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MEAN CURVATURE FLOW AND SELF-SIMILAR
SUBMANIFOLDS

Henri ANC!AUX

Résumé

Le but de ce texte est de présenter à un large public quelques notions autour du
mouvement par courbure moyenne et des flots géométriques. La première partie
définit ce qu'est le mouvement par courbure moyenne, la seconde décrit la notion
de solution auto-similaire à cette équation et la troisième partie évoque plusieurs
•exemples d'autres flots géométriques ; dans la dernière nous présentons un travail
original concernant la construction de sous-variétés lagrangiennes auto-similaires,
qui a fait l'objet d'une prépublication à l'Université de Tours (cf. [Ane]). Toutes les
figures ont été obtenues grâce au logiciel Maple.

1. The mean curvature flow

PROPOSITION AND DÉFINITION 1. — There exists a unique vectorfield H tangent to S
such that for any family ofdiffeomorphisms (4>f)r>o satisfying 3>0 = ld, the following
holds:

- f(V,H) + o{t),

where V is the derivative at time t = 0 of $. H will be called mean curvature vector.

This formula suggests the following analysis: if we want to deform a submanifold by
a diffeomorphism in such a way that the area have the maximum decay rate near t - 0
with the constraint that the L2-norm of the derivative V is some fixed constant, we find
by Cauchy-Schwarz inequality that this derivative should be H (up to a multplicative
constant that be may chosen to be 1). This is exactly the meaning of the mean curvature
équation ^ = H(X) : a solution of the latter is a one-parametre family of submanifolds
such that the normal velocity of the évolution equals the mean curvature vector.

The decay of area of such a flow is then the L2-norm of H.
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In the context of symplectic geometry, the mean curvature vector has another prop-
er ty: if Z is Lagrangian {Le. the standard symplectic form vanishes on S), then H is of
Lagrangian type, which means that the mean curvature flow evolves within the class of
Lagrangian submanifolds.

From the viewpoint of analysis, the mean curvature équation is of parabolic type,
and by standard results, we know that for compact initial data having some regularity
(C°), existence and uniqueness of the flow hold for "a short time." By these words we
mean for times t G [0, T), where the non négative constant T does not admit any uni-
versal upper bound. Moreover, the flow is regularizing, Le., the evolved surface becomes
instantaneously C°°.

More interesting and more difficult is the study of long time behaviour of the évolu-
tion: we do not have genera! answers to this, except in some particular cases:

THEOREM 1.1. — IfZ is the boundary ofa convex, compact set into W1, n > 3, or a
compact, embedded curve into D&2, then itshrinks infinité time to a point. Moreover, its
shape tends to bespherical as it shrinks.

This resuit is due to Grayson ([Gr]) for curves and to Huisken ([Hu]) in higher di-
mension.

Beyond theses cases, the gênerai picture is that the flow generally develops singu-
larities, and a first question is how these singularises look like.

Another question arises as follows: it has been a powerful tool to define weak no-
tions of MCF (levels-set flows, viscosity solutions) which allow in particular to get very

" gênerai existence theorems, even after formation of singularity. Then we are led to ask
ourselves whether the good properties of the smooth flow still hold. Current studies (cf.
[AIV]) on the subject tend to answer "no": we expect that past a singularity, several dis-
tinct évolutions may occur, and that the Lagrangian property could be lost.

2. Self-similar flows

It is natural to seek for simple solutions of the MCF assuming that the flow preserves
the shape of the evolving surface, Le. the diffeomorphism deforming the surface is a solid
motion. Then the problem is reduced to looking for a surface satisfying some curvature
property. Analytically speaking, this amounts to plug a particular ansatz in the parabolic
PDE describing the flow in order to split it into an ODE in the time variable (which is
trivial) and an elliptic PDE for the initial data in the space variables.

The first instance is self-shrinking, that is, a flow which is a homothetie with ratio
tending to zero. The simplest example of self-shrinker is a round hypersphere S""1 into
W1. Round cylinders and the Clifford torus S1 x S1 into are other examples.

The importance of self-shrinkers cornes from the fact that near a singularity the
MCF is asymptotically self-shrinking. The case of self-shrinking planar curves has been
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studied by U. Abresch and J. Langer in 1986 (cf. [AbLa]). They show that the only em-
bedded self-shrinking curve is the circle, and that most of them are not even properly
embedded (i.e.t their image is dense in a subset of IR2). The other ones turn to be very
beautiful rosettes. They are indexed by two relatively prime numbers p and q subject to
the the following condition: 1/2 < p/q < V2/2. These numbers have a geometrie mean-
ing: p is the winding number of the curve, and q is the number of petals of the rosette.
On Figure 1 and 2 are two examples.

Self-shrinking is not the only example of-self-similarity. We.may look for self-
expanding flows as well, that is flows which are a homothetie with ratio tending to in-
finity. This may seem somewhat paradoxical that the MCF évolution —which locally de-
creases area— should be an expansion; however such surfaces do exist, but are of course,
never compact. Figure 3 shows an example of a self-expanding planar curve. One may
also ask the flow to be a solid motion, for example a translation; this yields to the "Gream
Reaper11 (Fig. 4); finally, there is the "Yin-Yang" curve, which has the property of being
self-rotated under the MCF (Fig. 5).

Beyond the case of planar curves, very little is known about self-similar flows. An-
genent has proved the existence of self-similar tori in DS3 ([Ang]) and Chopp has given
numerical évidences for existence of a variety of other self-shrinkers ÜCh]). In [AIV] a
flow is described which starts being self-shrinking (say for t < 0), then becomes a cône
at f = 0, and then pursues its évolution by self-expanding. In the last section we shall
provide examples of Lagrangian self-shrinkers and self-expanders.

3. Further geometrie flows

It turns out that the MCF is just one example of geometrie flow. Indeed, there is a
gênerai approach to define geometrie flows: consider an elliptic équation which has a
variational form, that is which is the Euler-Lagrange équation of some functional; one
can look at the flow whose velocity is the gradient of the associated functional. In par-
ticular, stationary states of the flow are exactly solutions of the elliptic équation. For
example, the MCF is the flow associated to the minimal surface équation, because the
gradient of the area functional is the mean curvature vector, as expressed by the formula
we began with.

Another very interesting example is the surface tension flow, which models the mo-
tion of the interface of two phases towards equilibrium. In this case, the interface tends
to have least area with the constraint that the volume filled by each of the two phases
remain constant. It can be proved that the stationary states are just constant mean cur-
vature surfaces. This is actually the old famous isoperimetric problem: minimizing the
area of a surface, given some volume constraint.

We can observe this phenomenon by dropping a few oil on a plate containing wa-
ter: after a while (mathematically speaking, when time goes to infinity!), the connected
components of oil become round disks, that is the interface between water and oil is a
union of circles, which are the only closed curves with constant curvature.
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In addition the surface tension flow illustrâtes well the similarity between the iso-
perimetric problem and Oh's conjecture; the first one leads to the study of CMC hy-
persurfaces; Oh's conjecture (that is minimizing the area of a Lagrangian submanifold
among Hamiltonian déformations) yields the notion of Hamiltonian stationarity. These
two variational problems have many common features: présence of a harmonie map,
strucure of an integrable System, représentation formula à la Weierstrass. Moreover they
coïncide in dimension 1 (planar curves). One more similarity appears in our context: in
both cases the associated flow is the surface tension flow.

There is another geometrie flow whose study has drawn conséquences in theoreti-
cal physics, that is the inverse mean curvature flow. Using it, Huisken and Ilmanen were
able to proove the famous Penrose inequality (cf. [Huil]). •

All these examples are extrinsic flows: they describe the évolution of a submani-
fold into the Euclidean space, and the law of évolution is given by extrinsic quantities.
Another kind of geometrie flows are called intrinsic because they involve only intrinsic
quantities of a Riemannian manifold. So hère the manifold varies in the sensé that its
metric evolves in time. The most famous example of this kind is the Ricci flow, whose
équation is given in the next table. It has been studied as an attempt to prove the ge-
ometrization conjecture for closed manifolds of dimension three. Recently, G. Perelman
(cf. [Pe]) has got over a critical stage in this direction. One of his fundamental observa -

- tions is to give a variational interprétation of the Ricci flow.

Many geometrie flows are mentionned in the following table; In the first part (ex-
trinsic flows), V stands for the normal velocity of the evolving surface:

Extrinsic
flows

Intrinsic
flows

Geometrie flow
MCF

V = H
Lagrangian MCF [Sm], [Wa]

V = H = JVP
Surface tension flow [EMS]

V = AH
V = AH = /VA/?

Willmore flow [KuSc]
V = 5W

Inverse mean curvature
flow [Huil]

\V\ = 1/\H\
Ricci flow [Ham]

gîj = ~2Rij
Yamabe flow

Stationary solutions
Minimal surfaces

Special Lagrangian surfaces

CMC hypersurfaces
\H | = Const

Hamiltonian stationary
Lagrangian submanifolds

AP = 0 [Oh]
Willmore surfaces [Wi]

<5#=0
No stationary states

Einstein metrics

Conformai metrics with constant
scalar curvature (Yamabe problem)
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4. Self-similar equivariant submanifolds in 0&2w

In this section, we shall briefly describe further examples of self-similar submani-
folds, which are a kind of généralisation of the Abresch and Langer curves.

Let us consider R2n = Cn, with coordinates (xl + iyl,..., xn + iyn). This identifi-
cation with a complex space provides a standard symplectic structure: œ = X)y=i ^ x 7 A

dyJ.Asubmanifold of \&2n of dimension nis said to be Lagrangianiî the restriction of co
toitvanishes

We now consider w-dimensional submanifolds of R2™ taking the following form: .

2 = {(yor1,...,ycrn)},

where {v\,. ..,an) e Sn~l c Rn and y is some planar curve: y c C* - (0&2)*. A short
computation shows that whatever y is, Z is Lagrangian for oo.

Then we show that S is self-similar, if and only if y satisfies the following ODE:

(1) k={y,N

where fc dénotes the curvature of y and N its normal unit vector. If the constant À is
positive (resp. négative), S is self-shrinking (resp. self-expanding). Of course, the case of
vanishing À corresponds to a minimal submanifold.

It turns out that Equation (1) can be solved almost explicitly. Indeed, if we parame-
trize the curve y = re1* by arclength and dénote by 9 the angle made by the tangent with
any fixed axis, this équation may be written as the following System:

r = cos(0 - </>)

</> = - s in(0 - <ƒ>)

Then, introducing the new variable a := 6 - <p,we can reduce this System to:

f = cos a
à = (Ar j sina

This last System admits the following first intégral: E := rn exp(-Àr2/2) sin oc, which.
allows to draw the phase portrait, distinguishing the case À > 0 in which the trajectories
are bounded (Fig 6.), and the case A ̂  0, in which they are not (Fig. 7).

It is not difficult now to deduce the main properties of the solutions of ( 1 ). We shall
distinguish three cases according to the sign of A.
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4.1. The minimal case
This case is the easiest one because we get an explicit parametrization of solutions,

thatis
1 1 • E

4> - — a = — arcsm —,
n n rn

up to a constant of intégration.
If n = 1, we get a straight line and in larger dimensions, we recognize the Lagrangian

catenoids which were first identifed by Harvey and Lawson in [HaLa] and more widely
described by Castro and Urbano in [CaUr]. The angle <f> has range ( -n/ n, 0), which cor-
responds to the fact that the catenoid is asymptotic to two Lagrangian hyperplanes with a
constant angle n/n. For a more complete description of these submanifolds, see [CaUr].

4.2. The self-expanding case
This situation is quite similar to the previous one. We find that the curve y is con-

vex and asymptotic to two straight Unes with an angle which ranges (0, n/n). Therefore
the corresponding submanifold is asymptotic to two Lagrangian hyperplanes making a
constant angle in the same interval.

4.3. The self-shrinking case
Without loss of generality, we may fixA = «. System (2) has (a = ^[TT], r = 1) as

equilibrium points. Geometrically they correspond to the unit circle which is solution of
(1). These equilibrium points are local extrema of the energy E, so intégrais curves are
closed curves around them, excepted the vertical lines {a = 0[rr]}.

In order to describe completely the solutions of (1), we need to compute on each
intégral curve of (2) the number ƒ </> which represents how much the curve y winds
around the origin. Actually, the curve will be closed if and only if this number is fraction
times TT.

A computation shows that ƒ <p ranges the interval (Tr/2n, n^2fri), so for any pair
of integer numbers p and q such that l/2n < p/q < ^/2/n, there exists a closed curve
satisfying Equation ( 1 ). The winding number of this curve is p, and q is the number of of
pattems (or petals) that are periodically repeated. In particular, if n = 1, we recover the
Abresch and Langer curves. On Figures 8, 9 and 10 are other instances.

We achieve this section by discussing the embeddedness of our examples. We first
observe that it is necessary that the winding number p of y be one, otherwise y will
have self-intersections. This situation do occur except in dimension 1, however this is
not sufficient for the corresponding submanifold to be embedded: if the curve admits
two points which are symmetrie with respect to the origin, the two spherical fibers are
the same. Then there are two slightly different situations:.if q is odd, there are such.pair
of points which are isolated and the submanifold has self-intersections; if q is even, the
parametrisation from S""1 x S1 is a 2-covering (because of the central symmetry of y),
so the image is an embedding of S""1 x S1 / {0,1}. For example, in dimension 5 there is
an embedded Lagrangian self-shrinker (with (p,q) = (1,6)).
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Figure 1: An Abresch and Langer curve with p = 2, q = 3

Figure 2: A Abresch and Langer curve with p = 7,q = 10
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Figure 3: The Gream Reaper

Figure 4: The Yin-Yang curve

Figure 5: Aself-expanding curve
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Figure 8: n = 2, p = 17, q = 35

Figure 9: n = 5, p = 1, q = 6

Figure 10: n = 2, JE? = 1, q = 3


