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COMPLEXIFIED QUANTUM RULES

V.E LAZUTKIN, D.Ya. TERMAN

ABSTRACT. Hère is a short account of papers published earlier in Russian. We formulate a
généralisation of well-known quantization rules by Bohr-Sommerfeld-Einstein-Keller-Maslov
by adding terms which describe the tunneling of energy. This enables us to obtain im agi nar y
radiational corrections to eigenvalues in the case of open Systems as well as an exponentially
small splittings of eigenvalues in Systems with symmetry

§1. INTRODUCTION

We will consider semiclassical approximations to the eigenstates of the Schrödinger
équation

(1.1) ~ A t f + V(x)tf = £ty

where A is the Laplacian operator in Rn , V(x) is a real valued function which is supposed
to be semibounded from below, the variable x ranging over a domain Q C Kn with piecewise
smooth boundary. For definiteness we pose the Dirichlet boundary conditions I^\ÔQ = 0.

The semiclassical theory of eigenstates is based on the study of motions in a correspond-
ing classical dynamical system which is governed by the Hamiltonian function

(1.2) H(x,p)=±p2 + V(x)

completed by a reflection condition at points which are projected to the boundary. At least
a part of eigenstates can be found from quantization rules applied to KAM tori [LI]. In
such a way one obtains a good approximation to eigenvalues, but instead of approximating
the genuin eigenfunctions, we get so called "quasimodes"[A] which approximate a lineax
combination of eigenfunctions with very close eigenvalues.

As a one dimensional example of two symmetrie wells (see Fig.l) shows, the splitting of
the eigenstates can be exponentially small and has the tunnelling effect as the mechanism
of the phenomena in question.
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F i g . l TWO WELLS POTENTIAL.

In more genera! case one can imagine an équation (1.1) with a symmetrie potential
which produces identical quasimodes shifted in space one from another by equal distance
and interacting through the "forbidden" régions, the latters giving rise to an exponentially
small splitting of eigenvalues.

Another kind of spectral problems, also connected with the tunnelling, is the shift
of eigenvalues to the complex plane due to the radiation losses. Let the domain Q fe
unbounded (say Q = Rn), and let V(x) do not increase if x tends to infinity. Consider as
the simpliest example'again the one-dimensional problem with the potential like on Fig.2.

Fig .2 A WELL WITH TUNNELLING.
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There is a neighbourhood of the minimum of the potential where an eigenfunction
oscillâtes between X\ and X2 , exponentially decreases a forbidden région between X2 and
x* , and then, starting with x* , again oscillâtes with very small amplitude due to the loss
of energy via the tunneling throug the barrier. This results in an imaginary correction
to an eigenvalue, so that the eigenfunction has a weak exponential growth in the région
(x*, +00) (with the rate exp (x • exp(-C/Ji)) , C > 0.)

In mathematical setting one has to continue the Green function of the Scrödinger opera-
tor through the continuous spectrum. The complex "eigenvalues " in question are nothing
more than the poles of the Green function on the second sheet of the energy complex plane.

The described phenomena, in spite of their exponentially small magnitude, play a sig-
nificant role in nature. The goal of this paper is to formulate simple quantisation rules
which generalize the well known rules of Bohr, Zommerfeld-Einstein-Keller-Maslov rules,
[E],[KR],[M], and take into account the tunnelling effect. These rules enable us in some
cases to calculate either the splitting of eigenvalues due to the symmetry or the imaginary
correction to an eigenvalue due to radiation losses.

The contens of this article is based on papers earlier published in Russian: [L2],[L3],[T1],
[T2] (see also [Ta],[LTl],[LT2]).

§2 . COMPLEXIFICATION

A natura! idea is to complexify everything, that is to consider an analytic continuation
of everything to a complex domain, and to apply the known quantisation rules to the
complexified objects.

Assume for a moment that the potential V is analytic, say a polynomial, Q = R n , and
such a continuation makes sense. Consider a KAM torus, T, in Rn x R n , and let £ be
its analytic continuation in Cn x Cn . £ is a Lagrangian sumbanifold of the complex phase
space Rn xR n endowed with a complex symplectic form dxAdp/it has a complex dimension
n, the real one being 2n . In fact we have to consider a family of Lagrangian submanifolds

llE) C H~l (E) depending on the energy E and maybe on some other parameters, and lying
in the manifold of constant energy # " * ( £ ) . Applying the quantum rules to such a family
selects the values of the energy Em , m = (mi,7712,...) being a collection of quantum
numbers. In the real case £ is always an n—dimensional torus, and the quantum rules eau
be expressed as the equaling of some intégrais of a 1-form over the basic cycles of the torus
to integers (quantum numbers). In the complex case we may try to do the same. Finally
we want to obtaine an eigenfunction defined in the real domain Q = R n . So we have to
return to the real coordinate space keeping the momenta complex: Rn x Cn C Cn x Cn .
Only the intersection

(2.1) £' = £n(R n xC n ) .

plays the role in the construction of the eigenfunctions defined in Q. Simple calculation
shows that the real dimension of £' is equal to n.

A new fact is that the £' does not coincide with the initial KAM torus T, but contains
something else:

(2.2) £' =
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It consists of several "components" Lp , each being an n—dimensional Lagrangian subman-
ifold, and the components are glued along au (n — 1)—dimensional submanifold, the latter
being the singularity with respect to the projection to the n—dimensional configuration
space:

(2.3) 7 r : R n x C n —>R n .

Only one of the components of (2.2) coincides with the initial torus T . Others are either
real KAM tori or nonreal Lagrangian submanifolds which are symmetrie with respect to
the opération of complex conjugating.

A generic point of the singularity manifold with respect to the projection (2.3) is a fold,
two components meet at a point of the fold, one of them being real (KAM torus), another
one being nonreal. In appropriate local coordinates (£i1É2»*'-»£ni»7iï*72ï--'ï*7n)» tk €
R, rik € C, the projection (3.3) and the équation of C! read:

{ ' } C: i,ï = e „ 7^ = 0 , fc = 2 , 3 , . . . , n .

If we separate the real and the complex parts of 77* = 77̂  + trçjf, the équations of C'
quire the form:

p
acquire the form:

(2.5)

Vk = Vk — 0 > fc = 2 , 3 , . . . , n .

The équations (2.5) define two pièces of C' : the real one which corresponds to the région
6 >0

which is a part of a KAM torus, say CPl. and the nonreal one which corresponds to the
région f i < 0

{ 7j. = 0, k = 1,2, . . . , n ,

which is a part of a nonreal component, say CP2. The fold divides both the components
into two sheets. The real component (2.6) is divided into incoming sheet, and outcoming
sheet, according to the direction of the vector field of the Hamiltonian (1.2) at points of
the fold. The nonreal component (2.7) is divided into increasing sheet, and decreasing
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F i g - 3 A MEETING OF THE FOUR SHEETS AT A FOLD

sheet, according to the sign of the function ƒƒ p"dx where z0 belongs to the fold, z belongs
to CP2, the intégration goes over a path on CP2, the positive value corresponds to the
increasing sheet.

Up to now we considered a hypothetical situation when everything can be prolonged
analytically in the whole complex phase space. But really we do not need it: we need
only to consider a part of the whole comlex object, namely (2.1). On the other hand the
potentials and the domains which we meet in applications are not necessarily analytic, and
do not admit an analytic continuation.

We assume only the existence of a collection of Lagrangian submanifolds in Q x Cn of the
form (2.2), some of them being real KAM tori, others bein nonreal, glued along the common
singularity with respect to the projection (2.3), the typical behaviour in a neighbourhood
of singularity point being described by équations (2.4)-(2.7). The Lagrangianness means
that the form

(2.8) ü = dx A dp = A dp'k + i
* = i

A

vanishes at vectors belonging to the tangent space to £p. The latter has to be consid-
ered as a complex n—dimensional vector space, i.e. it is the complexificaton of the real
n—dimensional vector space tangent to Cp . after the inclusion of the latter in the comlex
phase space via the inclusion map Q x Cn c-> Cn x Cn .
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§3. QUANTUM RULES

Here we formulate a généralisation of the quantum rules which arises from a représen-
tation of the asymptotics of the wave function %j> in a neighbourhood of the projection of
the fold (caustic) which uses the Airy functions, that is solutions of the ordinary linear
différentiel équation

(3.1) W"(z) = zW(z).

We select two independent solutions of (3.1), W± , by the rule: in the sector | arg(—z) \ < j

(3.2) W±(z) ~ (-z)-l/4 exp (±il ± | i ( -

In the opposite sector |argz| < J we will use the following asymptotics (note that an
exponentially decreasing term is retained!):

(3.3) W±(z) ~ z-^ [exp Q,"/») ± j exp (-f*3 / 2)] •

Not going into the details (see [L3]), we formulate the quantum rules which arise from
(3.2),(3.3) as follows.

(1) We suppose that the folds are (n — 1)—dimensional submanifolds, and acquire to
each component, Ij , of the fold a number >CJ , the percolation coefficient ftrough Ij .

(2) Given an oriented loop 7 on a nonreal component Cp, which crosses the folds
transversally and avoids higher singularities,

(3.4) \fpdx + v8QW ' * + vM\i\ • \ + * E ±xi = ° ( mod

The sum in (3.4) spreads on all intersections of 7 with the fold. The ^^[7] is the
intersection index mod 2 of 7 with the preimage of dQ, vM[~f], Maslov index, is
the intersection index mod 4 of 7 with the fold, the latter being oriented so that
the crossing from the decreasing sheet to the increasing one gives a contribution +1.
The signum at xj is + if the loop goes from the decreasing sheet to the increasing
one, and - otherwise.

(3) Given an oriented loop 7 on a real component Cp , which crosses the folds transver-
sally and avoids higher singularities,

(3.5) \lpdx- i/>«[7] • TT - uM[1] • £ + i ^ ± l n c o t h * J ^ l n 2 = 0 ( mod 2n) .
n y7 2 . 2

The sum in (3.5) spreads on all crossings of 7 with the fold, the signum + corre-
sponding to the passings from the incoming sheet to the outcominig one, - other-
wise.
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(4) If Cp is a noncompact real component, we set XJ = in — In 2 for all components
Ij of the fold adjacent to Cp. If Cp is a noncompact nonreal component, we set
*cj = +oo for all components Ij of the fold adjacent to £p.

(5) We suppose that there is a family of Lagrangian submanifolds C' C H"1(E) of
the form (2.2) depending on the energy E as a parameter and probably on other
parameters. To find an exponentially small splitting of eigenvalues in case of sym-
metry (or an imaginary correction to an eigenvalue in case of an open system), we
linearize the system (3.4), (3.5) with respect to the exponentially small splitting
AE (or the correction SsE) around real value of E.

(6) Finally, taking a finite colection of basic cycles 71,72, ••• , 7 N on the components
Cp of (2.2), we have to résolve the corresponding équations (3.4),(3.5) with respect
to the unknown quantities 25, AE (or 3-E), other parameters, and the unknown
>CJ corresponding to the components of the folds not adjacent to noncompact £ p .

Note. Such a strange entering of XJ into (3.5) is due to the sewing condition between
exponential asymptotics and asymptotics containing the Airy functions.

In the next two sections we illustrate the formulated rules by considering two simple
2-dimensional examples.

§4. RADIATION THROUGH A HOLE

Here and in the next section we consider the wave équation

(4.1) Au + *2u = 0

instead of (1.1). To get the quantum rules for calculating the eigenvalues k2 one has to
replace h"1 in (3.4) and (3.5) by k.

Concider a domain Q c R 2 which is the complement to the curve which consists of the
lower half of the ellipce

(4.2) â + W " 1 ' I ! S 0 '
and two rectilinear segments joining the foei with the ends of the lagre axis of the ellipce
(see Fig.4).

It is convenient to pass to the elliptic coordinates by the formulae:
xi = h cosh /i cos ip, 0 < /i < 00 ,

(4.3) x2 = h sinh // sin tp, 0 < < £ > < 2 T T ,

a = h cosh fio , b = h sinh //o .

The équation of the Lagrangian manifold (2.2) can be found explicitely in the form
p = gradS(x) where S is a generating function. The eiconal équation which arises for 5 ,
admits a séparation of variables in the coordinates (4.3), and 5 can be found in the form:

(4.4) S*

(4.5) Fe(fi) = h T Vcosh2 r - cosh2 6dr ,
Jo

(4.6) $0(V>) = h ƒ v^cosh2 6 - cos2 ada,
Jo
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Fig.4 RADIATION FROM THE OPEN HALF OF AN ELLIPCE

9 being a parameter. For each 6 G [0,//o] the function is a generating function for a
Lagrangian manifold in the sense of §2. The surface £(0), the half of it is drâwn on Fig.5,
has three components Cp , p = 0,1,2, the latters being projected onto the domains Dp (see
Fig.4) and glued along the folds l\ and fe .

Let us introducé the notations

(4.7)

f2n I 2
Ji(9) = h I y cosh 9 — cos2 <f>d<j>,

Jo

J2(9) = 2h \ / c o s h 2 ^ " c o s h 2 6d

Je

R(9) = 2h f \/cosh2 9 - cosh2 fidf
J-e

and write down the quantum conditions,which correspond to the basic cycles 7a , s =
1,2,3, drawn on Fig.5, in the form:

(4.8)

i = 27T771 ,

= 2?r(n + 7) — ^lncoth

h ifciï = 7T + i(x + in — In 2) m, n € Z, m, n >> 1,

from which it follows, after the linearization with respect the imaginary part of k = kf + ik"
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that

(4.9)

(4.10)

k'mn =

jfc» = _ I
2 ' j2(emn) -

1 = 27r(n + |

The number 6mn has to be defined from the equaling of two expressins for k9
rnn in (4.9).

Fig.5 LAGRANGIAN SURFACES FOR THE HALF OF AN ELLIPSE WITH

RADIATION

§5. SPLITTING OF SYMETRIC EIGENSTATES

In this section we consider the Dirichlet problem for the équation (4.1) in the whole
ellipce with attached two cuts, the same ones as in the previous section (see Fig.6).

Using the same notations , one can write down the quantum conditions for the cy-
cles 7a, s = 1,2,3,4,5, drawn on Fig.7 which represents the Lagrangian surfaces for this
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problem:

Fig.6 ELLÏPCE WITH CUTS. TWO SYMMETRIC QUASIMODES

77 o f , 3 \ -i xi, "l + l n 2

; kj2 = 2n(rti + - j — i In coth

73 : ikR = — n — i

74 : k J\ =

75 : kJ2 = 2?r(n2 + j j — iIn coth
+ln2

It follows due to symmetry that

(5.1) X! = X2 = X =

We have

. T T 1

z — + - = m.

(5.2) Incoth-(x + ln2) we * = ±iexp(--

Note that the sign ± in (5.2) is the result of the choice of different values of the integer r
in (5.1). Our quantum rules acqure the form:

= 27rm,

(5.3) { kJ\ = 2nm,
kJ% = 2?r(n + -

4
± exp ( -
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F i g . 7 L A G R A N G I A N SURFACES FOR THE ELLIPCE WITH CUTS

After the linearization procedure (5.3) gives the following value for the egenvalue split-
ting:

2Jj(flmn)
(5.4)

where 6mn is to be found as a solution of the équation

•exp (-H •

(5.5) m
n + 3/4 '

This formula was confirmed in [T2] by direct computation of the eigenvalue asymptotics
via the séparation of variables in the équation (4.1).
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§6. VARIATIONAL PRINCIPLE FOR THE COMPLEX PHASE

The problem of finding the Lagrangian manifolds with desired properties seems to be
difficult. It contains as a part the computation of KAM tori, which is difficult itself. The
équations for nonreal components are nonlinear and elliptic at least in the case n = 2. It is
worthwile to mention hère a variational principle for the case of équation (4.1) formulated
in [Tl].

To solve the équation

(6.1) (VS)2 = 1

let us separate 5 into real and imaginary part:

(6.2) 5 = $ + itf .

Introducing a new function c by the equalities:

dx ~Cdy' dy

one finds

and the function $ satisfies the elliptic équation:

dx \Cdx) + dy

The latter coïncides with the Euler équation for the functional

(6.3)

where

f(w) = y/w(w — 1) —
Thus, the problem of finding a nonreal Lagrangian surface is reduced to finding a min-

imum to (6.3) in a domain with partially unknown (free) boundary.
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