
Séminaire de Théorie
spectrale et géométrie

ANTON ZORICH
Asymptotic flag of an orientable measured foliation
Séminaire de Théorie spectrale et géométrie, tome 11 (1992-1993), p. 113-131
<http://www.numdam.org/item?id=TSG_1992-1993__11__113_0>

© Séminaire de Théorie spectrale et géométrie (Chambéry-Grenoble), 1992-1993, tous droits
réservés.

L’accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=TSG_1992-1993__11__113_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Séminaire de théorie spectrale et géométrie

GRENOBLE

1992-1993 (113-131)

ASYMPTOTIC FLAG OF AN ORIENTABLE MEASURED
FOLIATION

Anton ZORICH

ABSTRACT.
We state several conjectures on asymptotic "spectral properties" of transforma-

tion operators involved in Rauzy induction for a generic interval exchange transfor-
mation. Modulo these conjectures we get a very précise approximation for dynamics
of leaves of a generic orientable measured foliation on a surface. The main object,
which we get is a flag of subspaces in the first (co)homology group of the surface
of dimensions 1 g, where g is a genus of the surface. Tins flag of subspaces
generalizes asymtotic cycle; in particular the smal lest subspace is spanned by the
asymtotic cycle. Presumably this flag of subspaces provides a new invariant, of
foliation.

We illustrate the conjectures by treating a spécifie example, which cornes from
a model of électron dynamics on a Fermi-surface suggested by I.Dinnikov.

Though we can not provide any strict mat hem ati cal proofs of the conjectures
proclaimed, authors belief in their validity is strongly supported by numerous com-
puter expeiïments. which gave affirmative results.

1, INTRODUCTION.

It is well known. that leaves of a generic orientable measured foliation on a surface
Mg of genus g wind around the surface along one and the same cycle from the first
homology group Hi(M*,R) of the surface, which is called asymptotic cycle [Kerck].
In a sensé asymptotic cycle gives the first term of approximation of dynamics of leaves.
Hère we study other terms of approximation. It turns out1, that taking the next term
of approximation we get a two-dimensional subspace in Hi(Mg*R), i.e., with a good
précision leaves deviate from asymtotic cycle not arbitrary. but inside one at the same
two-dimensional subspace in the first homology. Taking further steps n = 3, ...«</ of
approximation we get subspaces of dimension k for the À'-th step: collection of the
suhspaces générâtes a flag of subspaces in the first homology group. The largest,

and below the présentation is valid modulo conjectures formulated in section 2.
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<y-climensional subspace, gives a Lagrangian subspace in 2</-dimensional sj'mplectic
space Hi(MgiR), with the intersection form considered as a symplectic form. We
stop at level g since in a sensé at this level we get the best possible approximation
— it looks like the error can be in a sensé uniformly bounded.

Having a measured foliation generated by a generic closed 1-form on a surface, one
can consider interval exchange transformation înduced by the first return map on
a closed transversal. This interval exchange transformation would be minimal and
uniquely ergodic, provided we started from a generic closed 1-form. Our hypothetical
approximation is based on several conjectures on asymptotic "spectral properties"
of transformation operators (/rl4 involved in Rauzy induction corresponding to this
interval exchange transformation. The conjectures are stated in section 2.

In section 3 we describe behavior of trajectories modulo conjectures on asymptotic
"spectral properties" of Rauzy induction.

In section 4 we list some properties of operators **l4 and suggest some spéculations
on possible proofs of conjectures.

In section 5 we apply gênerai constructions to some particular case arising from an
exaniple suggested by I.Dinnikov. This example came from study of Novikov's prob-
lem on électron trajectories on Fermi-surfaces in a weak homogeneous magnetic field.
Hère closed 1-form under considération is obtained as a restriction of a spécifie 1-form
on three-dimensional torus with constant coefficients to a spécifie surface of genus 3
embedded into the torus. Rauzy process in this case is periodic, which simplifies the
picture. Besides, unfolding the torus we can "make visible" our trajectories.

In section 6 we present several illustrations for sections of Dinnikov surface.
We wish to thank I. Dinnikov for communicating his example long before it became

accessible even as a written text, and to J. Smillie for numerous discussions, and
helpful comments.

2. CONJECTURES ON "SPECTRAL PROPERTIES" OF RAUZY INDUCTION.

Consider a minimal uniquely ergodic interval exchange transformation with proba-
bility vector (A1 À") and nondegenerate permutation a G &n. To settle notations
we remind construction of Rauzj' induction [Rauzy]. Our notations are almost the
same as in [Kerck].

Let us describe one step of Rauzy induction. Dénote by Iij square 7?X7?.-matrix,
which lias only one nonzero entry, which equals one, at the (ij) place. By E we
dénote identity nxn-matrix. Let

= I
+ J,-i(B).n if An

Let
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Let < j d o m = ( 1 , 2 , . . . , Î Î ) a n d <7im = a .

If A„ > A^nj modify ajm by cyclically moving forward one step all those entries
occurring after the last entry in adomi î-e., after <Tdom(rc). Dénote the permutation
obtained by ( 1^im , and let '^dam = o"dom unchanged. If An < Xc^n) modify <Tdom by
cyclically moving forward one step all those entries occurring after the last entry in
(T\m* i.e., after (Tim{n). Dénote the permutation obtained by îtTdom» a n d let (1Wjm = aim

unchanged. Let

Here the product of permutations should be understood as a composition of operators,
from right to left.

Vector ^(^êiom \*) a n c ' Permutation *2tr détermine a new interval exchange trans-
formation . This interval exchange transformation is just an induction of original
interval exchange transformation to subinterval [0,1 — ?/[, where rj = min(An, A^-i^)).
Note, that vector (1)A has £1-norm smaller then A; we do not renormalize it.

By {k)X, <Hr, (/r)crim, {k)<Tdom we dénote the data obtained after k steps of Rauzy
induction. By (0)A = A, {0)<r = <r, (0)<7hu = er, {0)adom = (1,2,...,?? ) we dénote the
initial data. By {k)A we dénote a product of k elementary matrices corresponding to
first k steps of induction, so that

(2.1)

or in coordinates

(2.2) ;

Recall. that having an interval exchange transformation one can construct a Rie-
mann surface and a closed (harmonie) 1-form, which defines a measured foliation on
Riemann surface (see [Masur] and [Veech]). Initial interval exchange transformation
would be generated as a first return map to a spécifie transversal to the foliation. De-
note genus of corresponding Riemann surface by g. Though value of g is déterminée!
by combinatorics of permutation a, we referred to construction of Riemann surface
to emphasize topological meaning of g* which is rather essential in this paper.

Let **iri„..., (/:lrn be eigenvalues of ^A enumerated according to decreasing order
of their norms: |(fr>ri| > \{k\v2\ > • > \{k\vn\.

We formulate propositions and conjectures below everywhere assuming k is suffi-
ciently large, and initial vector A is generic. We start with reminding a well-known
fact, concerning the greatest eigenvalue.

Proposition 1, Tht greatest eigenvalue (A'lri is real and positive: it tends to infinit y
as k tend* to infinity: it is much greater then norms of other eigenvahies

lim (*ln = +oo
k—x-
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lim TTT-1 = 0 for i = 2,...,n
oc VK>t

In particular '*lri /îfls multiplicity one. Corresponding eigenvector ^kK\ lias positive
coefficients. Beivg normalized in Ll-norm it tends to *°'A.

l im <*Vi = (0)A

Conjecture 1. Eigenvalues ( / r lri , . . . , (*k5 ancf (*irn_0+i,.. . , w . r n are a// real pro-
vided k is sufficiently large.

Conjecture 2. Eigtnvahes ' * ! r i , . . . , ^tr^ /cnrf /o infiniiy; their ratios { ^ for i

1 < / - l tend to zero, U.. {k\r, > |«*»J2| > ••• > l ( %l > 1

lim (/:):r; = ±oo /or ? = 1 , . . . ,g

l i m - l i ± i = 0 / o r ? = 1 , . . . , ^ -
Ar—

Conjecture 3. Eigenvahies ;rn_5+i, ,r„ /fîirf to zero; ratios ^^ for / = ?? —
/ o r e | [ | | \ \

l i m .r/ = 0 for i = n — g + 1» • - -, »

l im —— = 0 for /' = ??— ^ + 1 , 7? — 1
A—-oc Xi

Conjecture 4, Eigtnvalues <fc).r5+i,... ,w . rn_5 ca/? 6e complex, but with probability p
their absolute values are uniformly bounded by a constant C{g,p), for anyp < 1. (As
a probability measvre tve consider a natural measure on simplex A""1, parametrizing
AJ

\ik)*iI < C(g, p) for i = g + l n - g

In other word s

C o n j e c t u r e 5 . Pairwise product s of tigenvalue* ^ ' lr , ( A"lr„_ l + i for i = l,...,g are
close to 1. i.e.. (A>.n(A).r„ ~ 1 ; . . . ; (A>rp

(Àlr
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Note that det <*U = 1, and hence n?=i {k)*i = 1.
Morally we claim, that operator {k^A behaves "similar" to a high power of a self-

adjoint symplectic operator (cf. example l ) .
Consicïer a flag of subspaces {k)Cl C {k)C2 C • • • C {k)C9', where subspace {k)C\ 1 <

/ < </, is spanned by eigenvectors (/f*Vi,..., **H'ï corresponding to "top" i eigenvalues
of operator (/fl4. According to Conjecture 1 above, subspace ***£', where 1 < i < </, is
real and lias dimension f. Consider this flag as a point of corresponding flag manifold
1=1.2 j 2

Conjecture 6- Flags {k)Cl C {k)C2 C • • • C {k)C9 have a limit as k —> OQ with respect
to natural topology on flag manifold.

Consider much more gênerai problem. Let ƒ : M —• M be a transitive Anosov
difFeomorphism. Let fm be induced mapping in cohomology. It is known, that the
largest by absolute value eigenvalue *ri of ƒ* is real, and that l/.ri is also eigenvalue
of ƒ*; corresponding eigenvectors are called Ruelle—Sullivan classes of ƒ, they are
Poincaré dual one to the other.

Problem 1, Does ƒ* have any other "spectral properties"? Are there any general-
izations of Ruelle—Sullivan classes, say, some invariant subspaces in cohomology?

3. HYPOTHETICAL BEHAVIOR OF LEAVES OF ORIENTABLE MEASURED FOLIATION.

Having an interval exchange transformation one can associate to it a Riemann
surface and a holomorphic 1-form (see [Masur] and [Veech]), which détermines a
measured foliation on the surface. By construction we have a spécifie transversal
to the foliation: first return map to this transversal induces initial interval exchange
transformation. We may assume, that we started from orientable measured foliation,
and then choosing a transversal got interval exchange transformation; in any case,
what we are interested in is homological behavior of leaves of corresponding measured
foliation.

Recall, that one can associate to each subinterval uncler exchange a cjxle in the
first homology group of a surface. The cycle A',-, corresponding to subinterval À'j
is represented by the following closed pass on our surface M2: we start at the left
endpoint of the interval À" (i.e., at the left endpoint of our transversal), and go to the
right along transversal till we get to some point .r G A", inside subinterval À\. Then
we follow (in positive direction) leaf of foliation start ing at the point .r till we hit our
transversal for the first time. We hit it at the point T(*r), where T is our interval
exchange transformation. Then we go to the left along interval À' till we come back
to its left endpoint.
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Choose some basis c\ ,cm in the first homology group of Mg with real coeffi-
cients. In fact we do not care, whether it is a basis in absolute or relative homology, so
we do not want to specify dimension ??? precisely. It would be convenient to organize
our cycles in a nx???-dimensional matrix N as follows: row number i of matrix N
is just our cycle TV, représentée! in components JV/,. . . , N™ with respect to the basis
C j , . . . , Cn.

Let us trace how Rauzy induction affects the cycles Ni. Dénote the cycles obtained
after k steps of Rauzy induction by **'7V,. (Note, that ordering of the subintervals,
and hence of the cycles, îs determined by permutation w<7dom0 We use initial basis
c i , . . . , c m in homology to décompose cycles t*W,- in components. It is easy to see,
that

(3.1)

or in coorclinates

(.3.2) {kh\] = ;

wliere index q enumerates components of cycles, and indices i and j enumerate cycles.

Rcmark 1. We would like to emphasize, that according to transformation rule (3.2)
columns of matrix AT are transformed as covariant objects with respect to linear trans-
formation defined by matrix (*l4 r , while vector **'À of lengths **'Àf of subintervals is
transformed as a contravariant object with respect to the same linear transformation
(cf. équations (2.1) and (2.2)). In other words, if we consider équation (3.2) as an
action of a linear operator (/f)i? with matrix (A'l4r on covariant objects, then équa-
tions (2.1) and (2.2) define an action of adjoint operator on contravariant objects.

Probably we had to choose operator (/r)i? with matrix WR = {k^AT as a starting
object in our présentation, otherwise "unexpected transposition" leads to some con-
fusion. On the other hand these would lead to contradiction with existing notations
in [Kerck] and other papers.

We want to describe now image {k)L = {k)A • {0)L of a generic covariant oi^ject
* = L under our transformation, assuming k is sufficiently large.
Matrix {k)AT of our transformation has the same collection ( f c lri , . . . , lk\vn of eigen-

numbers as ^A. According to Conjecture 2 eigennumbers (À*lri ^k\rg are ail dis-
tinct. Dénote corresponding eigenvectors by ^ ^ l ' i , . . . Jfr^irp. We have a natural
projection to one-dimensional subspaces spanned by these eigenvectors. Dénote the
projection of a vector L to the subspace spanned by eigenvector (**11*; by Z,|(fcnrt. Then

( 3 . 3 ) £ = z | ( M r i + ... + i | I M r f + ...

where the tail of décomposition belongs to the invariant subspace corresponding to
eigennumbers (/r).r5+i , {k\vn.
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Consider eigen(co)vector (fc)K, where 1 < ? < g, of adjoint operator (haviug
matrix **l4-1) corresponding to eigennumber JTÇ-. Note, that it coïncides with
eigen(co)vector of inverse to adjoint operator (having matrix (/fl4) corresponding to
eigennumber <Arlrt. Normalize our eigenvectors so that under a natural pairing (of
covariant and contravariant objects) we get

Projection ^la-nr, of vector L to subspace generated bj' vector lkHVi can be expressed
now as

(3.4) Z | , W i = ( I , <*>V-) • HVi where ; = 1 , . . . ,g

where (, ) is again the natural pairing between covariant and contravariant objects.
We can rewrite now (3.3) as follows:

(3.5) L = ( I , l*K\) • {k\l\ + . . . + ( I , W^) • {kHVg + . . .

where the tail of décomposition belongs to the invariant subspace corresponding to
eigennumbers (A"lr5+i,..., **lr„ as before.

Having décomposition (3.5) we can easily describe action of our operator '**R (rep-
résentée! in our coordinates by matrix {k)AT).

(3.6) {h)ATL = <*ln(L,{k\\) • <^Fj + • • • + {k)xg(L,<*Vff) • « ^ + 0(1 )

We remind. that according to Conjectures 3 and 4 the tail in (3.6) is small with
respect to the leading terms, since projections to eigenvectors **H'K„_tf+i,...,'M-Vi,
would be multiplied by corresponding eigennumbers ( / r lr„-5 + i? . . . , ' f c lr5 , which tend
to zero. while projections to the "middle* eigenvectors lk\Vg+i,..., ikKVn-s would be
multiplied by eigennumbers, which presumably remain bounded.

Let us use équation (3.6) to rewrite équations (3-1) and (3.2) for the columns
q = 1 , . . . , m of matrix *

(3.7) <*>Af' = ^x^No^W) • {kHl\ + • • • + ^\vg(^N\{k%r
g) • {kW9 + 0(1)

Consider the following cycles (*'Zi, . . . ^Zg in the.first homologj7 group (same
where cycles Ar,- live):

(3.8) {k)Zi = ( ^ V 1 , ^ ) ^ + ••• + ( ( 0 )A r"\ (^;)cm

We are interested. actually, in the rows of matrix {k\\\ representing cycles in the
first homology group of our surface. Combining équation (3.7) with définition (3.8)
we obtain

(3.9) {k)Ni = MxiHVi ' {k% + • • • + lkWk)nrî - {k% + 0(1)
We are going to analyze now équation 3.9. which is a key équation in this section.
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Recall now, that according to Proposition 1 we have (*lri » |(*Jx,-| for % = 2 , . . . ,n.
Hence the first term of approximation in (3.9) is defined by cycle (*>Zi. This means,
that if \ve will rescale cycles (/rlV,- by l/(fclri we get

(3.10) {k)N{ =
 {kHV{ • {k% + o(l)

i.e., cycle {k)Ni is proportional to (A)Zi with a coefficient of proportionality (fc)ïVÏ up
to an error, which tends to zero as fc —> +oo. We would like to note that this resuit is
based only on Proposition 1, it does not depend on conjectures, so it is quite rigorous.
Still for this case we get nothing new. According to the same Proposition 1 one lias

lim

Hence (3.S) leads to

À'—
l i m <"% = <0)A, • <°)JV, + • • • + (0>An •

+
i.e., cycle (A)Zi tends to asymptotic cycle (see [Schw]).

Recall now, that according to Conjecture 2 we have '*lri ^> • • • ^> \^
Hence if we take leading r ternis in approximation (3.9), 1 < r < g, we get

In other worcls up to a relatively small error all the cjrcles belong to a r-dimensional
subspace in the first homology group spanned by cycles ( f r )Zi,... ,(fr)Zr. Compare
this r-dimensional subspace with one obtained after some other number k' of steps
in Rauzy induction. New cycles {kf)Zi,... ,(fc'JZr may change, since they are defined
in terms of eigen(co)vectors ' *Vi , . . . , ' f c V r , which may change. Still, according to
Conjecture 6, the space {k']Cr generated by eigen(co)vectors (*'Vi,. . . , (*'^r is close
to the space {k)Cr generated by eigen(co)vectors ^K'u - • • ? (fc^r in the sensé of natural
topology of Grassmann manifold GV(1R"). Hence (see définition (3.8)) of cycles Z,-)
subspaces generated by cycles (* 'Zi , . . . , (A)Zr and (/r'*Zi , (kt)Zr would be also close.

Dénote the subspace of the space of first homology of M* with real coefficients
spanned by cycles (A)Za

 {k)Zr by <*>Wr. We showed that Conjectures 1, 2, 3, 4,
and 6 imply the following statement:

M a i n Conjec ture . Fhgs {kyHl C {kyH2 C ••• C {kyHg have a limit as k -> oo with
respect to natural topology on flag manifold.

We checked this statement by computer experiment s with small genuses (up to
genus 5) using Mathematica package ([W]). We used random initial data, and high
précision to be able to take approximately a thousand steps in Rauzy induction and
compared relative différences in Plucker coordinates. Typical resuit for the tail of the
séquence is 10"10 for small genuses.



Asymptotic flag of an orientable measured foliation 121

The other obvious computer experiment is as follows. Chose arbitrary two dimen-
sional vectors Ni Nn, playing a rôle of cycles, which satisfy £ ^W = 0. Consider
a utrajectoiy" for some large number of itérations of interval exchange transforma-
tions. According to Main Conjecture our "trajectory" is supposed to follow a straight
line with direction Z<i. This hypothetical straight line becomes already visible (see
figure 1) starting with 100000 itérations for small genuses; for greater values of g and
n one has to take more itérations.

FIGURE 1. Computer simulation of "trajectory" for the case, wlien "asymptotic
cycle" equals zero. Initial permutation <r = (6 ,5 ,3 ,8,7,4,2,1) corresponds to a
surface of genus 3. Number of itérations is 100.000.

4. PROPERTIES OF OPERATORS {k)A AND SOME SPECULATIONS ON POSSIBLE
PROOFS OF CONJECTURES.

Remind some properties of operators
Given an interval exchange transformation T corresponding to a pair (A,a), A G

RIJ., er e 6 n , set /^ = 0, i3j = Hj=i Aj. and À*,- = [/$;_!,/i,[. Define ske\v-sjrmmetric
;?x??-matrix S(a) as follows:

(4.1)
1 if i < j and <r~l{i) >

= { - 1 if / > j and a-l{i) <
0 othenvise
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Consider a translation vector

(4.2) r = S{*)\

Our interval exchange transformation T is defined as follows:

T(x) = x + rt-, for x G A',-, 1 < i < n

To each permutation w G 5" we assign nxn-matrix which we will dénote by P(7r):

(4.3) PM'^li "r1™'
^0 otherwise

Our first comment is that operators **L4 preserve skew-symmetric scalar product S(a)
in the following sensé (see [N-R]):

(4.4) PT({k)crdom)S(^a)P(^adom) = ™AT • 5(<°Vr) • {k)A

In particular for those values of À\ when (/r)<7 = (0)cr and (*^dom = (0)^aom équation (4.4)
simplifies as follows:

(4.5) S({O)a) = ^AT'S({O)a)-{k)A

i.e.. for those values of k operators ^A preserve "degenerate symplectic formv 5(t0îcr).
The other comment concerns kernels of operators S(^kh) (see (4.2)). Recall con-

struction of a Riemann surface and a measured foliation on the surface corresponding
to a given interval exchange transformation (see [Masur] and [Veech]). Due to this
construction our initial interval exchange transformation ((0)<r,(OÏA) is represented as
a first return map to a transversal generated by the measured foliation. Enumer-
ate saddles P\%P%+ Ps on our surface. Assign to each endpoint of subintervals
Xi* i = 1,...,?? under exchange corresponding saddle. To each saddle point P
assign a vector A' G R" as follows:

{ 1 if P is assigned to the left endpoint of X3,
— 1 if P is assigned to the right endpoint of -Y,,

0 otherwise

We got s vectors A'i A's corresponding to saddles Pi P5.

Proposition 2. \ectors A',-. / = 1 s btlong to the kernel of operator S {a), i.e..

Kernel of operator $(<r) bas dimension * — 1; it coïncides with a linear span of vectors
Ai A s .



Asymptotic flag of an orientable measured foliation 123

Since a step of Rauzy induction can be considered as induction to a proper subin-
terval of the transversal of the first return map, we get a natural identification of
sacldles corresponding to interval exchange transformations (WCT, <fc*A). Consider vee-
tors {h)KiJ = 1, s corresponding to interval exchange transformation obtained
after k stei^s of Rauzy induction.

Proposition 3, Operator WA maps vector (k)K{ to vector

{k)A({k)Ki) = <0)A', for i = 1

Construction of a Riemann surface in [Masur] and [Veech] by given interval ex-
change transformation in fact provides us with a natural basis in the first relative
(co)homology of the surface with respect to subset of saddle points. Recall, that a
measured foliation in this construction is obtained as a foliation of leaves of a closed
1-form. Note, that values A, represent intégrais over the basic relative 1-cycles. Note
also. that values r; of the translation vector (4.2) represent intégrais of the 1-form
over cycles Ni (see previous section). Consider the following terms of exact séquence
of a pair (set of saddle points)C(Riemann surface AI*):

> tfu(saddles;R) -> H^M^ {saddles};R) -+ Hl(M*;R) -+ Z/1 (sacldles; R) = 0

Uncler identification with cohomology suggested above, mapping (4.2) can be consid-
ered as a mapping from relative to absolute cohomology from the exact séquence of
the pair. while the set of vectors A't defined by (4.6) represents image of the map-
ping i/u(saddles;R) —> Hl{M*, {saddles}; R). Moreover, under identification of our
space (where vector A lives) with the first cohomology of the surface, skew symmetrie
matrix $(<r) represents intersection form on (co)homology.

To complete this section we want to suggest several ideas on possible proofs of
conjectures.

We start with discussion of Conjecture 1. We suspect, that one can associât e with
operator {k)A an automorphism of the Riemann surface, such that induced linear
mapping in the first cohomology group would be described by operator (A*l4. As
a possible mapping one can take proper pseudo Anosov map from [Veech] or some
relative of it. say mapping 5 from ([Veech], (7.19)). We suspect, that corresponding
operator in cohomology is self-adjoint with respect to some natural scalar product
in cohomology. As a candidate for such scalar product we can suggest the following
one.
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Note that construction in [Masur] and [Veech] provides us with a complex structure,
and hence with a metric on the surface. To define a product of two first cohomology
classes consider (uniquely determined) harmonie représentatives of these classes. In
the présence of metric one lias a natural pointwise pairing of vector fields, and differ-
ential forms as well. Consider a scalar function on the surface obtained as a pointwise
pairing of our harmonie représentatives. Intégrale this function over the surface with
respect to the natural volume element, defined by the metric. Define the resuit to
be a value of the scalar product of initial cohomology classes. The bad thing in this
construction is that naive metric dz dz is singular in our case.

Conjecture 5 should be related to équation (4.4). In particular exact equality
{k\vi = 1/Wxn-i f o r i = l , . . . , y

generically should be valid for infinité subsequence of values of k\ for which one
lias {k)a = (0J<7 and (/r)<7dom = <0) d̂om since for these values of k operators '*U are
"symplectic"* (see (4.5)).

Conjecture 4 presumably is related to Propositions 2 and 3.
In the next section we illustrate how our conjectures work for the easiest case,

when Rauzy process is periodic. We hope, that in gênerai, quasiperiodic case, the
whole picture is similar.

5. ELECTRON TRAJECTORIES IN DINNIKOV'S EXAMPLE.

In this section we want to illustrate ideas of section 3 by treating a particular
measured foliation. On ,the one hand the structure of Rauzy induction is very easy
for this case. On the other.hand this example bas some independent interest since it
came ftom the framework of S.Novikov problem on behavior of électron trajectories
on a Fermi-surface in the présence of a weak homogeneous magnetic field (see [Nov82],
[Nov91], [Zorich], and [Dinnl]).

We reminci briefly mathematical formulation of initial problem ([Nov82], [Nov91]).
Let Mg C R3 be a periodic surface in R3, i.e., a surface invariant under translations
of cubic lattice in R3. Consider its intersection lines with a plane ax + by + cz =
const. What can one say about behavior of these lines? S.Novikov conjectured, that
generically nonclosed curves as defined go along a straight line in the plane "from
négative infinity to positive infinity".

It was proved in [Zorich], that for a fixed embedding conjecture is valid for an open
dense set of directions of planes (union of neighbourhoods of rational directions). For
this set of directions ail curves can not deviate too far from the lines along which
they go — they ail belong to stripes of fini te width. Paper [Dinnl] assumes that our
surface is a level surface of a periodic function. and proves that for any fixed direction
of a plane the same behavior of curves is valid for ail but at most one level of the
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function. There is an example due to S.Tzarev, when Novikov's conjecture is not
valid.

We need to reformulate the problem as follows. Consider a closed surface Mg of
genus g ( "Fermi-surface" ) embedded into a three-dimensional torus T3. We identify
torus T3 with the space R3 factored over a cubic lattice. Having a closed 1-form with
constant coefficients a dx + bdy + cdz on T3 one can confine it to the surface. One gets
a closed 1-form on the surface, which generically has nondegenerate singularities. This
1-form détermines a measured foliation on M*. Consider uni versai covering R3 —• T3

and induced covering Mg —> Mg. Consider leaves of induced measured foliation on
the surface Mg, By construction they can be obtained as intersection lines of M*
with a plane ax + by + cz = const.

Generically measured foliation on a surface obtained by construction above splits
into several minimal component s (tori with holes). For a long time it was not known
whether one can get in this way a minimal foliation. We can assume, that homological
class of a surface is equal to zero in the second homology of torus (the case when it
is nonzero is trivial). Hence, due to a remark by J.Smillie, the image of asymptotic
cycle of foliation equals zero in the first homology of torus. This means that curves
in R3 obtained by unfolding of leaves of a minimal uniquely ergodic foliation do not
have any natural asymptotic direction. Hence examples of minimal foliations in this
problem could lead to quite peculiar behavior of leaves.

A family of examples of minimal measured foliations on a surface of genus 3 as
required was recently constructed in [Dinn2]. One of the tools in the construction
is a process similar to Rauzy induction. We treat the case, w?hen this process is
periodic. Parameters, determining the surface, and the slope of the plane are obtained
as components of an eigenvector of the transformation matrix D (which is morally
similar to matrix A in Rauzy induction) corresponding to a period of the process.

Remark 2. We want to make a following side remark. The space of interval exchange
transformations arising from foliations determined by closed 1-forms on a surface of
genus g has dimension 4</ — 4. Dimension of a subspace, which cornes from Dinnikov
construction is 2g — 1. It follows from the construction, that there are open sets
(in topology of the subspace), for which interval exchange transformation is always
nonminimal, which gives an estimate for dimension of stratum of nonminimal interval
exchange transformation in the space of all interval exchange transformations.

We chose a transversal on Dinnikov surface and considered interval exchange trans-
formation induced by foliation. In this example we have a surface of genus g = 3,
the 1-form has 2g — 2 = 4.saddles, so we have interval exchange transformation of
n = Ag — 3 = 9 intervais. One can easily évalua te cycles A r i , . . . , N$ (see construction
in section 3). It would be convenient for us to consider images of these cycles in
i / i (T 3 ;R) , so we will identify cycles Ar

( with vectors in R3.
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For complet eness of présentation we display numerical data for this example: in-
terval exchange transformation has permutation

cr = (3, S. 5,2,7,4,9,1,6)

and vector

A « (0.558,2.871,1.227,1.558,0.700,0.368,2.730,0.558,0.141 ) .

Matrix N of cycles given in natural coordinates in Hi{T3;R) is as follows:

(5.1) N =

- 1
- 1

0
0
0
0
1
1
1

- 2
0
1

- 1
1

- 1
0
2
0

—6
- 1

2
- 2

3
- 2

1
5
0

Having such data it is easy to get computer pictures for the leaves of our foliation
(unibldecl in R3). Figure 2 illustrâtes a pièce of curve obtained by random choice of
initial point.

It is easy to see, that the leaf goes rather close to a straight line. Still one should
not think. that our leaf just goes straight in one direction — it walks along the line
to and fro many times (see section 6 for more details). We stress once more, that
such behavior of the leaf can not be explained by means of asymptotic cycle which
is equal to zero in the first homology of the torus.

The "straight line'* behavior of leaves immediately follows from our Main Conjec-
ture in the end of section 3- Consider images of the subspaces H1, H2.H3 in the first
homology Hi{T3;R) of the torus. We know, that asymptotic cycle, which spans 7Y1

maps to zero. Hence the image of H2 is a one-dimensional subspace in //i(T3; R) (un-
less it also maps to zero, which is not the case in our example). This one-dimensional
subspace gives the direction of the line, which one sees at figure 2. One can also
check, that two-dimensional image of 7i3 coïncides with the plain ax + by + cy = 0.

Fortunately Rauzy process for interval exchange transformation in our example is
so simple, that we can prove all conjectures in this particular case.

Example 1. Consider interval exchange transformation corresponding to first return
map to a transversal in Dinnikov's example. Under spécifie choice of transversal one
lias the following picture. After 12 steps the procedure starts to go cyclically with
a period 162. Here is the list of eigennumbers of the matrix Acyc\e = tl2)^4"1 • (174l4
corresponding to a cycle in Rauzy induction: ,ri % 25520, .r2 % 1260, ;r3 %
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FIGURE 2 . A pièce of leaf after 100 000 returns to the transversal. Unit of
measurenient is one unit of our cubic lattice. Starting point, is at the origin.

V. 1250

^ S . 1000

^ S . 750

^ ^ W 500

^ * w 250

-2000 -1000

-250

-500

N ^ 1000

20, x4 = .r5 = .r6 = 1. a-7 % 0.05, xs « 0.000S, x9 « 0.00004. Taking a large
power of tins matrix one gets a picture as in Conjectures above.

We checked cyclic behavior of Rauzy induction in this example as follows: having
initial data from Dinnikov process we got approximate initial data for interval ex-
change transformation with précision sufficient to be sure in first several hundred of
steps. Then using computer we generated Rauzy process for our data, and got in-
formation on probable length of cycle (162) and number of starting steps (12) before
going cyclically. We calculated corresponding matrices *12l4 and *174l4; this matrices
are integer, so they were calculated precisely. Then we checked that these integer
matrices obey some algebraic équation containing matrix D of period of Dinnikov
process, which proved that interval exchange transformation obtained from periodic
point in Dinnikov process gives periodic point (with period 162) in Rauzy induction.
Unfortunately we do not see any mapping or any other direct relations between Din-
nikov process and Rauzy induction, though morally they represent on and the same
process (it was noticed by J.Smillie). In particular we can not prove in gênerai, that
periodic Dinnikov process générâtes periodic process in Rauzy induction.

Let us give some explanation of the properties of eigennumbers of matrix
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For simplicity take (12)À and (12)<r as initial data. Then Rauzy process would be purely
cyclic with period 162, i.e.,

(5.2) <162)<j = (%•

(5.3) ^tto^^dom

(5.4) (0)A = <162U • <162>A = <162ln- <162)À

i.e., X is exactly the eigenvector of <162l4 corresponding to largest eigennumber *162lri.
Consider matrix 5 = {0)S defined by (4.1). Due to (5.2) (162)5 = 5, and due to (5.3)

change of coordinates (4.3) determined by *162WdOm is trivial •— it is identity matrix.
Hence in our case équation (4.4) simplifies as follows:

(5.5) S = ( ( 1 6 2U) r • S • lW2)A

It means that transformation <162l4 preserves three-dimensional kernel of operator 'S
(see proposition 2). Moreover, due to (5.2), (5.3). and using proposition 3 \ve see,
that operator (162l4 acts on the space Ker5' as identity mapping. This way we get
three unit y eigen values ;r4 = x5 = XQ = 1 (cf. Conjecture 4).

We have a. well-defined action of operator (162l4 on the quotient space R9/Kei\S\
since we factorize over invariant subspace. On the quotient space we have skew-
symmetric bilinear form, which cornes from skew-symmetric bilinear form on R9

determined by matrix 5. On the quotient space our bilinear form is already nonde-
generate, and according to (5.5) we get a symplectic operator on this six-climensional
vector space. This éxplains why Xi = l/x9. x% — l /x8 , x3 = l/x7 (cf. Conjecture 5).

Taking powers of matrix (162l4 we will get a picture of distribution of eigennumbers
as in Conjectures 2 and 3.

Let us discuss behavior of flags WJC1, (A^£2, (/r)£3. It is easy to see, that for kg =
we haA*e

Consider some intermediate k\ say, k == 162 • q + r, where 0 < r < 162. Then
*H4 = <A'9l4 • t r l4. Note, that ( rl4 is nondegenarate operator. Since we ha,ve a finite
number of possible values for r, we can get any uniform estimâtes for action of ' r l4, so
morally we can consider this operator as a "small perturbation of identity operator"
with respect to "significantv operator '*«l4 (assuming kq is sufficiently large).

More precisely we can express this idea as follows. Suppose we have a linear
projection operator P : X —> A* on a finite-dimensional vector space A", which maps
the whole space to some invariant subspace Y C A', i.e., Im(P) = 1\ and P{Y) = 1*.
Let Q be an automorphism of the vector space A". Then composition P • Q (first
apply Q. then P) is again projection to the subspace 1\ i.e. Im(P • Q) s= 1', and for
almost ail automorphisms Q one lias {P•• Q)(Y) — Y'.
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Morally operator **«L4 acts as a projection P to the subspace Cx for i = 1,2,3
clepending how many steps (1,2, or 3) of approximation we want to consider, while
operator (rl4 plays a rôle of automorphism Q. This idea can be easily formalized
in our case, which implies that intermediate subspaces */r«+r)£ï, where i = 1,2,3
converge to Cl as q tends to infinity.

6. APPENDIX. SECTIONS OF DINNIKOV SURFACE

This is just to present several illustrations to section 5. Consider a section of
Dinnikov surface in R3 by a plane ax + by + cz = const^ where coefficients Ö,6, c
are as in section 5. Consider a square in the (.r,y) plane with a side d. Cut a

FIGURE 3. Slice of Dinnikov surface.

Accessible area is 40x40 units

parallelogram from the plane ax + by + cz = con*t which projects to our square
under projection along r-axes. A pièce of section of Dinnikov surface which got into
our parallelogram splits into several connected components. Take one of them. Here
we present two pictures of such components for different values of d (we measure d in
terms of units of our lattice). It would not be interesting to show the whole picture
for large values of d, Since our components are just unions of pièces of trajectories.
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we would see just a strait line for large values of d. Figure 4 demonstrates only a
small part of the whole picture, as if we use a zoom.

Problem 2, It would be rat her interest ing to know, how many connected compo-
nents has a generic section of Dinnikov surface: two, fini te number, or countable
number?

The picture presented is schematic — it is represented by a plane graph. The
actual picture is obtained by replacement of edges of the graph by thin ribbons, and
by proper conjugation of the ribbons near the vertices.

FIGURE 4 . Slice of Dinnikov surface.

Accessible area is 500x500 units

Graphie area is 50 units

Number of vertices: 6869

Number of branches: 1858

Starting point* t= 1.763092 at interval 3

The second picture illustrâtes, that our trajectories may "wonder along the line"
in a quite complicated way. Lacunas in the graph would be field up after enlarging
the size of the rectangle under considération. But the picture shows, that trajectories
have to go far enough before they conie back and fill up the lacunas.
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