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Séminaire de théorie spectrale et géométrie
CHAMBÉRY-GRENOBLE
1987-1988(33-37)

ON BLASCHKE MANIFOLDS AND HARMONIC MANIFOLDS

by Kazuyoshi KIYOHARA

0. — A compact riemannian manifold M is called a Blaschke manifold if the
diameter of M and the injectivity radius of M coïncide. It is known that if M is a
Blaschke manifold, then M is diffeomorphic to Sn or R P n , or ir\(M) = {0} and
H*(M,Z) *Ê the Z^ohomology ring of CP n , H P n , CaP2 .

The main problem about Blaschke manifolds is to know if the following conjec-
ture, the Blaschke conjecture, is true or not : if M is a Blaschke manifold, then it would
be a compact rank one symmetrie space.

There are classes of riemannian manifolds related to Blaschke manifolds. A
riemannian manifold M is called a globally harmonie manifold if the determinant
of d(expp)x : TpM -> T^Vp XM (p e M , x e TPM) dépends only on the norm |x| . A
compact riemannian manifold is called a Ci-manifold if all of its geodesics are closed
and have the same length 1. The relation is as follows :

compact, simply connected, « w w ^ - n
. =*> Blaschke => C\ .

globally harmonie
The following results are known :

7. (Green, Berger et aL). — If (5 n , g) is a Blaschke manifold, then it is isometric
to the standard one.

2. (Green, Berger et al.). — If (RPn,g) is a Ci-manifold, then it is isometric
to the Standard one.

5. (Kiyohara). — Let P be one of the projective spaces CP1 , H P n (n ^ 2) ,
CaP2 , and Iet (P,g) be a Cff-manifold. If the metric g is sufficiently close to the
Standard Cr-metric go , then (P, g) is isometric to the Standard one (P,

4. (Zoll,Weinstein).— There are non-standard Ci-manifolds (Sn,g) for any
dimension n ^ 2 .
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1. — Erom now on we assume M is a Blaschke manifold, n\(M) = {0} ,
H*(M,Z) ^ fT(CP",Z) (dim M = 2n , n ^ 2) , and the diameter of M is TT/2 .
The followings are known about M :

1) For any p G M and any g G Cut(p) (the eut locus of p) , the distance
d(p,g) = 7r/2.

2) Every eut locus is a submanifold of codimension 2.

3) Let p be the bundie projection TM —> M , and let { ( J be the geodesie flow
on SM . Then p o ^ ^ : SP(M) —> Cut(p) is a fibre bundie whose fibres are great
circles on SVM .

4) R>r p,q € M with d(p, g) = TT/2 , we dénote by £(p, q) the union of geodesie
orbits through p and ç . Then £(p, g) is a 2-dimensional submanifold diffeomorphic to
S 2 .

Now we define a mapping / : SM —> SM as follows : since HiiM, Z) = Z ,
we fix a positive generator. Then on each E(p, q) the orientation is determined. Hence
we have an orientation on each fibre S1 of the fibre bundie p o Çnj2

 : SPM —• Cut(p),
because the fibre 51 over q G Cut(p) is nothing but the unit sphère of TpS(p,ç) . So
I : SM —• 5 M is defined by the conditions :

1) If v e SPM , then Iv G SPM and p(Çn/2v) = pi^/tlv) .

2)(vJv)=0.

3) {v, / v } is positive in this order.

We ex tend the mapping I to TM\ {O-section} homogeneously, and let I*v :
TpMM -> Tp(v)M be the differential of /|Tp(r)M\{0} at v . From the définition the
mapping / satisfies / o / = (—1) identity. So it looks like an almost complex structure,
and we have the following

PROPOSITION A. — Assume /*„ + 1 = 0 for all v G SM . Then I :
TpM\{0} -» TpM\{0} can be extended to a linear mapping on TpMfor every pe M,
i.e. I is an almost complex structure and it is integratie. Therefore (M, I) is a hermitian
manifold. Moreover each eut locus is a complex submanifold and is holomorphically
isomorphic to CPn~A .

PROPOSITION B. — Assume dim M = 4 . If ïlv + 1 = 0 for all v G SM and
if every eut locus is minimal, then M is isometric to (CP2,<7o) •

LEMMA C. — If M is moreover globally harmonie, then ( i j r + l)""1 = 0 for
every v G SM and every eut locus is minimal (dim M = 2n).

COROLLARY D. — If dim M = 4 and M is globally harmonie, then M is
isometric to (CP2,go) .
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Remarque. — This corollary is already known by a different method. See [1].

2. — For the proof of propositions we need some lemmas.

LEMMA 1. — There is a Jacobi field Y(t) along the geodesie *yv(t) =
such that

Moreover if a Jacobi field X(t) along ~fv(t) satisfies X(0) = X(ir/2) = 0 then X(t) is
a constant multiple of Y(t) .

For X, Y € TPM , Y ^ 0 , we put V* ƒ • Y = Vô/ôt(iTi)|i=o . where we take
a curve c(t) in M such that c'(0) = X , and Yt is the parallel displacement of Y along
c(<) • ̂ xl • Y is linear in X , but not necessarily in Y .

LEMMA 2. — Let Y(t) be a periodic Jacobi field along the geodesie 7,,(O ,
v e SM . Then we have a periodic Jacobi field Z(t) along the geodesie 7c-/„(<) (esI v =
v cos s + Iv sin 5) such that

\ Z(0) 1 f r(0) 1
L Z'(0) J L (cos s + sin sI*v)Y'(0) + sin s(VJ • v)F(O) J

[ Z(n/2) 1 r y(7r/2) 1
L Z'(TT/2) J L (COS S + sin 5hv)Y'(TT/2) - sin 5(VI • ü)y(7r/2) J '

where (VI • v)F(O) = Vy(o>/ • v , etc.

LEMMA 3. —

1) There are Jacobi fields Y\(t) , Yi(t) along ̂ v(t) such that
r Fi(0)i = r iv 1 r yi(7r/2)] _ r - J Ü 1

l Y{(0) J •• -R(/v, v)v - V^ J • r J ' L Yfa/l) J L -R(Iv, v)v + V | / • t; J

2; Vc./,,/

LEMMA 4. — Let Y(t) be a periodic Jacobi field along 7„(i). Then there is a
periodic Jacobi field Z(t) along fv(t) such that

r z(0) 1 r
L z'(0) J L /»„y'(0) +
Z(n/2)] = f
z'(7r/2)J L - / ^ -

3. Proof of Proposition A. — Fix p € M and consider the 51-principal bundie
p o („f2 • SPM —» Cut(p), where the 51-action is given by e'1 , 0 < s < 2TT .
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We define a 1-form u; on SPM by

u>(X) = (X,Iv) , X e TV(SPM) ={Ye TpM\(v,Y) = 0} .

As is easily seen, u; is a connection form, Le. invariant under the S1-action. We have

dw(X,Y) = {(hv-
thv)X,Y) .

So there is a unique closed 2-form Cl on Cut(p) such that (po Gr/2)*fi = du . We
can see that [(l/27r)fi] is a generator of #2(Cut(p),Z) ^ Z . Thereforc

(l/2ir)n-1 f Ün'1 = 1

under a proper orientation of Cut(p) , and thus

u A «

Now put Jv = ƒ*„ - * ƒ«,„ , Sv = ƒ*„ +*/*„ . Then 2I+V = Jv + Sv and

j j w + 1 = 0 < = • J j + SS + 4 + J r S v + SVJV = 0 . (#)

Let e i , . . . , e2n-2 be an orthonormal basis of the orthogonal complement to Rv + RIv
in TpM such that Jve2i_i = A,e2» , Jve2i = — A»e2i-i , Aj > 0 , i = 1 , . . . , n — 1 .
By (#) we have

2 2

Hence A, ̂  2 , and A; = 2 for every i if and only if Sv = 0 . Then
n- l

(u; A (<fu;)n-1)(/ü, eu..., e2n-2) = (n - 1)! JJ At- > 2n"1(n - 1)! ,
i-l

and the equality holds if and only if Sv = I*v +* J*v = 0 . Thercfore we have

A (du;)""1 > 2n" j(n - l)!vol(5«M) .(2*)n = f .
JspM

But vol(SpM) is just 2itn/(n — 1)! . So the equality holds in the above inequality.
Hence we have Sv = I+v +

fI*v = 0 for any u G 5M . Since J2
V + 1 = 0 , it follows

that %VI*V = 1 . This implies that the mapping ƒ : SPM —> SPM is an isometry,
and therefore the restriction of a linear orthogonal transformation of TPM , Hence / is
extended as a tensor field of type (1,1) with I2 = - 1 J.e. an almost complex structure
on M , and (M, I) is an almost hermitian manifold.

By using the square of the endomorphisms on the space of Jacobi fields in Lemma
4, one gets

<{J(V7 • v - ' VJ • v) - (VI. v -fVI - v)I}X,Y) = 0 , X,Y 1 v, Iv .

Moreover Lemma 3 (2) gives

« r > = o, x,y ± vjv.
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These formula gives

for any vector X . By this it is easy to see that the Nijenhuis'tensor vanishes, and (M, I)
tums out to be a hermitian manifold.

It is now clear that each eut locus is a complex submanifold of M and the
S^fibration p o (n/2 ' SPM - • Cut(p) is nothing but the standard Hopf fibration :
52*1-1 _> QPn'1 . Hence the last statement of the proposition follows.

Proof of Proposition B. — For v e SM we define the symmetrie endomorphism
$v of Tfa)M by $vv = $vIv = 0 and

($vX,y> = -(h(X,Y)yv) , X , r G Tp(v)M , X,Y J. v,Iv ,

where h is the second fondamental form of Cut(pÇnf2v) in M at p(v) • If we take a curve
c(t) in Cut(pCn/2v) such that c'(0) = J\T , and a normal vector field vt to
along c(<) , we have

So the following lemma is clear.

LEMMA 5. — $IvX = I$VX + ( V x / ) v , X e Tp{v)M , X ± v,

Since every eut locus is minimal, it follows that tr $„ = 0 for any v G Sm ,
tr being the trace. Hence in view of Lemma 5 one gets

tr (VT)v = 0 .

This together with the formula VJXI = / V x / , shown in the proof of Proposition A,
implies that VI = 0 , Le. (M, / ) is kâhlerian.

By applying Lemma 1 to the Jacobi field Y% in Lemma 3,

R(Iv,v)v = c(v)/v , v G S M ,

where c is a function on SM satisfying c(Çn^) = c{v) . As is easily seen, c(v)
is pointwise constant, Le. if v\ and v2 are based at the same point on M , then
c(v\) = c(v2) . Using the fact that for any two points p and q on M, there is a point m
such that d(p, m) = c?(ç, m) = ?r/2 , we see the constancy of c(v) .

Since (M, / ) is kâhlerian and has constant holomorphic sectional curvature, it
must be holomorphically isometric to (CP2 , go) .

Lemma C is an immédiate conséquence of Lemma 4.
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