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SOME TOPICS IN SPECTRAL GEOMETRY

par Nikolai S. NADIRASHVILI

The first two theorems of this note express a quasisymmetry relation between

the positive and the negative part of the eigenfunctions of the Laplace operator on a
Riemannian manifold.

Let M be a two-dimensional compact real analytic Riemannian manifold,
up, u2,... the eigenfunctions of the Laplace operator on M,

Au,- = /\.-u,- .

THEOREM 1. — There exists a positive constant C which depends on M such
that, for every i = 1,2,...

vol{z € M, ui(z) >0} >C .

PROBLEM 1. — Is the analytic condition in theorem 1 essential? Is it possible
to prove theorem 1 for n-dimensional manifolds with n > 2, for example in the case
M = S? with the standard Riemannian metric?

Let M be an n-dimensional compact smooth Riemannian manifold, u;, u,...,
the eigenfunctions of the Laplace operator on M.

THEOREM 2. — There exists a positive constant C which depends only on n,
an integer N which depends on M, such that, for all : > N,
1 SUpps Ui
c < [infar ] <C.

In the article [1] we proved

THEOREM 3. — The multiplicity of the first non zero frequency of a bounded
and plane simply connected membrane with free boundary is not more than 3.

In [1] we also proved that the condition that the membrane is simply connected
in theorem 3 is essential. We built an example of membrane with three holes for which
the multiplicity of the first non zero frequency is equal to 3.
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PROBLEM 2. — What is the sharp estimate for the multiplicity of the first non
zero frequency of a plane membrane with free boundary which has one or two holes ?

Let us consider the problem of the vibrations of an elastic beam. The energy of
the deformation of the homogeneous elastic beam will be written in the form

1
/ [u"|2dz .
0

The energy of the deformation of a nonhomogeneous elastic beam will be written
in the form

1
/ la(z)u"(z)|Pdz ,
0

a(z) > 0. So, the main frequency of the vibrations of the nonhomogeneous elastic beam
can be represented in a variational form as,

1 1
inf / la(z)u"(z)|?dz/ / u*(z)dz . (1)

ueWw20,1170 0
THEOREM 4. — The first eigenfunction uy of the vibrations of a nonhomo-

geneous elastic beam with fixed ends has a constant sign on (0,1) and, hence, the
corresponding frequency is simple.

Proof. — Let us assume that the contrary holds. Thus we assume that there exists
points 0 < z; < 23 < z3 < 1 such that u;(z;) > 0, u;(z2) = 0, uj(z3) < 0. Denote

5= uy (2)1 z € [0) 3?2],
| —w@), z€lzl1]

Let us take the common tangent line to the part of the graph of the function
which is above the axis, on the segment [0, z2] and to the part of the graph which is
above the axis on the segment [z;, 1], (see the pictures below) :
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We built a new function v from the two parts of the graph of the function % and
the segment of the tangent line between them. It is clear that :

1 1
/ la(z)u(z)Pdz > / la(z)v"(z)|*dz,
0 0

1 1
/ w(z)dz < / vi(z)dz
0 0

and thus, u; cannot be a solution of the variational problem (1).

PROBLEM 3. — Is it possible to have a sturm oscillating theory for the elastic
nonhomogeneous beam similar to the one used for the string ?

Let us consider the problem of vibration of a plane plate with fixed boundaries,

AAu = Auin Q,
@

Ou
u_-a—n_O on 99,

where Q C R? is a bounded domain.

The main frequency of a plate can be not simple. At this point the vibration of
the plate is different from the vibration of a membrane with a fixed boundary.

THEOREM 5. — There exists a bounded domain Q@ C R? such, that the first
eigenvalue of the problem (2) has multiplicity two.

PROBLEM 4. — Does there exist an a-priori estimate for the multiplicity of the

first eigenvalue of the problem (2) which does not depend on the geometry of the domain
Q?

Let L be a selfadjoint differential operator on [0, 1] of order 2n with constant
coefficients. Let us consider the spectral problem :
Lu = Au on [0, 1],

3)

(s) (s)
%(0): %(1)=O,i=0,1,...,n—1

It is clear that the multiplicity of the eigenvalues of the problem (3) is < n.

PROBLEM 5. — Is it possible to improve the last estimate ?
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