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RIGIDITY OF GROUP ACTIONS

Masahiko KANAI

Let Tbe a cocompact lattice of the real unimodular group SLn+i D&, and dénote
by A0 the restriction t o T c SLn+i R of the standard projective action of SLn+j R on the
n-sphere Sn.

THEOREM. — The action A° is rigid in the following sensé provided n ^ 21: If
a smooth action A of T on Sn is sufficiently close to A0 in Hom(r,Diff(Sn)), the space
ofsmooth actions of T on Sn endowed with an appropriate topology, then A has to be
smoothly conjugate to A0.

The theorem says that a small perturbation of the original action A0 never
changes the action in an essential manner, or, in other words, that a sufficiently small
neighborhood of A0 in Hom(r,Diff(S'1)) shrinks to a point under the projection of
Hom(r, Diff(S")) onto Hom(r, Diff(S"))/(smooth conjugacy), the moduli of the smooth
actions of Ton S".

The core of the proof of the theorem is the following two problems, in which F is
a smooth vector bundie over a smooth manifold N and ris a discrete group acting on F
by vector bundle automorphisms. Note that the action of Ton the total space F induces
a smooth action on the base N.

PROBLEM 1. — Does there exist an affine connection ofF that isl-invariant?

PROBLEM2. — Is such aT-invariant affine connection flat?

To establish our rigidity theorem we need to find a diffeomorphism of the sphère
which is equivariant under a perturbed action A and the original one A0. This is a priori
a nonlinear problem, for the unknown in this question belongs to the nonlinear space
Diff(S"). On the contrary, in the problems we have just mentioned we look for an affine
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connection satisfying certain conditions, instead of an equivariant diffeomorphism,
which can be handled in a linear manner. After ail, what we did hère is a kind of "change
of variables" by which we could translate the original nonlinear problem into a linear
one. See [K] for details.

It is possible to describe the above problems in terms of some cohomology the-
ory. Let C°°(NtF) be the space of C°°-sections of the bundle F over TV. It naturally pos-
sesses the structure of T-module, and in conséquence we are able to speak of
H*(T; C°° (F, TV)), the Eilenberg-MacLane cohomology of Fwith coefficients in it.

CLAIM 1. — The bundle F carries al-invariant affine connection if

H1 (r; C°°(N, T*N <8> F* e F)) = 0.

CLAIM 2. — A Y-invariant affine connection ofF has to beflat whenever

H°(T;Cœ(N, 7**TV® T*N®F* ®F)) = 0.

According to these claims, the problem boils down to the vanishing of the
Eilenberg-MacLane cohomology.

The next task is to introducé a new cohomology theory which is formally equiv-
alent to the Eilenberg-MacLane cohomology but is easier to handle than the Eilenberg-
MacLane cohomology from geometrie and analytic viewpoints. From now on, assume
that Tis isomorphic to the fondamental group of some closed smooth manifold M. De-
note by M the universal cover of M, on which I* = n\ (M) acts by the deck^ransforma-
tions. We are then able to form the quotient W x = r \ ( M x N ) of the product M x TV by the
diagonal action of l'on it. Since the projection M x TV — M is F-equivariant, it gives rise to
a fiber bundle TVX = F\ (M x TV) - M = F \ M with fibers diffeomorphic to TV. Moreover,
since the action of Ion M x TV maps a "horizontal" submanifold M x {y} (y € TV) to a hor-
izontal one, the foliation of M x N by those horizontal submanifolds induces a foliation
otfoîN* = F\ (M x TV) whose leaves are transverse to the fibers of the fibering TVX — M.
In short, we obtain a so-called foliated bundle (N*,otf) - M. Similarly, the quotient
F x = r \ ( M x F ) turns out to be a vector bundle over Nx =T\(M x N). A section of
Ap T*J? ® Fx is to be called a tangential p-form of the foliated manifold (Nx,Jf) taking
values in the bundle Fx. Dénote by Çlp = Çlp(Nx,Jâ\ Fx) the space of smooth sections
of the bundle f\p T*Jf ® Fx. Moreover the bundle Fx has an additional structure. To
see that, note that the bundle Fx — Nx is covered by the vector bundle M x F — M x Nf

the restriction of which to each horizontal submanifold Mx{y] cMxNiyeN) has a
natural trivialization M x F\j^x{y] = (Mx {y}) x Fy with iybeing the fiber of the bundle
F — N over y € TV. The trivialization clearly yields a flat affine connection of the vector
bundle M x F over MxN alongihe foliation of M x N by the horizontal submanifolds
M x {y}, which is readily seen to be T-invariant. We consequently obtain a flat affine
connection D of the bundle Fx = T \ (M x F) - Nx =T\(M x N) along the hori-
zontal foliation JtfoîNx, which enables us to introducé the tangential exterior derivative
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- Cl*»1 by

,XP) = 5^D^a)(Ab,---^--- ,XP)

w ( [ J ^ f X r ] f Ab. • • • ^ i • • • *r • • • ,X p )
q<r

forcu € Qp,whereAb, • • • ,Xparetangentialvectorfieldsof (Nx,t^f)li.e.lsectionsofthe
bundie 7 ^ over Nx. The flatness of D immediately implies d# - 0, and in conséquence
we are abletothink of the cohomology H* (ATX,^;FX) = H*({n(Nx,je;Fx),d#})
which we call the tangen tial de Rham cohomology of the foliated manifold ( Nx, <&) with
coefficients in the bundie F x . It is purely elementary to show

LEMMA.

H*{T;C°°{N,F)) s H*{Nx
tJ?;Fx) for * « 0 , 1 .

Due to the lemma, the remaining task for us is to establish a vanishing theorem
for the tangential de Rham cohomology. Bochner's trick is presumably the most pow-
erful machinery to show the vanishing. This is indeed the case with our problem. We
can prove a vanishing theorem for the tangential de Rham cohomology by means of
Bochner's trick. However, in order to apply Bochner's trick we have to introducé a rel-
evant laplacian. The laplacian that is appropriate in our setup has to be a tangential one
since so is our exterior derivative. In other words, we need to deal with a tangential lapla-
cian in which only derivatives in the direction tangent to the foliation <& are performed;
Although it is an elliptic operator restricted to each leaf, it is degenerate on the whole
space N*. This causes serious problems. The hardest one among them is transverse reg-
ularity. Let Ar3̂  be our tangential laplacian. If A^ were elliptic, the smoothness of A^cu
(o) € Qp) would imply that of u> itself. But we cannot expect this in our problem. Nev-
ertheless, we can overcome this difficulty by applying stochastic calculus, in particular
a tangential diffusion on the foliated manifold (Nx,jtf)t under some assumption of the,
foliation 3f. We refer to [K] for detailed accounts.
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