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POLYHEDRA WITH SPECIFIED LINKS

Aline VDOVINA

Abstract

We construct compact polyhedra with m-gonal faces whose links are generalized
3-gons. It gives examples of cocompact hyperbolic bildings of type P(m, 3). For m =
3 we get compact spaces covered by Euclidean buildings of type Âz-

1. Introduction

1.1. Preliminaries

Given a graph G we assign to each edge the length 1. The diameter of the graph is
its diameter as a length metric space, its injectivity radius is half of the length of the
smallest circuit.

Dueto [21, [7] or [9] the following définition is equivalent to the usual one

DÉFINITION 1.1. — For a natural number m we call a connectedgraph G a gener-
alized m-gon, if its diameter and injectivity radius are both equal to m.

A graph is bipartite if its set of vertices can be parti tioned into two disjoint subsets
P and L such that no two vertices in the same subset lie on a common edge. Such a
graph can be interpreted as a planar geometry, i.e. a set of points P and a set of unes
L and an incidence relation R c P x L. On the other hand each planar geometry can
be considered as a bipartite graph.

Under this correspondence projective planes are the same as generalized 3-gones
([9]).

Let G be a planar geometry. For a line y e L we dénote by ƒ (y) the set of all
points x e P incident to y. If no confusion can arise we shall write x s y instead of
x e I(y) andyi n yz instead of ƒ (yi) n ï{yz). A subset Sof Piscalledcollinearifitis
contained in some set ƒ (y), i.e. if aD points of 5 are incident to a line.

Given a planar geometry G we shall dénote by G' its dual geometry arising by
callinglines resp. points of G points resp. unes of G'. The graphs correspomding to
G and G' areisomorphic.

We will call a polyhedron a two-dimension al complex which is obtained from sev-
eral oriented p-gons by identification of correspondingsides. Consider a point of the
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polyhedron and take a sphère of a small radius at this point. The intersection of the
sphère with the polyhedron is a graph, which is called the link at this point

DÉFINITION 1.2. — Letfp(ptm) beatessellationofthehyperbolicplanebyregiilar
polygons with p sides, with angles n/m in each vertex where m is an integer. A hyper-
bolic building of type £P{ p,m) is a polygonal complex X, which can be expressed as
the union of subcomplexes called apartments such that:

1. Every apartment is isomorphic to t?( p, m).
2. For any two polygons ofX, there is an apartment containing both ofthem.
3. For any two apartments A\,A2 e X containing the same polygon, there exists

an isomorphism A\ -> AifixingA\ n Ai.

If we replace in the above définition the tessalition gP{p, m) of the hyperbolic
plane by the tessalation Ai of the Euclidean plane by regular triangles we get the
définition of the Euclidean building of type Ai.

Let Cp be a polyhedron whose faces are p-gons and whose links are generalized
m-gons with mp > 2m + p. We equip every face of Cp with the hyperbolic metric
such that all sides of the polygons are geodesics and all angles are n/m. Then the
universal covering of such a polyhedron is a hyperbolic building, see [6].

In the case p = 3t m = 3, i.e. Cp is a simplicial polyhedron, we can give a Eu-
clidean metric to every face. In this metrïc all sides of the triangles are geodesics of
the same length. The universal coverings of these polyhedra are Euclidean buildings,
see [2], [3], [7].

S o, to construct hyperbolic and Euclidean buildings with compact quotients, it is
sufficient to construct finite polyhedra with appropriate links.

The main resuit of the paper is a construction of a family of compact polyhedra
with m-gonal faces (for any m ^ 3) whose links are generalized 3-gons. Fundamen-
tal groups of our polyhedra with m ^ 6 are Tesidually finite by results of [ 11].

One of the main tools is a bijection T of a special type between points and lines
of a finite projective plane G. If such a bijection exists, we can construct a family of
compact polyhedra with m-gonal faces, with any m ^ 3 whose links are general-
ized 3-gons. The existence of T in known for the projective planes over finite fields
of characteristique * 3 (chapter 3). But for the projective plane of order 3 such a
bijection exists as well.

So, if one can prove the existence of T for a finite projective plane G (even non-
desarguesian), then chapters 2.2 and 2.3 immediately give the existence of buildings
with G as the link.

We note, that some hyperbolic buildings with links, which are finite projective
planes were constructed also in [8].

1.2. Polygonal présentation.

We recall the définition of the polygonal présentation, given in [ 10].
Définition. Suppose we have n disjoint connected bipartite graphs G\, Q , . . . Gn.
Let Pj and L,- be the sets of black and white vertices respectively in G,-, i = l,..., n;
let P = uPit L = u l j , Pi n Pj = 0 L; n Lj = 0 for i * j and let A be a bijection
A : P - L.

AsetJ^of fc-tuples (JCI,X2, .. *,xk),Xi e P,willbe called a polygonal présentation
over P compatible with A if
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(1) U i , JC2 , *3 i • • • / * * )

(2) givenxi;x2 e P, then {xi,X2,x$,. ,.,xfc) e. $Cfor somex-$, . . . ,xk if and only
if JC2 and À Ui) are incident in some G£;

(3) given x\, x% € P, then Ui, X2, x$,..., xk) e J£ for at most one x$ e P.

If there exists s u c h ^ we will call À a basic bijection.
Polygonal présentations for n = lf k = 3 were listed in [5] with the incidence

graph of the finite projective plane of order two or three as the graph G\. Some polyg-
onal présentations for n > 1 can be found in [10].

1.3. Construction of polyhedra.

• One can associate a polyhedron X on n vertices with each polygonal présenta-
tion M as follows: for every cyclic fc-tuple (jq, xz, x$,... ,xk) from the définition we
take an oriented fc-gon on the boundary of which the word x\ x-ix$ ... x^ is written.

' To obtain the polyhedron we identjfy the sides with the same label of our polygons,
respecting orientation. We will say that the polyhedron X correspondsto the polygo-
nal présentation cfù.

The following lemma was proved in (10J:

LEMMA 1.3. — A polyhedron X which corresponds to a polygonal présentationcfù
hasgraphs G\,Gz,...,Gnasthe links.

Remark. Consider a polygonal présentation^. Let Si be the number of vertices of
the graph Gt and tt be the number of edges of G/, i = 1,..., n. If the polyhedron X
corresponds to the polygonal présentation cfC> then X has n vertices (the number of
vertices ofXisequalto the number ofgraphs), A:]CS=i ^'e^ges and ^^=1 î faces, ail
faces are polygons with k sides.

2. Main Construction.

2.1. Crucial lemma

Let G be a finite projective plane and let P resp. L dénote the set of its points resp.
Unes.

Assume that a bijection T : P ~* Lis given and satisfies the followingproperties

1. For each x e P the point x and the line T{x) are not incident.

2. For each pair x\, X2 of different points in P the points x\, xz and T (x\ ) n T (X2 )

are not collinear.

LEMMA 2.1. — LetT : P -* Lbeasabove,y e La line. Then the map T* : I(y) —
ƒ (y) given by T* (x) = T(x) n ƒ (y) is a bijection.

Proof. — By the flrst property of T the map T* is well defined, by the second
property it must be injective. Since ƒ (y) is finite, the statment follows. D

Let G, P, L, T : P -> L be as above. Let P = {x\, ,.xp} be a labelling of points in P
and set yi = T{xi). Consider the following set O c PxPxP, consistingof ail triples
Ui, xjtxk) satisfying xt € yk, Xj G y/ and and XJ e yk.
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Remark. — The conditions on (xifx j , xk) G K are not cyclic. We require Xj G yk

and not xk G y7- !! For this reason in the polygonal présentations defined below dual
graphs of G appear.

The following lemma is crucial for the later construction:

LEMMA 2.2. — A pair (JCJ, xk) resp. (Xi,Xj) resp. (xj,xk) is a part of'at most one
triple {xt, Xj,xk) G K and such a triple existe iffxt G yk resp. Xj G yt resp. Xj G yk

holàs.

Proof. — The conditions stated at the end are certainly necessairy.
1) Let xi G yk be given. Then y; and yk are different and the point Xj = y, n yk is

uniquely defined.
.2) Let Xj G yi be given. Then Xj and xi are different, so there is exactly one line

yk containingx; and xx.
3) Let XJ G yk be given. Then (xitXj, xk) is in K iff for the map T* : I{yk) ->

Hyk) of Lemma 2.1 the equality T* (xi) = Xj holds. By Lemma 2.1 the point xt is
uniquely defined. D

2.2. Euclideanpolyhedra

Now we are ready for the polygonal présentations. Let the notations be as above,
G\ and Gz two projective planes with isomorphisms Jl : G -+ Gt and G3 a projective
plane with an isomorphism ƒ3 : G' — G3 of the dual projective plane G'of G. For
t = l , 2wese tx f = ]l (xi), y\ = JÊ(y/) and for t = 3 we set jcf = J3(yi) and

f 3

Let Pt resp. Lt be the set of lines of Gt. For P = uPt and L = uLt we consider the
bijection À : P -> L given by À(jcf ) = y\+1 (f + 1 is taken modulo 3).

Now consider the subset £T of P x P x P consisting of all triples (xj, x2-t x\) with
(x,-, JC;-, jcjt ) G X" and ail cyclic permutation of such triples.

The stament of Lemma 2.2 can be now reformulated as:

PROPOSITION 2.3. — The subset £T ofP x P x P deflnes a polygonal présentation
compatible with À.

The polyhedron X which corresponds to 3T by the construction of Lemma 1.3
has triangular faces and exactly three vertices with two links naturally isomorphic to
G and one link naturally isomorphic to the dual G' of G. By [2] or [7] the universal
covering of X is a Euclidean building.

2.3. Hyperbolic polyhedra

We continue to use the same notation. We have a projective plane G, with points
P = {xi,...,Xp} and lines L = {y\, ...,yp} and a subset AT C P x P x P.

Let w = z\ ... zn be a word of length n in three letters a, b, c with z\ = a, zz —
b,zs~ c that does not contain proper powers of the letters a, b, c. (Le. zz * zt+\ and
zn * a). For example w = abcbcab is a possible choice.

SetSign(afc) = Sign(to) = Sign(ac) = 1 andSign(cfc) = Sign(ca) = Sign(fca) =
- 1 . For t = 1,..., nlet Gt b e isomorphic to G resp. to G' if Sigr\{ztzt+\) - 1 resp.
S\gn(ztzt+i) = - L
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Fixed isomorphisms in du ce as above a natural labeiling of the points and iines of
Gt: Pt = (*{,....,*£) andLt = (yf,....,;)£).

For P = uPt and L = uL* we define a basic bijection À : P -* L by A(x\ ) = y\+1.
For each triple (xif Xj,xj) s K we consider the unique n-tuplein P n such that at

the t-th place stands x\ resp. JC'. resp. jcj. if z* is equal to a resp. £> resp. c. Consider
the subset Tn e Pn of all such tuples together with all their cyclic permutations.

>From Lemma 2.2 we immediatly see:

PROPOSITION 2.4. — The subset Tn € Pn is a polygonal présentation over A. By
Lemma 1.3 it defines a polyhedron X whose faces are n-gones and whose n-vertices
have as links G resp. G'.

3. An algebraic construction

Let F = Fq be a finite field of charakteristik p * 3 with q éléments. Consider the
field K = Fqi as an extension of F of degree 3. In the sequel we shail dénote by g
éléments of K and by a, b, c éléments of F and call them scalars. We dénote by Gr\
resp. Gr2 the set of 1- resp. 2-dimensional F vector spaces of K.

The multplicative group K* opérâtes on the sets Grj and Grz by multiplication.
The kernel of this opération is precisely F* and K* / F * opérâtes on both sets simply
transitively. Especially we can write each element of Gr\ as gF for some g e ^ * .

Let Tr be the trace map Tr : K — F of the extension F c K.
Dénote by E e • Gr2 the 2-dimensional kernel of Tr : K - F. We define a

map T : Gr\ -* Gr2 by T(gF) = gE. The map T is well defined bijectjve and iC*
invariant.

PROPOSITION 3.1 (A.Lytchak, private communication). — For the map T : Gr\ ->
Gr2 and arbitrary l * l\ € Gr\ holds:

1. The image T(l) does not contain l.

2. Thel, l\ and T{1) nT(l\) generate the vectorspaceK.

Proof. — Since T is AT* invariant, we may assume l = F. Since Tr(l) = 1, F
does not lie in T(F) = E. Now assume that l\ = gF. ïf the statment is wrong, some
non zero element of the form bg - a must be in T(F) n T{gF) = £ n gE. Since 1
is not in E and G is not in gF, we may assume (replacing g by a scalar multiple ) that
this non zero element is # - 1. So g - 1 e E and g - 1 e gE.

The first inclusion is equivalent to Tr{g) = 1 and the second one to Tr'(^) = 1.
o

Let's prove, thatif for an element g e K* the equalities Tr(g) = Tr(^) = 1 hold,
then g is equal to 1. Assume g * 1. Thengisnot inF . Let m(x) = x3 4- ax2 + JÏ?JC+ c
be the minimal polynom of g. Then c * 0 and m(x) = ;t3 + | x 2 + ~x + ^ is the
minimal polynom of ^. The condition 7>(g) = Tr(^) = 1 means a = ^ = - 1 . Le.
IW(JC) = x3 - je2 + bx - i? = (JC2 + l)(x - b) isreducible. Contradiction. So, g = 1.

Now we get a contradiction to / * l\. D

COROLLARY3.2. — For the projective plane ^ ij q) overfinite field $q ofcharak-
teristique # 3 f feene w « bijection T between the set P of points and the setL of Unes,
T : P — L, thatsatisfies the following properties
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î. For each x s P the point x and the line T(x) are not incident.

2. For each pair x\,xz of different points in P the points x\txi andT(x\) n
are not coïlinear.
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