts
transitively on X we have the identification X = G/K. The geodesic symmetry in o
induces a Cartan involution on g, hence g = t®p, wherep C g denotesits —1 eigenspace.
The tangent space 7,X of X in o is identified with p, and the Riemannian exponential
map at o is a diffeomorphism of p onto X. The Killing form of g restricted to p induces
an inner product (-, -) on T,X and hence a G-invariant Riemannian metric on X with
associated distance d. With respect to this metric, X has nonpositive sectional curvature,
and up to rescaling in each factor, this metric is the original one.

Let a C p be a maximal abelian subspace. Its dimension r is called the rank of
X. The choice of an open Weyl chamber a* C a determines a Cartan decomposition
G = Ke® K, where a* .denotes the closure of a*. The component of g in atis uniquely
determined by g and will be called the Cartan projection H(g). We will denote by a, the
unit spherein a.

Let = denote the set of roots of the pair (g, a), and =* c X the set of positive roots
determined by the Weyl chamber a*. We fix a set of simple roots {&;, &, ..., &,} of Z*.
Fori € {1,2,..., 7} we call the unique vector H; € aj with the property o ;(H;) = 0 for
all j = i the i-th maximal singular direction.
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2.2. Compactification of X

The geometric boundary 2X of X is the set of equivalence classes of asymptotic
geodesic rays endowed with the cone topology. This boundary is homeomorphic to
the unit tangent space of an arbitrary point in X, hence by the Cartan decomposition
Ad(K)a] = 0X.

Forke Kand H € Ewe denote by (k, H) the unique class in 9X which contains
the geodesicray o (t) = kef?o,t > 0. We will call H the Cartan projection of (k, H). Note
that the writing is not unique, because (k;, H) = (kp, H) if and only if k; 1, belongs to
the centralizer of H in K.

PutX := X U 9X. For x € X and z € X we denote by o, , the unique unit speed
geodesic emanating from x which contains z.

Theisometry group of X has a natural action by homeomorphisms on the geometric
boundary, and G- £ = K- € for any € € 0X. Furthermore, G acts transitively on 90X if
and only if rank(X) = 1.

If r =rank(X) > 1, we define the regular boundary 09X as the set of classes with
Cartan projection H € af, and the i-th maximal singular boundary component X,
1 < i < r,as the set of classes with Cartan projection H; € a_f as defined in the previous
section. If 7 = 1, we use the convention 0X*® = 9X.

2.3. Directional distances

Forx,y € X, € 0X let Be(x,y) :=lims. o (d(x, oxx(8)) — d(y, O'x,g(s))) be the
Busemann function centered at € (compare [Ba, chapter II]). Using these functions we
will construct an important family of (possibly nonsymmetric) pseudo distances which
will play a crucial role in the remainder of this note.

DEerINITION 2.1. — LetE € 0X. Thedirectional distance of the ordered pair (x,y) €
X X X with respect to the subset G- & < 0X is defined by
Beg: XxX - R
(x,y) = Bg.g(x,y) = sup Bg.g(x,¥).
geG

Note that in rank one symmetric spaces G- & = 90X, and %¢-¢ equals the Riemannian
distance d for any £ € 9X. In general, the corresponding estimate for the Buseman
functions implies Bg.g(x,y) < d(x,y) foranyf € oX,x,y € X.

Furthermore, Bg.¢ is a (possibly nonsymmetric) G-invariant pseudo distance on X
(for a proof see [L, Proposition 3.7]), and we have

Be.g(x,y) =d(x,y)cos £,(y,G-E), where L,(y,G &) = ;gg 2x(y, 8E).
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In particular, if Hz € u_1+ denotes the Cartan projection of &, we have
Bo.g(o keo) = (H;, H) VkeK VHed .

If€ € 9X%, 1 < i < r,we will write d; instead of %g.§.
3. Construction of (b, I- &)-densities

We denote by v the projection 7B : 3X™8 - K/M
(k,H) ~ kM.

Itis well-known (see for example [L, Theorem 5.15], [Be]) that in the higher rank case the
regular geometric limit set splits as a product Kpx (Bnat) where K = w2 (Irn2X™8) and
B < E{-is the set of Cartan projections of limit points. In particular, for any H € A N a7,
€ = (id, H) € 92X™¢, the set Lr N G- & is a [-invariant subset of the limit set isomorphic
to Kr x {H}.

In this section we will give an idea of how to construct the following kind of densities
for each I-invariant subset of the regular limit set. Recall that r denotes the rank of X

DEFINITION 3.1. — Let #* (0X) denote the cone of positive finite Borel measures on
0X,E € 0X™ andb = (b',1?,...b") € R". A(b,T- ¥)-density is a continuous map

H: X - #H0X)
x = Hx

with the properties

(i) supp(Ho) € Irn G-,
(ii) Y % Hx = Hy1, foranyy €T, x€ X,
dilx

m (n) = eZi=1 ¥ %000 forany x € X, n € supp(u,) .
[

(iii)

Heren; € 0X'® denotes the unique point in the i-th maximal singular boundary com-
ponent which is contained in the closure of the Weyl chamber at infinity determined by
n € 0X"8.

Remarks. — If r—= 1 then for any £ € 90X we have Ir " G- & = It and the above
definition for a (b,I- €)-density is exactly the definition of a b-dimensional conformal
density.

If r > 1 let Hy denote the Cartan projection of £ € 90X and H;, H,,..., H; the
maximal singular directions defined in section 2.1. A (b, I £)-densityis an cx-dimensional
conformal density with supportin G- £ as defined in [Al] if and onlyif Zl;l b'H; = oHy .
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We briefly recall the Patterson-Sullivan construction of § (I)-dimensional conformal
densities. Denote by D the unit Dirac measure and by

P(x,y) =) e 4=
yer

the Poincaré series of I. Define on X a family of measures

1
S ~sd(x,yo)
My = P(0.0) yier e D(yo), xe X, s> o)

supported on the orbit I- 0. We remark that if P?0) (o, 0) converges, the definition of
the measures is modified by adding a slowly incrasing function (see [P] for details). Any
weak limit 4 = (uy) xex as s tends to §(I) of the family of measures (1},) e x thenyieldsa™
6 (I)-dimensional conformal density.

3.1. Exponential growth rate in direction G- &

If € € 0X™8is given, a necessary condition for a sequence (y;) C X to converge to
apointn € G- Eis

2x(y5, G- &) = ;gng(yj, gt - 0 for any point x € X .

Hence if the rank of X is greater than one, only the subset
Ix,y) ={yeTlyy+x, 2:(yy,G-8) <@}, x,y € X,

for arbitrarily small ¢ > 0 contributes to the limit set in G- €. Therefore, in order to
obtain measures supported on I N G- &, one should rather consider sums of the form

(xl y) Z e——Sd(x vy)

yeI(x,y)
instead of using the complete Poincaré series.

Itis not possible, however, to obtain a family of I-equivariant measures directly from
such asum, becauseI'(x, y) isnotI-invariant. Furthermore, the exponent of convergence
8¢.¢(x,y) of Q¢%(x, y) depends on the points x, y € X.

However, the number 6 ¢.g(I) = liminfy,_o 5§_§(x, y) isindependent of x,y € X
(see [L, Lemma 6.2]) and will be called the exponent of growth of I in direction G- E.
Since log ANZ ¢(x,¥; R)
Sgg(M = liminf (limsup BANE (%, R)) with
@-0 R—-o R }

#{lyel|R-1<d(x¥yy) <R, 24x(yy,G- &) < @},

ANG ¢(x,y; R)

this number can also be interpreted as an exponential growth rate of the number of orbit
points close in direction to G- &.
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3.2. The modified Poincaré series

From here on'we fix £ € 9X**8 with §g.g(I) > 0. Recall that Bg.g and dy, dy, - . ., d,
are the directional distances introduced in section 2.3. In order to have hardly any con-
tribution of elements far in direction from G- &, i.e. those with £, (yy, G- &) large, we add

weights
e~ T(dxyy)-Be.g(x,yy)) = p—Tdxyy)(1-cos £x(yy,G-E))

with T > 0 large to the terms in the Poincaré series. It turns out that we also have to
introduce more degrees of freedom which is done by replacing the Riemannian distance
d with a linear combination of 4, dy, . . . d,.

For T > 0 we denote by 22§ ; C R the set of r-tuples b = (B, P?,...,b") € R” for
which the series

Pcs;'.%T(x' y) = Z o~ S(Tia Pdixyy)+r(d(xyy)-Be.g(%yy)))

yerl

has exponent of convergence equal to one. Notice that %, is independent of x, y € X
by the triangle inequalities for d, %¢.x and dy, @y, . . . d;.

It is shown in detail in [Li, section 3.3], that for any b € % the Patterson-Sullivan
construction yields a family of I-equivariant measures y = ugf"g supported on the limit
set. However, these measures are in general not absolutely continuous with respect to
each other.

Recall that H;, H,, . .., H, are the maximal singular directions defined in section 2.1.
Suppose there exists b € R” and @ € (0, 7r/4) such that

(%) > B(H;,Hy) =8¢, and »  B(H;,Hp) > 6c.n(D

i=1 =1

for any n € 9X with Cartan projection H, € a_'f and 2£,(n, G- €) < @, . This condition
on the behavior of the exponent of growth of I'in the neighboring directions of G- € is
satisfied for Zariski dense discrete groups I by a result of J. E Quint (see [Q]) and [Li,
Proposition 3.12]). Then there exists T¢ = To(b, @g) > Osuch thatforall T > T¢ the
family of measures u = HZ’.TE is supported on Lr N G- € and satisfies

de(n) = gXi=1 b'®n;(0) forany x € X, n € supp(u,) .
[

Hence pis a (b; I- £)-density.

3.3. The case of lattices

In this section we are going to precise the parameters of (b, I £)-densities for lat-
ticesT C G. The calculation in [A] shows that in this case the exponent of growth 6 .g(I)
in a direction G- € with Cartan projection Hg is equal to p(Hg), where p denotes the sum
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of the positive roots counted with multiplicities. Furthermore, the critical exponent of ' .
isequalto || pll.

Since p is a linear functional on a and the maximal singular directions Hj, ..., H;
form a basis of a, there exist parameters b',/%,...,0" € R with the property
Z;l b {H;, H) = p(H) for all H € a. This implies that for any & € 9X the conditions
(%) above are satisfied for arbitrary @y > 0 with the same tuple b = (b, 12,..., D).
Using T sufficiently large, we are able to construct a (b, I €)-density for every £ € X",

According to the second remark after Definition 3.1, the direction H, which sup-
ports the conformal density constructed by P. Albuquerque is given by the condition
3.l b'H; = aH, forsome o > 0. By choice of our parameters bwe knowthat Y ., b'H;
equals the dual vector of p in a*. Hence H, € a] is the normalized dual vector of p and
a = p(Hy) = llpll = 6(I). This shows that any é(I)-dimensional conformal density is
supported in G- &, for &, = (id, H,) € 0X™&.

4. Hausdorff measure

In this section, we deal with an important subset of the limit set, the radial limit
set. We introduce an appropriate notion of Hausdorff measure and Hausdorff dimension
on the geometric boundary 29X and estimate the size of the radial limit set in each G-
invariant subset G- & £ 9X. For so-called radially cocompact groups we obtain a sharp
estimate for the Hausdorff dimension of the radial limit set in any given subset G- £ <
oXTes,

4.1. The upper bound on the Hausdorff dimension

We will use the following definition of Hausdorff measure on the geometric bound-
ary which was introduced by G. Knieper in [Kn, §4]. For £ € X, ¢ > 0and0 <r < e™°
we call the set

Bi(E) = {n € 90X | d(0p(—logr),do5(~1logr)) < c}

a c-ball of radius r centered at £ With this notion of c-balls we define as in the case of
metric spaces Hausdorff measure and Hausdorff dimension on the geometric boundary.

DEeFINITION 4.1. — Let E be a Borel subset of 0X,
HAX(E) =inf{ ) ¥ | E < |UBg(r), ri< ).

HA*(E) :=lim,_o HdZ(E) is called the a-dimensional Hausdorff measure of E,
dim g4(E) =inf{ax > 0 | HA*(E) < =} theHausdorff dimension of E.

In this note we are going to use the following definition of radial limit points in order
to simplify the estimates concerning the upper bound on the Hausdorff dimension. For
a proof of the more general result we refer the interested reader to [Li, section 6].
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DEFINITION 4.2. — A point § € Ly is called a radial limit point for the action of T if
there exists a sequence (y j) C I which remains at bounded distance of a geodesic ray with
extremity €. The set of radial limit points in 8X is denoted by L*4.

Forc > 0,x,y € X with d(x,y) > ¢ we further put
shx(By(c)) := {n € 0X|d(y, Oxy) < ¢}.

THEOREM 4.3. — IfT C G is a discrete group and € € ©0X*8, then the Hausdorff
dimension of the radial limit set in G- € is bounded above by 6 g.£(I).

Proof. — Fix £ € 0X™& with Cartan projection Hy € af, and ¢ > 0 sufficiently
large. By definition of the radial limit set,

InG-Ec ) U sho(Byo(c/2)).

R>0 yel
d(o,yo)>R
d(yo,K-aa‘E)<cIG

Let £ > 0 be arbitrarily small. Fory € I, put &, := 0,y0(+®), 1y = e~ 4(o¥9) and let
I''={yeTl|n <sg d(yo, K-o,x) < c/6}. Sinceshy(B,,(c/2)) Bﬁy(‘g’y) we have

IFMnG s | BL(E).

yer

Using the definition of Hd* we estimate

HA%(IFP4 N G- §) Z ro = Z e-od(oyo) ¢ Qé’.‘g(o, o) ifp <

e e —6loge

Hence Hdg‘(Lf"‘dnG- &) is finite for ot > 6‘5.2(0, 0). Taking thelimitas @ » 0 we conclude
that the same is true for & > §.g(I). Letting £ ™ 0, we obtain Hd"‘(Lf~ad NG-§) <o if
a > 8g.¢(I), hence dim ya(If*4 N G- ¥) < 8g.¢(D). O

4.2. Radially cocompact groups

For convex cocompact and geometrically finite discrete groups of real hyperbolic
spaces D. Sullivan proved that the Hausdorff dimension of the radial limit set is equal to
the critical exponent ([S, Theorem 25]). In 1990, K. Corlette ([C]) extended this result to
all rank one symmetric spaces of noncompact type. In order to give a sharp estimate for
the Hausdorff dimension of the radial limit set in higher rank symmetric spaces, we use
the following definition.

DEerINITION 4.4. — A discrete groupT C G is called radially cocompact if there exists
a constant cr > 0 such that for anyn € L and for allt > 0 there existsy € T with

d(yo,oon(t)) <cr.
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Examples of radially cocompact groups are convex cocompact isometry groups of rank
one symmetric spaces, uniform lattices in higher rank symmetric spaces and products
of convex cocompact groups acting on the Riemannian product of rank one symmetric
spaces.

For radially cocompact discrete groups ' C G, the existence of a (b,I €)-density u
together with the following theorem (see [Li, section 4.3] for a proof) allows to also obtain
a lower bound for the Hausdorff dimension of the radial limit set.

THEOREM 4.5 (Shadow lemma). — LetT' C G be a Zariski dense discrete subgroup,
€ € 0X™8, and u a (b,T- €)-density. Then there exists a constant ¢g > 0 such that for any
¢ > ¢ there exists a constant D(c) > 1 with the property

1

D(o) e Li-1 b'di(oyo) < uo(Sho(Byo(C))) < D(c)e Yl bdiloyo)

forally e Tsuchthatd(o,yo) > candd(yo,K- 0,5) < ¢/3.

From here on, we fix ¢ > 2 max{cr, ¢} with cr as in Definition 4.4 and ¢; as in
Theorem 4.5.

THEOREM 4.6. — Let T C G be a radially cocompact Zariski dense discrete group,
£ € 0X™8 with Cartan projection Hy € a}‘, and u a (b,T- &) -density. Then there exists a
constant Cy > 0 such that for any Borel subset E < Lf-ad

HA*(E) > G - Ho(E), o=y b'(H; Hg).

i=1

Proof. — Set ot := Z;l b (H;, Hg). Since HA%*(E) > HA*(E N G- ) and po(E) =
Ho(E N G- E), it suffices to prove the assertion for E < L{-ad NG-E Lete >0,s>0
arbitrary, and choose a cover of E by balls B‘,’j (nj), rj < & such that

HAXE) > Y % —s.
jeN

IfB,fj(nj) N L{-ad = @, we do not need B,”.j (nj)tocover E Lf-ad N G- &, otherwise we
choose &; € Bﬁj(n j) N E. Since I'is radially cocompact, there exists y; € I'such that
d(yjo, ao,nj(—log rj)) < c. Thisimplies d;(o,y ;o) > d;(o, Uo,nj(—log rj)) — ¢, hence

r r
=Y Pdi(o,y;0) < > b'((Hy Hy)logr; +¢) < alogr; + cliblly .

i=1 i=1
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Furthermore, we have ij(nj) c sho(Byja(Zc)), hence E < Ujen sh,,(B,,].o(Zc)). We
conclude

Ho(E) < Mol sho(By;0(2€)) <D Hol(sho(By,0(20))

jEN jEN
< D(2c) Z e~ Zin V'dilor;o) < p(ac) Z exlog7jtellbly
JEN JEN
< D(ZC)ec"b"l Z 7‘;‘ < D(zc)ecllb"l (Hd:‘(E) + S) )
JEN
The claim now follows as s \ 0 and £ \ 0. O

THEOREM 4.7. — LetT C G be a radially cocompact Zariski dense discrete group,
€ € 0X™E and u a (b, T- ) -density constructed as in section 3.2. Then

dim ga(If*n G- ¥) = 66.5(D).

Proof. — Let & € 9X" 8 with Cartan projection Hy € af, and u a (b, I- €)-density
constructed as in section 3.2. From the previous theorem we deduce that for
& =3 i b'(H;, Hg)

HA*(If** N G- §) > Gu (1Y) > 0,
hence dim ga (I N G- &) > o = 0, b*(H;, Hy) > §¢.5(D) by condition (*) of sec-
tion 3.2. The assertion now follows directly from Theorem 4.3. O
Using the results of section 3.3, we deduce the following
CoRroLLARY 4.8. — Let X be a globally symmetric space of noncompact type, andT C
Isom°(X) a cocompact lattice. Then for any ¥ € 0X**8 with Cartan projection Hy € aj we

have
dim ga (LN G - E) = p(Hg).
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