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SPECTRAL ASYMPTOTICS FOR
SCHRÖDINGER OPERATORS WITH A DEGENERATE

POTENTIAL

Françoise TRUC

Abstract

This paper is devoted to the asymptotic growth of the number of eigenvalues less
than an energy À of a Schrödinger operator Hh = - h2^ + V on L2(Rm) , in the
case when the potential V does notfulfUl the non degen era cy condition: V(x) — +00
as |jc| — +00. For such a model, the point is that the set defined in the phase space
by: Hh ^ A may no longer have an a finite volume, so that the Weyl formula has no
sense.

We present a survey of various results in this area. in the classical context (h = 1
andA — +oo),aswellasinthesemi-classicalone(fc — 0) and comment the different
methods. The last resuit presented deals with a gênerai potential of the form: V (x) =
f{y)g(z), f e C(Rn;R+),g € C(RP;R+) , ghomogeneous and ƒ - +00 as
Ivl - +00.

1. Introduction

Let V be a nonnegative, real and continuous potential on Rm , and h a parameter in
]0,l]. The spectra] asymptotics of the operator Hh = -h2A + V on I 2 (R m ) have been
intensively studied. More precisely it is wel] known I7J that Hh is essentially selfadjoint
with compact résolvent when V(x) — +00 as |x| — +00 (we shaU say that V is non
degenerate). Moreover, denoting by N(A,Hh) the number of eigenvalues less than a fixed
energy A, the following semiclassica] asymptotics hold, as h — 0:

NiKHh) - h-m(2nrmvm f (A - V{x))^l2dx.
JKm

(1)

In this formula, vm dénotes the volume of the unit bail in Rm , and the notation W+
means the positive value of W.

Classification math;. 35P20.
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Let us note that the classical asymptotics are also given by the formula (1), provided
we let h = 1 and A — +oo.

In both cases, the resuit points out the asymptotic correspondance between the
number of eigenstates with energy less than À and the volume in phase space of the set
l(x,Z),f(x£) ^ A},where ƒ(*,£) = Ç2 + V(x) is the principal symbol oïHh.

In this paper we propose a review of results concerning the degenerate case: the
potential V does not tend to infinity with |x|, so that the volume in phase space of the
previous set may be infinité.

2. The Tauberian approach

Let us explain how the problem of the degenerate case came from the non degene-
rate one.

In 1950 De Wet and Mandl [3] proved the formula (1) in its classical version, provi-
ded V (x) ï> 1 and two more conditions on V:

1) a smoothness condition: V differentiable and IWI/V — Oasjc -> +oo

2) a Tauberian type condition: let *(V\A) = / R m ( A - V(jt))?/2rfjt;itisassumedthat
there exists strictly positive constants c and c such that:

The first condition is local and the second is global. This last condition was needed
to use a Tauberian technique, which consists on studying the asymptotic behavior of the
Green's function of the operator H\ and applying a Tauberian theorem.

Refinements were done by Titchmarsh, Levitan and Kostjucenko, |12J, [41, |5] and
then Rosenbljum [9] proved that the formula (1) holds with "maximal" weakening
conditions on V:

1 ) the smoothness condition is replaced by a condition on the "Ü -modulus of conti-
nuity" on unit cubes and by thefollowingassumption: V(y) < CV{x) \î\x - y\ ^ 1.

2) the Tauberian type condition becomes: o"(2A,V) < Ca(\,V) (forlargeA),where
<r(\,V) dénotes the volume of the set {x e Rm;V(x) < A}.

Solomyak [11] makes the following remark:

LEMMA 2.1. —Let V be a positive a-homogeneous potential, so that for a given a > 0:

V(x) ^ 0; V(tx) = îaV(x) forany O 0.

IfmoreoverV(x) is strictly positive (V (x) *0ifx* 0) the spectrum ofH\ is discrete and
the formula (1) takes theform:

JV(À,H,) - ym,a^gS^m f {V(x)ymladxt as A - +oo
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(Ym,a is a constant dependingonly on the parameters m and a.)

From that lemma cornes out naturally the idea of investigating the spectrum whi-
thout the condition of strict positivity (and thus in a case of degeneracy of the potential) ;
the two main results are [11]:

THEOREM 2.2. — Tlie formula of'Lemma 2. lstillholds for a positive a-homogeneous
potentialsuch thatJ{V) = f$m.l(V{x))~miadx isfinite.

The second resuit deals with a case where ƒ ( V ) is infinité:

Let VU) = F(y.z), y e Rn, z e R P , n + p = m, m > 2, such that F(sy,tz) =
sbta'bF(ytz) (with 0 < b < a) and F(y,z) > Ofor|z||y| * o. Dénote by Aj(y) the
eigenvalues of the operator-A2 + F{yfz) inL2(Rp) and let s = 2+

2
fl^b,then:

THEOREM 2.3. — Ifnfb, m/a are relatedas follows, thenasK — oo

n/b > m/a N(\,HX) - yn,s*
n{2+a)/2b/s»-i Z(Aj(y)

n/b=m/a N(A,tf,) - $ffi)yrn.a\m<2+a)/2ato A / s

The proof is based on variationa] techniques and spectral estimâtes proved in [9].
But on a heuristic level the result can be understood in the framework of the theory of
Schrödinger operators with operator potential.

This last approach can be found in [8] where D.Robert extended the theory of pseu-
dodifferential operators in the form developped by Hörmander to pseudodifferential
operators with operator symbols. It was thus possible to study cases where the opera-
tor has a compact résolvent but the condition lim» V{x) = +oo is not fulfilled. As an
example it gives the asymptotics of N(\tH\) for the 2-dimensional potential V(y,z) =
3'2A(1 + z2)', where keil are strictly positive. The asymptotics are the following:

THEOREM 2.4. — Ifkj arerelatedasfollows, then asK -*

k = / N(\,Hi) -

k< l N(\,Hi) - y3\
{2k+l)/2k.

The constants y, depend only on k and /, but the first one yj takes in account the
trace of the operator (-A2 + z?k)-{k+})/21 in I2(R).

In the 2-dimensional case Iet us mention the results of B. Simon [101. He first recalls
WeyI's famous result: let H be the Dirichlet Laplacian in a bounded région D. in R2, then
the following asymptotics hold:

N(\,H) - - A | Q | , as A - oo
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and then he considers special régions Q for which the volume (denoted by |£2|) is infinité
but the spectrum of the Laplacian is stil] discrete. These régions are of the type: fip =

< 1}.

Actually the problem can be derived from the study of the asymptotics of Schrödin-
ger operators with the homogeneous potential: V(y,z) = |yla |z|^.

In order to get these "non-Weyl" asymptotics, Simon uses the Feynman-Kac formula
and the Karamata-Tauberian theorem, but the main tooi is what he calls "sliced bread
inequalities", which can be seen as a kind of Born-Oppenheimer approximation. More
precisely let H - - A + V(y,z) be defined on Kn+P

t and dénote by A;(y) the eigenvalues
of the operator -A z + V{y,z) in L2(RP). (If the £'s are électron coordinates and the y's
are nuclear coordinates, the A j(y) are the Born- Oppenheimer curves). Simon proves the
followingresult:

j

(when the second term exists).

Thus he gets the two following coupled results:

THEOREM 2.5. — IfH - - A + | yHz |* andoc < p,thenas\ - +c©

N(\,H) ~ CvA(2v+1)/2 (v = (fi + 2) 12a).

Corollary; ifH = -An^ ft/ > U then N(\,H) - c^*{2iJ+l) as\ - +oo.

THEOREM 2.6. — IfH = - A + |y | a |z | t t
f then N(\,H) - £A1+«lnA

CoroUary; ifH = -An^ fti = 1), then N(\,H) - ^A In A .

The constant cp dépends only on \x, and the constant cp takes in account the trace
of the operator (-Az + |z|/*)~v in I 2 (R) .

3. The min-max approach

The result presented in this section is based on the method of Courant and Hilbert,
the min-max variational principle. It turns out that this method can be applied to ope-
rators in I 2 (R m ) with principal symbols which can degenerate on some non bounded
manifold of T* (Rm). It is the case for the Schrödinger operator with a magnetic field
H= (Dx -A{x))2

t which dégénérâtes on {(JC,Ç) e J*(RTO);Ç = A{x)}. If the magnetic
field JB = öMfulfilIstheso-calledmagneticbottleconditions(mainly: limoo\\B(x)\\ = oo)
the spectrum is discrete [11 and the classical asymptotics were established by Colin de
Verdière |2] using the min-max method. The semiclassical version of the result is given
in |13].
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In 16|, the min-max method is used to get semiclassical asymptotics for a large class
of non degenerate potentials, namely potentials of tha following form:
x = (y,z) e R" x Rp, n + p = m, m ̂  2

V(x) = /(y)g(z), ƒ G C ( R W ; R : ) , g e C(RP;R+),

such that for any r > 0, g(rz) = tag(z) (with 0 < a) and gU) > 0 for z * 0.

The spectrum of the operator -Az + g(z) in I2(RP) is discrete and positive. Let us
dénote by ji ;- its eigenvalues. It is straightforward to make the following remark:

Remark. — If ƒ (y) - +oo as \y\ — +oo then Hh = -h2 A + V" has a compact
résolvent.

Of course if ƒ was supposed to be homogeneous, the asymptotics would be given
by Theorem 2.3. Hère the assumption on ƒ is only a locally uniform regularity:

3i.o0s.Lc"1 ^ f {y) and | f(y)- f{y)\ ^ c f(y)\y - y \b,

for any y , y' verifying \y - y' \ ^ 1.

THEOREM 3.1. — Assume the previous conditions on f and g. Then there exists a ,T €
]0,l[ such that, for anyX > O,onecanfindho €]0,l[,Q,C2 > 0 in order to have

(1 + haCx)nhtf (A + /aTQ), Vhe]Q,ho[

where nh.f(\) = h-»(2nr»vn [ V I A - hlal^a) f^'Hy^j]"12dy.

If additional conditions are assumed to hold on ƒ, the previous resuit can be refined
as follows:

THEOREM 3.2. — Ifmoreoverone can find a constant Q such that, for any fj > 1;

f'p/a(y)dyt[ [
iy.fiy)<2v) J{y,f(y)<fj]

then onecan taheGz = 0 in Tlieorem 3.1:

(l-haC})nhj(\) <N(\;Hh)< (1 + haCx)nhtf (A) M h €]0,fco[

Remark. — Ifmoreover /~ p / û G I ^ R ^ a n d g e C^R^VfO}), then the formula (1)
holds.

The proof of Theorem 3.1 uses a suitable covering of R", so that the min-max va-
riational principle applies to the Dirichlet and Neumann problems in cylinders for the
restrained operator (with a fixed y). The proof of Theorem 3.2 is based on an asymptotic
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formula of the moment of eigenvalues of -ft2Az + g(z), which is again obtained using
the min-max principle.

As a conclusion, let us notice that if there is some information on the growth of ƒ,
then the asymptotics can be computed in terms of power of h:

Remark. — Suppose there exists k > OandC > Osuch that ~\y\k < f(y) < C\y\k

for \y\ > 1. If k, a are related as follows, then as ft — 0 :

k> a N(\,Hh) * h'm;

k = a N(\,Hh) * / rm lnl/f t ;

k< a N(\,Hh) * h-n-t>a/k.

Références

[1] J. AVRON, I. HERBST. B. SIMON, Duke. Math. J., 45 (1978), 847-883.

|2] Y. COLIX DE VERDIÈRE, L'asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys.f 105
C19R6). 327-335.

[3J J.S. DE WET and MAN DL, On the asymptotic distribution of eigenvalues, Proc. Roy. Soc. London Ser., 200

(1950), 572-580.

[4] B.M. LEVITAN, On the asymptotic behavior of Green's function andits expansion in eigenvalues of Schrö-

dinger'séquation, Math. USSR-Sb.41, 83 (1957), 43S-458.

[5] A. G. KosTjucENKo, Asymptotic distribution of the eigenvalues of elliptic operators, Soviet Math. Dokl., 5

(1964), 1171-1175.

(6] A. M o RA M E an d F TRU C, Sem i-classica l eigen value asymptotics for a Sch rödinger operator with a degene-
raiepotential, Asympt. Anal., 22 (2000), 39-49.

17] M. REED and B. SIMON, Meihods of Modern Mathematical Physics IV, Academie press, New York, 1978.
18 ] D. R o BERT, Com portem en t asymptotique des va leu rs p rop res d 'op éra teurs du type de Sch rödinger à poten -

tieldégénéré, J. Math. Pures Appl., 61 (1982), 275-300.
( 9 ] G. V ROSEN B Li u M, Asympto tics of the eigenva lues of the Sch rödinger operato r, Math. U S S R- Sb., 22 (3 )

(1974), 349-371.

[10] B. SIMON, Non classical eigen value asymptotics, J. Fu net. Anal., 53 (1983), 84-98.

! l ï ] M.Z. SOLOMYAK, J4 sympto tics of th e spectrum of th e Sch rödinger opera tor with n on regu la r homogeneous

poiential Math. USSF-Sb.t 55(1) (1986), 19-37.

|12] E.C. TITCH MARSH, On the asymptotic distribution of eigenvalues, Quart J. Math. Oxford Ser. (2). 5 (1954),

228-240.

|13] F. TRUC Semi-classical asymptotics for magnetic bottles, AsympL Anal., 15 (1997), 385-395.

Françoise TRUC
INSTITUT FOUR1ER
Laboratoire de Mathématiques
UMR5582 CUJF-CNRS)
BP74
38402 St MARTIN D'HÈRES Cedex (France)

Françoise.Truc®ujf-grenoble.fr


