SÉminaire de Théorie SPECTRALE ET GÉOMÉTRIE

Alina Vdovina Polyhedra with specified links

Séminaire de Théorie spectrale et géométrie, tome 21 (2002-2003), p. 37-42
http://www.numdam.org/item?id=TSG_2002-2003__21__37_0
© Séminaire de Théorie spectrale et géométrie (Grenoble), 2002-2003, tous droits réservés.
L'accès aux archives de la revue «Séminaire de Théorie spectrale et géométrie »implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

POLYHEDRA WITH SPECIFIED LINKS

Alina VDOVINA

Abstract

We construct compact polyhedra with m-gonal faces whose links are generalized 3 -gons. It gives examples of cocompact hyperbolic bildings of type $P(m, 3)$. For $m=$ 3 we get compact spaces covered by Euclidean buildings of type \tilde{A}_{2}.

1. Introduction

1.1. Preliminaries

Given a graph G we assign to each edge the length 1 . The diameter of the graph is its diameter as a length metric space, its injectivity radius is half of the length of the smallest circuit.

Due to [2], [7] or [9] the following definition is equivalent to the usual one
Definition 1.1. - For a natural number m we call a connected graph G a generalized m-gon, if its diameter and injectivity radius are both equal to m.

A graph is bipartite if its set of vertices can be partitioned into two disjoint subsets P and L such that no two vertices in the same subset lie on a common edge. Such a graph can be interpreted as a planar geometry, i.e. a set of points P and a set of lines L and an incidence relation $R \subset P \times L$. On the other hand each planar geometry can be considered as a bipartite graph.

Under this correspondence projective planes are the same as generalized 3-gones (l9]).

Let G be a planar geometry. For a line $y \in L$ we denote by $I(y)$ the set of all points $x \in P$ incident to y. If no confusion can arise we shall write $x \in y$ instead of $x \in I(y)$ and $y_{1} \cap y_{2}$ instead of $I\left(y_{1}\right) \cap I\left(y_{2}\right)$. A subset S of P is called collinear if it is contained in some set $I(y)$, i.e. if all points of S are incident to a line.

Given a planar geometry G we shall denote by G^{\prime} its dual geometry arising by calling lines resp. points of G points resp. lines of G^{\prime}. The graphs correspomding to G and G^{\prime} are isomorphic.

We will call a polyhedron a two-dimensional complex which is obtained from several oriented p-gons by identification of corresponding sides. Consider a point of the

[^0]polyhedron and take a sphere of a small radius at this point. The intersection of the sphere with the polyhedron is a graph, which is called the link at this point.

Definition 1.2. - Let $\mathscr{P}(p, m)$ be a tessellation of the hyperbolic plane by regular polygons with p sides, with angles π / m in each vertex where m is an integer. A hyperbolic building of type $\mathscr{P}(p, m)$ is a polygonal complex X, which can be expressed as the union of subcomplexes called apartments such that:

1. Every apartment is isomorphic to $\mathscr{P}(p, m)$.
2. For any two polygons of X, there is an apartment containing both of them.
3. For any two apartments $A_{1}, A_{2} \in X$ containing the same polygon, there exists an isomorphism $A_{1} \rightarrow A_{2}$ fixing $A_{1} \cap A_{2}$.

If we replace in the above definition the tessalition $\mathscr{P}(p, m)$ of the hyperbolic plane by the tessalation \tilde{A}_{2} of the Euclidean plane by regular triangles we get the definition of the Euclidean building of type A_{2}.

Let C_{p} be a polyhedron whose faces are p-gons and whose links are generalized m-gons with $m p>2 m+p$. We equip every face of C_{p} with the hyperbolic metric such that all sides of the polygons are geodesics and all angles are π / m. Then the universal covering of such a polyhedron is a hyperbolic building, see [6].

In the case $p=3, m=3$, i.e. C_{p} is a simplicial polyhedron, we can give a Euclidean metric to every face. In this metric all sides of the triangles are geodesics of the same length. The universal coverings of these polyhedra are Euclidean buildings, see [2], [3], [7].

So, to construct hyperbolic and Euclidean buildings with compact quotients, it is sufficient to construct finite polyhedra with appropriate links.

The main result of the paper is a construction of a family of compact polyhedra with m-gonal faces (for any $m \geqslant 3$) whose links are generalized 3-gons. Fundamental groups of our polyhedra with $m \geqslant 6$ are residually finite by results of [11].

One of the main tools is a bijection T of a special type between points and lines of a finite projective plane G. If such a bijection exists, we can construct a family of compact polyhedra with m-gonal faces, with any $m \geqslant 3$ whose links are generalized 3-gons. The existence of T in known for the projective planes over finite fields of characteristique $\neq 3$ (chapter 3). But for the projective plane of order 3 such a bijection exists as well.

So, if one can prove the existence of T for a finite projective plane G (even nondesarguesian), then chapters 2.2 and 2.3 immediately give the existence of buildings with G as the link.

We note, that some hyperbolic buildings with links, which are finite projective planes were constructed also in [8].

1.2. Polygonal presentation.

We recall the definition of the polygonal presentation, given in [10].
Definition. Suppose we have n disjoint connected bipartite graphs $G_{1}, G_{2}, \ldots G_{n}$. Let P_{i} and L_{i} be the sets of black and white vertices respectively in $G_{i}, i=1, \ldots, n$; let $P=\cup P_{i}, L=\cup L_{i}, P_{i} \cap P_{j}=\varnothing L_{i} \cap L_{j}=\varnothing$ for $i \neq j$ and let λ be a bijection $\lambda: P \rightarrow L$.

A set \mathscr{K} of k-tuples $\left(x_{1}, x_{2}, \ldots, x_{k}\right), x_{i} \in P$, will be called a polygonal presentation over P compatible with λ if
(1) $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right) \in \mathscr{K}$ implies that $\left(x_{2}, x_{3}, \ldots, x_{k}, x_{1}\right) \in \mathscr{K}$;
(2) given $x_{1}, x_{2} \in P$, then $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right) \in \mathscr{K}$ for some x_{3}, \ldots, x_{k} if and only if x_{2} and $\lambda\left(x_{1}\right)$ are incident in some G_{1};
(3) given $x_{1}, x_{2} \in P$, then $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right) \in \mathscr{K}$ for at most one $x_{3} \in P$.

If there exists such \mathscr{K}, we will call λ a basic bijection.
Polygonal presentations for $n=1, k=3$ were listed in [5] with the incidence graph of the finite projective plane of order two or three as the graph G_{1}. Some polygonal presentations for $n>1$ can be found in [10].

1.3. Construction of polyhedra.

One can associate a polyhedron X on n vertices with each polygonal presentation \mathscr{K} as follows: for every cyclic k-tuple ($x_{1}, x_{2}, x_{3}, \ldots, x_{k}$) from the definition we take an oriented k-gon on the boundary of which the word $x_{1} x_{2} x_{3} \ldots x_{k}$ is written. "To obtain the polyhedron we identify the sides with the same label of our polygons, respecting orientation. We will say that the polyhedron X corresponds to the polygonal presentation \mathscr{K}.

The following lemma was proved in [10]:
Lemma 1.3. - A polyhedron X which corresponds to a polygonal presentation \mathscr{K} has graphs $G_{1}, G_{2}, \ldots, G_{n}$ as the links.

Remark. Consider a polygonal presentation \mathscr{K}. Let s_{i} be the number of vertices of the graph G_{i} and t_{i} be the number of edges of $G_{i}, i=1, \ldots, n$. If the polyhedron X corresponds to the polygonal presentation \mathscr{K}, then X has n vertices (the number of vertices of X is equal to the number of graphs), $k \sum_{i=1}^{n} s_{i}$ edges and $\sum_{i=1}^{n} t_{i}$ faces, all faces are polygons with k sides.

2. Main Construction.

2.1. Crucial lemma

Let G be a finite projective plane and let P resp. L denote the set of its points resp. lines.

Assume that a bijection $T: P \rightarrow L$ is given and satisfies the following properties

1. For each $x \in P$ the point x and the line $T(x)$ are not incident.
2. For each pair x_{1}, x_{2} of different points in P the points x_{1}, x_{2} and $T\left(x_{1}\right) \cap T\left(x_{2}\right)$ are not collinear.

Lemma 2.1. - Let $T: P \rightarrow L$ be as above, $y \in L$ a line. Then the map $T^{*}: I(y) \rightarrow$ $I(y)$ given by $T^{*}(x)=T(x) \cap I(y)$ is a bijection.

Proof. - By the first property of T the map T^{*} is well defined, by the second property it must be injective. Since $I(y)$ is finite, the statment follows.

Let $G, P, L, T: P \rightarrow L$ be as above. Let $P=\left\{x_{1}, \ldots x_{p}\right\}$ be a labelling of points in P and set $y_{i}=T\left(x_{i}\right)$. Consider the following set $O \subset P \times P \times P$, consisting of all triples (x_{i}, x_{j}, x_{k}) satisfying $x_{i} \in y_{k}, x_{j} \in y_{i}$ and and $x_{j} \in y_{k}$.

Remark. - The conditions on $\left(x_{i}, x_{j}, x_{k}\right) \in K$ are not cyclic. We require $x_{j} \in y_{k}$ and not $x_{k} \in y_{j}$!! For this reason in the polygonal presentations defined below dual graphs of G appear.

The following lemma is crucial for the later construction:
Lemma 2.2. - A pair $\left(x_{i}, x_{k}\right)$ resp. $\left(x_{i}, x_{j}\right)$ resp. $\left(x_{j}, x_{k}\right)$ is a part of at most one triple $\left(x_{i}, x_{j}, x_{k}\right) \in K$ and such a triple exists iff $x_{i} \in y_{k}$ resp. $x_{j} \in y_{i}$ resp. $x_{j} \in y_{k}$ holds.

Proof. - The conditions stated at the end are certainly necessairy.

1) Let $x_{i} \in y_{k}$ be given. Then y_{i} and y_{k} are different and the point $x_{j}=y_{i} \cap y_{k}$ is uniquely defined.
2) Let $x_{j} \in y_{i}$ be given. Then x_{j} and x_{i} are different, so there is exactly one line y_{k} containing x_{j} and x_{l}.
3) Let $x_{j} \in y_{k}$ be given. Then $\left(x_{i}, x_{j}, x_{k}\right)$ is in K iff for the map $T^{*}: I\left(y_{k}\right) \rightarrow$ $I\left(y_{k}\right)$ of Lemma 2.1 the equality $T^{*}\left(x_{i}\right)=x_{j}$ holds. By Lemma 2.1 the point x_{i} is uniquely defined.

2.2. Euclidean polyhedra

Now we are ready for the polygonal presentations. Let the notations be as above, G_{1} and G_{2} two projective planes with isomorphisms $J^{t}: G \rightarrow G_{t}$ and G_{3} a projective plane with an isomorphism $J^{3}: G^{\prime} \rightarrow G_{3}$ of the dual projective plane G^{\prime} of G. For $t=1,2$ we set $x_{i}^{t}=J^{t}\left(x_{i}\right), y_{i}^{t}=J^{t}\left(y_{i}\right)$ and for $t=3$ we set $x_{i}^{3}=J^{3}\left(y_{i}\right)$ and $y_{i}^{3}=J^{3}\left(x_{i}\right)$.

Let P_{t} resp. L_{t} be the set of lines of G_{t}. For $P=\cup P_{t}$ and $L=\cup L_{t}$ we consider the bijection $\lambda: P \rightarrow L$ given by $\lambda\left(x_{i}^{t}\right)=y_{i}^{t+1}(t+1$ is taken modulo 3).

Now consider the subset \mathscr{T} of $P \times P \times P$ consisting of all triples $\left(x_{i}^{1}, x_{j}^{2}, x_{k}^{3}\right)$ with $\left(x_{i}, x_{j}, x_{k}\right) \in K$ and all cyclic permutation of such triples.

The stament of Lemma 2.2 can be now reformulated as:

Proposition 2.3. - The subset \mathscr{T} of $P \times P \times P$ defines a polygonal presentation compatible with λ.

The polyhedron X which corresponds to \mathscr{T} by the construction of Lemma 1.3 has triangular faces and exactly three vertices with two links naturally isomorphic to G and one link naturally isomorphic to the dual G^{\prime} of G. By [2] or [7] the universal covering of X is a Euclidean building.

2.3. Hyperbolic polyhedra

We continue to use the same notation. We have a projective plane G, with points $P=\left\{x_{1}, \ldots, x_{p}\right\}$ and lines $L=\left\{y_{1}, \ldots, y_{p}\right\}$ and a subset $K \subset P \times P \times P$.

Let $w=z_{1} \ldots z_{n}$ be a word of length n in three letters a, b, c with $z_{1}=a, z_{2}=$ $b, z_{3}=c$ that does not contain proper powers of the letters a, b, c. (I.e. $z_{z} \neq z_{t+1}$ and $z_{n} \neq a$). For example $w=a b c b c a b$ is a possible choice.
$\operatorname{Set} \operatorname{Sign}(a b)=\operatorname{Sign}(b a)=\operatorname{Sign}(a c)=1$ and $\operatorname{Sign}(c b)=\operatorname{Sign}(c a)=\operatorname{Sign}(b a)=$ -1 . For $t=1, \ldots, n$ let G_{t} be isomorphic to G resp. to G^{\prime} if $\operatorname{Sign}\left(z_{t} z_{t+1}\right)=1$ resp. $\operatorname{Sign}\left(z_{t} z_{t+1}\right)=-1$.

Fixed isomorphisms induce as above a natural labelling of the points and lines of $G_{t}: P_{t}=\left(x_{1}^{t}, \ldots ., x_{q}^{t}\right)$ and $L_{t}=\left(y_{1}^{t}, \ldots ., y_{q}^{t}\right)$.

For $P=\cup P_{t}$ and $L=\cup L_{t}$ we define a basic bijection $\lambda: P \rightarrow L$ by $\lambda\left(x_{t}^{t}\right)=y_{i}^{t+1}$.
For each triple $\left(x_{i}, x_{j}, x_{l}\right) \in K$ we consider the unique n-tuple in P^{n} such that at the t-th place stands x_{i}^{t} resp. x_{j}^{t} resp. x_{k}^{t} if z_{t} is equal to a resp. b resp. c. Consider the subset $T_{n} \in P^{n}$ of all such tuples together with all their cyclic permutations.
$>$ From Lemma 2.2 we immediatly see:

Proposition 2.4. - The subset $T_{n} \in P^{n}$ is a polygonal presentation over λ. By Lemma 1.3 it defines a polyhedron X whose faces are n-gones and whose n-vertices have as links G resp. G^{\prime}.

3. An algebraic construction

Let $F=F_{q}$ be a finite field of charakteristik $p \neq 3$ with q elements. Consider the field $K=F_{q^{3}}$ as an extension of F of degree 3 . In the sequel we shall denote by g elements of K and by a, b, c elements of F and call them scalars. We denote by $G r_{1}$ resp. $G r_{2}$ the set of 1-resp. 2-dimensional F vector spaces of K.

The multplicative group K^{*} operates on the sets $G r_{1}$ and $G r_{2}$ by multiplication. The kernel of this operation is precisely F^{*} and K^{*} / F^{*} operates on both sets simply transitively. Especially we can write each element of $G r_{1}$ as $g F$ for some $g \in K^{*}$.

Let $T r$ be the trace map $T r: K \rightarrow F$ of the extension $F \subset K$.
Denote by $E \in G r_{2}$ the 2-dimensional kernel of $T r: K \rightarrow F$. We define a map $T: G r_{1} \rightarrow G r_{2}$ by $T(g F)=g E$. The map T is well defined bijective and K^{*} invariant.

Proposition 3.1 (A.Lytchak, private communication). - For the map $T: G r_{1} \rightarrow$ $G r_{2}$ and arbitrary $l \neq l_{1} \in G r_{1}$ holds:

1. The image $T(l)$ does not contain l.
2. The l, l_{1} and $T(l) \cap T\left(l_{1}\right)$ generate the vector space K.

Proof. - Since T is K^{*} invariant, we may assume $l=F$. Since $\operatorname{Tr}(1)=1, F$ does not lie in $T(F)=E$. Now assume that $l_{1}=g F$. If the statment is wrong, some non zero element of the form $b g-a$ must be in $T(F) \cap T(g F)=E \cap g E$. Since 1 is not in E and G is not in $g F$, we may assume (replacing g by a scalar multiple) that this non zero element is $g-1$. So $g-1 \in E$ and $g-1 \in g E$.

The first inclusion is equivalent to $\operatorname{Tr}(g)=1$ and the second one to $\operatorname{Tr}\left(\frac{1}{g}\right)=1$. Let's prove, that if for an element $g \in K^{*}$ the equalities $\operatorname{Tr}(g)=\operatorname{Tr}\left(\frac{1}{g}\right)=1$ hold, then g is equal to 1 . Assume $g \neq 1$. Then g is not in F. Let $m(x)=x^{3}+a x^{2}+b x+c$ be the minimal polynom of g. Then $c \neq 0$ and $\bar{m}(x)=x^{3}+\frac{b}{c} x^{2}+\frac{a}{c} x+\frac{1}{c}$ is the minimal polynom of $\frac{1}{g}$. The condition $\operatorname{Tr}(g)=\operatorname{Tr}\left(\frac{1}{g}\right)=1$ means $a=\frac{b}{c}=-1$. I.e. $m(x)=x^{3}-x^{2}+b x-b=\left(x^{2}+1\right)(x-b)$ is reducible. Contradiction. So, $g=1$.

Now we get a contradiction to $l \neq l_{1}$.
Corollary 3.2. - For the projective plane $\mathscr{P}^{2}\left(\mathbb{F}_{q}\right)$ over finite field \mathbb{F}_{q} of charakteristique $\neq 3$ there is a bijection T between the set P of points and the set L of lines, $T: P \rightarrow L$, that satisfies the following properties

1. For each $x \in P$ the point x and the line $T(x)$ are not incident.
2. For each pair x_{1}, x_{2} of different points in P the points x_{1}, x_{2} and $T\left(x_{1}\right) \cap T\left(x_{2}\right)$ are not collinear.

References

[1] W. Ballmann, M. Brin, Polygonal complexes and combinatorial group theory, Geometriae Dedicata 50 (1994), 165-191.
[2] W. Ballmann, M. Brin, Orbihedra of nonpositive curvature, Publications Mathématiques IHES, 82 (1995), 169-209.
[3] S. Barre, Polyèdres finis de dimension 2 à courbure $\leqslant 0$ et de rang 2, Ann. Inst. Fourier 45-4 (1995),1037-1059.
[4] P. Dembowski, Finite geometries, Springer-Verlag 1968.
[5] D. Cartwright, A. Mantero, T. Steger, A. Zappa, Groups acting simply transitively on vertices of a building of type \tilde{A}_{2}, Geometriae Dedicata 47 (1993), 143-166.
[6] D. Gaboriau, F. Paulin, Sur les immeubles hyperboliques, Geometriae Dedicata 88, $\mathrm{n}^{\circ} 1-3$ (2001), 153-197.
[7] R. Charney, A. Lytchak, Metric characterization of spherical and Euclidean buildings Geom. Topol. 5 (2001), 521-550 (electronic).
[8] F. Haglund, Existence, unicité et homogénéité de certains immeubles hyperboliques, Math. Z. 2421 (2002), 97-148.
[9] M. Ronan, Lectures on buildings, Perspectives in mathematics, vol. 7 (1989).
[10] A. Vdovina, Combinatorial structure of some hyperbolic buildings, Math. Z. 241-3 (2002), 471-478.
[11] D. WISE, Residual finiteness of negatively curved polygons of finite groups., Invent. Math. 149-3 (2002), 579-617.

Alina VDOVINA
Mathematisches Institut
Binghamton University
Beringstrasse 1,53115 BONN
alina@math.uni-bonn.de

[^0]: 2000 Mathematics Subject Classification: 20F65, 51E24

