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Abstract

This paper is devoted to the asymptotic growth of the number of eigenvalues less
than an energy A of a Schrodinger operator H, = - K*A+ V on L?(R™), in the
case when the potential V does not fulfill the non degeneracy condition: V(x) — +o
as [x| — +oo. For such a model, the point is that the set defined in the phase space
by: H, < A may no longer have an a finite volume, so that the Weyl formula has no
sense.

We present a survey of various results in this area. in the classical context (h = 1
and A — +), aswell asin the semi-classical one (h — 0) and comment the different
methods. The last result presented deals with a general potential of the form: V (x) =
fglz), f € CR"RI), g € CRP R:), ghomogeneous and f — + as
vl = +o0.

1. Introduction

Let V be a nonnegative, real and continuous potential on R, and h a parameter in
]0,1]. The spectral asymptotics of the operator H, = —h?A + V on L>(R™) have been
intensively studied. More precisely it is well known [7] that Hy, is essentially selfadjoint
with compact resolvent when V(x) — +o0 as |x] — +oo (we shall say that V is non
degenerate). Moreover, denoting by N(A,H},) the number of eigenvalues less than a fixed
energy A, the following semiclassical asymptotics hold, as h — 0:

NQAHy) ~ ™) ™, [ (A= V(X)) %dx. 0))
Rm

In this formula, v,, denotes the volume of the unit ball in R™, and the notation W,
means the positive value of W.

Classification math.: 35P20.
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Let us note that the classical asymptotics are also given by the formula (1), provided
weleth=1and A — +oo.

In both cases, the result points out the asymptotic correspondance between the
number of eigenstates with energy less than A and the volume in phase space of the set
{(x,5), f(x,E) < A}, where f(x,E) = & + V (x) is the principal symbol of Hj,.

In this paper we propose a review of results concerning the degenerate case: the
potential V does not tend to infinity with |x|, so that the volume in phase space of the
previous set may be infinite.

2. The Tauberian approach

Let us explain how the problem of the degenerate case came from the non degene-
rate one.

In 1950 De Wet and Mandl {3] proved the formula (1) in its classical version, provi-
ded V(x) > 1 and two more conditionson V:

1) a smoothness condition: V differentiable and [VV|/V — 0asx — +

2) a Tauberian type condition: let ®(V ,A) = fnm (A= V(x))™2dx; itis assumed that
there exists strictly positive constants ¢ and ¢’ such that:

c®(V,A) AP (V,A) < '®(V,A) ,forallA € R,.

The first condition is local and the second is global. This last condition was needed
to use a Tauberian technique, which consists on studying the asymptotic behavior of the
Green's function of the operator H; and applying a Tauberian theorem.

Refinements were done by Titchmarsh, Levitan and Kostjucenko, [12}, [4], [5] and
then Rosenbljum [9] proved that the formula (1) holds with “maximal” weakening
conditionson V:

1) the smoothness condition is replaced by a condition on the “ L' -modulus of conti-
nuity” on unit cubes and by the following assumption: V(y) < C'V(x)if|x ~ y| < 1.

2) the Tauberian type condition becomes: (2A,V) < Co(A,V) (for large A), where
o (A, V) denotes the volume of the set {x € R™; V(x) < A}.

Solomyak [11] makes the following remark:
LEMMA 2.1. —Let V be a positive a-homogeneous potential, so that for a givena > 0:
V(x) 20; V(tx) =1t°V(x) forany t > 0.

If moreover V (x) is strictly positive (V (x) # 0 ifx = 0) the spectrum of H, is discrete and
the formula (1) takes the form:

NQAH) ~ ymaA 5" (V(x))"™%dx, as A — +oo

sm-1
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(¥ m.a is a constant depending only on the parameters m and a.)

From that lemma comes out naturally the idea of investigating the spectrum whi-
thout the condition of strict positivity (and thus in a case of degeneracy of the potential) ;
the two main results are [11):

THEOREM 2.2. — The formula of Lemma 2.1 still holds for a positive a-homogeneous
potential such that J(V) = [¢m,(V (x))"™/%dx is finite.

The second result deals with a case where J(V) is infinite:

LetV(x) = F(y.z),y € R",ze RP,n+ p= m,m > 2,such that F(sy,tz) =
sP19-%F(y,z) (with 0 < b < a) and F(y,z) > Ofor |z|lyl # 0. Denote by A;(y) the
eigenvalues of the operator —A, + F(y,z) in L?(RP) and let s = 2_+2a£~—b' then:

THEOREM 2.3. — If n/b, m/a are related as follows, then asA — oo
n/b>mia NQAH) ~ yn A"Z02b [ SQAj(y) " dx;

n/b=m/a NQAH) ~ 422y, Ama2am [ o0 F(y,2) ™ dx.

The proof is based on variational techniques and spectral estimates proved in [9].
But on a heuristic level the result can be understood in the framework of the theory of
Schrodinger operators with operator potential.

This last approach can be found in {8] where D.Robert extended the theory of pseu-
dodifferential operators in the form developped by Hérmander to pseudodifferential
operators with operator symbols. It was thus possible to study cases where the opera-
tor has a compact resolvent but the condition lim, V (x) = -+ is not fulfilled. As an
example it gives the asymptotics of N(A,H)) for the 2-dimensional potential V (y,z) =
y?*(1+ z?)!, where k et I are strictly positive. The asymptotics are the following:

THEOREM 2.4. — If k,l are related as follows, then as A — +oo

k>1 NQAH) ~ yAt+kenizl,

k=1 N(AH) ~ y,A2k0i2k n p;

k<! NAH)~ y3)‘(2k+1)/2k.

The constants y; depend only on k and [, but the first one y; takes in account the
trace of the operator (- A, + z2¥)~(k*D/2ljn J2(R).

In the 2-dimensional case let us mention the results of B. Simon [10}]. He first recalls
Weyl's famous result: let H be the Dirichlet Laplacian in a bounded region Q in R?, then
the following asymptotics hold:

1
NQAH) ~ EMQ' , a8 A —~ o0
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and then he considers special regions Q for which the volume (denoted by |Q|) is infinite
but the spectrum of the Laplacian is still discrete. These regions are of the type: 2, =
{(y,2)i I7l21* < 13. )

Actually the problem can be derived from the study of the asymptotics of Schrédin-
ger operators with the homogeneous potential: V (y,z) = | yl"‘lzl".

In order to get these “non-Weyl” asymptotics, Simon uses the Feynman-Kac formula
and the Karamata-Tauberian theorem, but the main tool is what he calls “sliced bread
inequalities”, which can be seen as a kind of Born-Oppenheimer approximation. More
precisely let H = —A + V (y,z) be defined on R"*?, and denote by A j(y) the eigenvalues
of the operator —A; + V(y,2z) in L%(RP). (If the z’s are electron coordinates and the y's
are nuclear coordinates, the A j(y) are the Born- Oppenheimer curves). Simon proves the
following result:

Tre—-tH s Z e—’(—Ay“"Aj(}’))
j
(when the second term exists).

Thus he gets the two following coupled results:

THEOREM 2.5. — IfH = A+ |y|*|z|® and & < B, then asA — +oo

NAH) ~ o, A®*2 (v = (B+2)/2a).
Corollary: ifH = -Aq, (u > 1), then N(A,H) ~ ¢,AV 2D g5 — 40,

THEOREM 2.6. — IfH = —A+ [y|*|z|*, then N(QAH) ~ 1A™*s A
Corollary: ifH = -Aq, (u=1),then N(A,H) ~ $AInA.

The constant ¢, depends only on y, and the constant ¢, takes in account the trace
of the operator (A, + |z|#)~Yin L2(R).

3. The min-max approach

The result presented in this section is based on the method of Courant and Hilbert,
the min-max variational principle. It turns out that this method can be applied to ope-
rators in L?(R™) with principal symbols which can degenerate on some non bounded
manifold of T*(R™). It is the case for the Schrédinger operator with a magnetic field
H = (D, — A(x))?, which degenerates on {(x,) € T*(R™); £ = A(x)}. If the magnetic
field B = d A fulfills the so-called magnetic bottle conditions (mainly: lime || B(x)|| = )
the spectrum is discrete [1] and the classical asymptotics were established by Colin de
Verdiere [2] using the min-max method. The semiclassical version of the result is given
in [13].



Spectral asymptotics 2]

In [6], the min-max method is used to get semiclassical asymptotics for a large class
of non degenerate potentials, namely potentials of the following form:
x=(z) eR"xRP, n+p=mm>2 i

V(x) = f(y)g(z), f € C(R%;R}), g e C(R”R,),

such thatforanyt > 0, g(tz) = t%g(z) (with0 < @) and g(z) > Ofor z # 0.

The spectrum of the operator —A; + g(z) in L>(RP) is discrete and positive. Let us
denote by u its eigenvalues. It is straightforward to make the following remark:

Remark. — If f(y) — +e as|y|] - +e then H, = —-h?’A + V has a compact
resolvent.

Of course if f was supposed to be homogeneous, the asymptotics would be given
by Theorem 2.3. Here the assumption on f is only a locally uniform regularity:

Ibe>0ste ' < f(yandlf(y) - FOI S cfMy-¥15,
forany y,y verifyingly - y'| < 1.

THEOREM 3.1. — Assume the previous conditionson f andg. Then there exists o, T €
10,1[ such that, for any A > 0, onecan find hy €]0,1{, G,G, > 0 in order to have

(A-h°CGnpsA-h"G) K NAHR) QA+ h°G)np s (A+h°G), Vhel0,hl

where ny, g (A) = h™"(2m0) " v, / Y [A- wrelere g (}’)Hj]:lzd}'.
R”
JEN

If additional conditions are assumed to hold on f, the previous result can be refined
as follows:

THEOREM 3.2. — If moreover one can find a constant G3 such that, forany u > 1:
/ FPeydy < G Py,
. fly)<2u} ty. f(y)<u}

then onecan take C, = 0 in Theorem 3.1:

(- h°G)np(A) S N(AHp) £ A+ h°C)np p(A)  Vh €]0,hg]

Remark. — Ifmoreover fP/% € L'(R™)and g € C*(R”\{0}), then the formula (1)
holds.

The proof of Theorem 3.1 uses a suitable covering of R”, so that the min-max va-
riational principle applies to the Dirichlet and Neumann problems in cylinders for the
restrained operator (with a fixed y). The proof of Theorem 3.2 is based on an asymptotic
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formula of the moment of eigenvalues of —h?A, + g(z), which is again obtained using
the min-max principle.

As a conclusion, let us notice that if there is some information on the growth of f,

then the asymptotics can be computed in terms of power of h:

Remark. — Suppose there exists k > 0 and C > 0such that %Iy]" < fy) < Ciyl*

for |yl > 1.1f k, a are related as follows, thenas h - 0:

1
12]

(3]

14]

151

16)

17]
(8}

19l

110
i11]

{12}

{13]

k>a NAHp) =h™™,
k=a NAH,) = h™Inl/h;
k<a N(AH,) =~ h " palk

]

u
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