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CIRCLE-PACKING CONNECTIONS WITH RANDOM WALKS
AND A FINITE VOLUME METHOD

Tomasz DUBEJKO

ABSTRACT . — Some recent results for random walks on planar graphs and approxi-
mation of solutions to the Dirichlet problem for planar domains, both based on properties of
circle packings, are overviewed.

1. Introduction and preliminaries

The idea of this paper is to give a short overview of recent results regarding random
walks for planar graphs and numerical approximation based on a finite volume method
for planar domains, and explore some connections between these two areas. In a section
about numerical approximation we are interested in solving a Dirichlet problem for trian-
gular grids. In the case of random walks, we are interested in the type problem and the
existence of Dirichlet finite harmonic functions for planar graphs. The results that will be
discussed here have one thing in common, that is, they all have been proved using geo-
metric objects called circle packings.

Circle packings can be described as follows: if K is a simplicial 2-complex which
is simplicially isomorphic to a planar triangulation of a simply connected domain, then a
collection P = {Cp(v)},exo of circles in the plane is a circle packing for K iff for every
edge uw in K the circles Cp (u) and Cp (w) are externally tangent; here K° denotes the set
of vertices of K. For the purpose of this paper we add one more condition to the definition
of circle packings, that all circles in circle packings have disjoint interiors. Figure 1 shows
two different circle packings for the same simplicial complex.
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Figure 1
Different circle packings (and their underlying triangulations) for the same 2-complex

In general, a circle packing P can be identified with a pair (K, Rp ), where K is
the simplicial complex of P (which describes the tangency pattern of the packing) and
Rp : K® — (0, 00) is the radius function of P (which describes a metric of the packing),
where Rp (v) is the radius of the circle in P associated with the vertex v. For more on circle
packings and their properties the reader is referred to [BSt1],[BSt2], [BoSt], [CdV], [CdVMa],
[D1), [HR), [HSc1), [HSc2], [RS], [St], 2}, and [Th1], [Th2].

2. Approximation

Circle packings have been used for approximation of Riemann mappings ([HR],
[HSc3], [RS], {St1], [Th2]). The idea there was to use circle packings of very small mesh
and Finite Riemann Mapping Theorem ([BSt1], [RS], [Th1], [Th2]) to get an approximation
of classical Riemann mappings. -

Here we are interested in applying the circle packing approach in solving the fol-
lowing Dirichlet problem:

Suppose Q is a Jordan domain, ¢ is a continuous functionon3Q, and f € L?(Q) (i.e., f is
a square-itegrable function over the set Q). Find U : Q — R such that

-AU=finQ and u=d¢ondQ. (*)

Equivalently, the above problem can be stated without differential condition: —A U = f
but replaced by the following integral condition:
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1 1
~1 f, vV s =y [ e *)

for every subset V C Q with Lipschitz boundary, where 77 denotes the outward unit nor-
mal vector on dV. In the sequence we will show how the solution to the Dirichlet problem
can be approximated using circle packings and piecewise linear functions given by a fi-
nite volume condition similar to the above integral condition. For the proofs of the results
presented below the reader should see [D3] and [D4]).

Let P = {Cp(v)},exo be a circle packing for a complex K We denote by T(P)
the triangulation induced by P, i.e. it is the triangulation given by connecting centers of
tangent circles in P by line segments. >From our definition of circle packings it follows
that T(P) and K are isomorphic 2-complexes. We write z,,(P) for the center of the circle
in P associated with the vertex w in K°. By V,,(P) we denote the volume given by P as-
sociated with the vertex w in K?; it is the polygon circumscribed on Cp (w) with its edges
perpendicular to the edges of T(P) coming out of the vertex w (Figure 2(a)). (A slight mod-
ification of this definition is required for boundary vertices in which case volumes are poly-
gons bounded by perpendicular edges and boundary edges as on the picture.) If z,,,(P)
is the edge in T(P) with end points z,(P) and z,,(P), then the common side of volumes
Vu(P) and V,,(P) will be denoted z;,,(P) (see Figure 2(b)). It will also be helpful to use
IT°(P) and 3 T°(P) to denote sets of interior and boundary vertices of T(P), respectively,
and write u ~ w to indicate that vertices u and w are adjacent.

Figure2
(a) Volumes induced by a circle packing, (b) Corresponding edges and sides
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Notation. — If there is no reason for confusion, we will generally drop the index of
a packing from the notation, e.g. by writing z,, instead of z,,(P).
We can now define a discrete Dirichlet problem:

Suppose that T(P) is finite and simply connected, F : IT°(P) — R,and ¢ : 9T°(P) - R.
Find U : T°(P) — Rsuch that

T\;.T' Z :_:_:.:_:_: (U(zu) - U(Zw)) = F(zu) for z, € IT°

U(z) = ¥(2) forz € 97°,

where | - | denotes the Euclidean length (area) of a segment (respectively, of a volume).

(*)

Remark 1.

1. It can easily be verified, using Green's theorem, that (**) leads exactly to the
condition (*) when (i) Q := T(P), (i) U is linear on each triangle in T(P), (iii) F(z,) :=
o1 Jv, £dx and (iv) volumes V’s in (**) are only volumes V,,'s given by P.

2. The discrete problem (x) is always solvable and Maximum Principle holds for
solutions of (*) (see [D4]).

Suppose that ¢ is a continuous extension of the function ¢ and is defined inside
Q in some neighborhood of 3Q. For example, when 3Q is C? (i.e., 2-times continuously
differentiable curve) then there exists € such that when dist(z,0Q) < € then there is a
unique point z; € 9Q with dist(z, z;) = dist(z,9Q), and ¢ can be defined by a projection,
i.e. ¢(z) := ¢(z5). Suppose further that that P is a circle packing contained in Q and that
¢ is defined on @ T°(P). We introduce the corresponding approximate solution Up of the
classical Dirichlet problem (*) as the solution of (*) with #(z) := ¢(z) forz € 3 T°(P) and
F(zy) := ]VL;I [y, faxforz, € IT*(P).

Using circle packings of fine mesh one obtains the following result (see [D4]).

THEOREM 1. — Let Q be a Jordan domain. Suppose that {P,} is a collection of
finite circle packings contained in Q such that

(1) radii of circles in P, go to 0 as n — oo,

(2) there is a constant d > 0 such that no vertexin T, := T(P,) has more than d
neighbours for all n, and

(3) triangulations T, exhaust Q).

Denote by U the solution of the Dirichlet problem: ~AU = finQ and U = ¢ on
090, where f € L2(Q) and ¢ is a continuous function on 3Q. Suppose ¢ is a continuous
extension of ¢ to some neighborhood of 9. Write Uy, for the corresponding discrete solu-
tions for packings Py. Then ||u — u,|| , (F) "t 0asn— oo, where T,, is the triangulation
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obtained from T, by disregarding all boundary triangles of T,. Furthermore, if {P,} is a
quasiuniform family then U, — U almost uniformly inQ as n — oo.

Remark 2.

1. Regarding terms used in the above statement, || - |[2(4) stands for the I%-norm
on the set A. Also, an almost uniform convergence in a domain means the uniform con-
vergence on any compact subset of the domain. And, a sequence {P,} is a quasiuniform
family of packings if there is a constant k such that for all n the ratio of radii of any two
circles in any packing P,, is less than k.

2. A proof of the above result is given in [D4]. It is a consequence of properties
of circle packings and results from Sections 3 and 4 of [D4] for convergence of discrete
solutions given by the finite volume method for general triangular grids.

One of the key results in [D4)] is Thm. 3.5 which is essentially due to [C]/[CMM].
While visiting Ecole Normale Supérieure de Lyon, the author have learned that this result
has also been recently independently proven in [EGM]. (For some other related results the
reader is referred to [BR}, [Ha}, and [Hn).)

3. Using Discrete Riemann Mapping Theorem (see [Th1], [BStl), [RS)) for circle
packings and the above theorem, one can transfer Dirichlet problem for arbitrary Jordan
domain to a standard domain such as the unit disk (see Cor. 5.4 in [D4]).

3. Random Walks

Let G be a graph with the sets of vertices and edges denoted by G° and G*, respec-
tively. Suppose that IT : G® x G® — [0, 00) is a function such that:

(1) T(u, w) = 0if u and w are not neighbors,

(2) Y M(v, w) = 1for every interior vertex v of G.
W~y
Then the pair (G, IT) is a random walk on G and I1 is called the transition probabil-
ity. Moreover, if there exists a functionT : G® x G° — (0, c0) such that [(u, v) = I'(v, u)

and
I'(u,v)

> T(u,w)

w~u

M(u,v) =

for every adjacent vertices u and v, then I is said to be a reversible random walk and I'(-, -)
is called the conductancefunction. IfI = 1 for all edges then the random walk induced by I'
will be called simple. We recall also that G is said to be recurrent if the simple random walk
on G is recurrent (i.e., the random walk with probability 1 always returns to its starting
point), and it is called transient otherwise (see [DoSn], [S], [W)). Finally, a function f :
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G°® — Ris called harmonicfor (G, N)if f(u) = Y. N(u, w)f(w),anditis called Dirichlet
w~u
finitefor (G, 1) given by conductance T'if 3 (f(u) — f(w))*I'(u, w) <00.
w~u

Assume now that G is simplicially isomorphic to a planar triangulation and P is a

circle packing for G. We will introduce a random walk on G induced by P. First, we define
the conductanceI'p : G° x G® — (0, 00) as follows
17 (P)l
lzuw(P)]
Notice that I'p is well defined by being symmetric. Moreover, it is inversely proportional
to the distance between vertices z,(P) and z,,(P) in the triangulation T(P) (which, as we
recall, is isomorphic to G), and it is directly proportional to the “flux” going through the
common side (i.e., edge) of the volumes V,,(P) and V,,(P), where the flux is measured as
the length (i.e., 1-dimentional area) of the side. We denote by I1p the random walk on G
given by the conductance ['p.

Ip(u,w) =

The next result relates the existence and type of infinite packings with the type of
underlying tangency graphs.

THEOREM 2. — Let K be a simplicial 2-complex isomorphic to a planar triangula-
tion without boundary (i.e., every vertex in the complex is an interior vertex).

(a) If the simple random walk on the 1-skeleton K! of K is recurrent then there
exists a circle packing P for K such that TP) is a triangulation of the plane. Conversely,
if K is of bounded degree and the simple random walk on its 1-skeleton is transient, then
there exists a circle packing Q for K such that T(Q) is a triangulation of the unit disk.

(b) IfK is of bounded degree and transient then there exist nontrivial Dirichlet
finite harmonic functions for the simple random walk on K'.

Remark 3.

1. The above results have originally been proved, in case of the part (a), in [HSc2]
and also in [Mc], and in case of the part (b), in [De]. It should also be noted that in [BeSc]
it was shown that the result of the part (b} is true not only for triangulations but for general
planar graphs.

2. A simple proof of the above theorem is given in [D3]. It is based on a beautiful
and intriguing uniformization result of [HSc1] that states, roughly speaking, that for each
simply connected planar triangulation there exists a circle packing that “fills in” the plane
or the unit disk, but not both, and that such a packing is unique up to Mdbius transforma-
tions preserving the underlying space.

We will now discuss connections between harmonic measure of a plane domain
and exit probabilities of random walks on circle packings that fill out the domain. Recall
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that if Q is a domain in the plane, A is a subset of (2, and z is a point in , then the prob-
ability Mq(z, A) that a Brownian particle, after staring at the point z, will hit the boundary
0Q for the first time and such a hit will be at some point of the set A is called the exit prob-
ability from z through A in Q. One can similarly introduce the exit probability for finite
graphs and circle packings. For this, suppose that P is a finite circle packing and T(P) is
the underlying triangulation given by P. If A is a subset of boundary vertices of T(P) and
zis an interior vertex of T(P) then we define the exit probability Mp (2, A) from z through
A in T(P) as the probability of the random walk I1p, originated at z, reaching for the first
time the boundary of T(P) at some vertexin A.

From approximation results in the earlier section and properties of harmonic func-
tions and harmonic measure in the classical setting we obtain the following result (see [D4]
for a proof).

THEOREM 3. — LetQ be a Jordan domain with C? boundary. Lety be an arc in3Q.
Suppose Py, is a quasiuniform sequence of circle packings as in Theorem 1. Write y,, for
theset {z € 9T? : z; € y}, where, as before, z, denotes the nearest point on 9 to the
point z, and T,, = T(Pj,). Then, for any compact subset w of Q,

Jim_sup |Mp, (2,yn) ~ M(z,%)]| = 0.

Remark 4.

1. As we pointed out earlier, because 9Q is of class C?, there exists a neighborhood
of 3Q) such that any point from this neighborhood has exactly one point in 2Q that is clos-
est to it. In particular, we get that “the nearest point” is well defined.

2. The condition on the smoothness of 9€) can be weakened; for example, it can be
assumed that 3Q is piecewise C? without any loss in the conclusion of the above result.
However, as the boundary of Q gets more bizarre then there arises a problem of estab-
lishing good correspondence between (arcs of) 9Q2 and (arcs of) boundaries of polygonal
domains T(P,,).
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