SEBASTIAO DE ALMEIDA

FABIANO BRITO
The geometry of closed hypersurfaces

Séminaire de Théorie spectrale et géométrie, tome 6 (1987-1988), p. 109-116
<http://www.numdam.org/item?id=TSG_1987-1988__6__109_0>

© Séminaire de Théorie spectrale et géométrie (Chambéry-Grenoble), 1987-1988, tous droits
réservés.

L’acces aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique
I’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=TSG_1987-1988__6__109_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Séminaire de théorie spectrale et géométrie
CHAMBERY-GRENOBLE
19871988 (109-116)

THE GEOMETRY OF CLOSED HYPERSURFACES

by Sebastido de ALMEIDA & Fabiano BRITO

0. Introduction

Let M be an oriented hypersurface in a (n+ 1)—-dimensional Riemannian manifold
W We denote by \y,. .\, the principal curvatures at a point p € M . The r~th
curvature «, of M at the point p is defined by

Ky = Z Ay A, . r=1.0n.

n<- <i,

For a given real number « we consider the class of closed hypersurfaces
S(a.W)y={MCW :k, =a}

and denote by S (a. W) . Curvature properties of closed hypersurfaces have been studied
by several authors during the last year. From the work of Hsiung [9], Aleksandrov [1]
and Ros [17] we know that if M € S,-*(a,R"”) ,t € {1,2,n}, then M is an embedded
sphere. Hsiang, Teng and Yu [8] and Wente [18], constructed examples showing that
S;(a,R™) & Si(a,R™') when n = 2k — 1 and n = 2 respectively. Obviously
S1(0,R™!) = @ . When W = S™*! the situation is quite different. For example for
each integer ¢ > 0 , there is a compact surface of genus g in S§7(0, S%) , and if g is
not prime this embedded surface is not unique. On the other hand given M € S;(0, S?)
there exists a diffeomorphism f : S — $* such that M = =, where L, is a standardly
embedded surface in S® (cf. [11], [12]). This unknottedness result was first proved by
Lawson [12] assuming only that the 3-sphere S has a positive Ricci curvature metric.
The unknottedness result was extended to metrics of positive scalar curvature (cf. [3],
[13]). Given any sequence of minimal surfaces £, € S (0, S . j=1,...,m we take
connected sum at tiny disks away from the surface to produce a minimal embedding

o ]_]- -[_[z,,. € SH0,S%# .- - #5%) .

This produces disjointed minimal surfaces in a 3—sphere of positive scalar curvature.
This is the only possibility topologically(cf. [3]). Chern, do Carmo, Kokayashy [6],
Lawson [10], proved that if

M € §0,.5™) N Sy(a, ™)



110 S. de ALMEIDA, F. BRITO

with a > —n/2 , then up to rotations of S™*! M is one of the minimal products of

spheres S*(\/k/n)x S**(y/(n = k)/n) , k =0,...,[n/2] . These products belong to
NSi(a;, S™*') . They are isoparametric hypersurfaces. For n = 3 we have the following
results.

THEOREM ([2]). — Let M € 81(0, S*) N Sx(a, S*) such that x3 # 0 . Then up
to rotations of S*, M is the product S* x S? embedded in S* .

THEOREM ([4]). — Let W be a 4—dimensional Riemannian manifold of con-
stant curvature c and M € S$ 10, W) N S3(a, W), a #0 .Then ¢ > 0 and M is
isoparametric.

THEOREM ([4]). — LetM € $1(0,S*) N S3(a, S*) such that the second fun-
damental form of M is never zero then M is either the isoparametric Clifford torus
S'x S% or M is boundary of the tube of a minimally immersed 2—dimensional ¥ C S* .

From a compact minimal surface in S* one may construct a hypersurface
Ms € 51(0,5% N $3(0,5* . This involves mapping the unit normal sphere bundle
of the minimal surface of $* , back into S* in the natural way. This process works only
if the normal curvature K+ of T is nowhere zero. By a result or Tribuzy and Guadalupe
[7] £ = 5% (cf. [4], [16)]).

The following result is due to Terng and Peng.

THEOREM ([15]). — Let M € 50, 5% N Sa(a, S*) such that the principal
curvatures are distinct. Then M is isoparametric.

In this note we will consider immersions of M into W = Q*(c) where Q%(c)
stands for H* , R* or $* . We will prove the following two theorems.

THEOREM 1. — Let M € §(H,Q* n Sx(a, Q) with distinct principal cur-
vatures and non—negative scalar curvature x . Then « = 0 and M is isoparametric.
In particular ¢ = 1 and M is one of the hypersurfaces in the isoparametric family
obtained form Cartan’s example.

THEOREM 2. — Let M € S,(H, Q%) N S3(K, _Q‘) with K # 0, non-negative
scalar curvature and distinct principal curvatures. Then ¢ =1, k = 0 and M is one
isoparametric hypersurface in Cartan’s family.

Theorem 1 is a partial answer to the following question.

QUESTION. — Let C be the isoparametric hypersurfaces of S* . Is Si(H, S)n
Sk, SH=C?

If the scalar curvature is non-negative the answer to the above question is positive.
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The condition on the principal curvatures is superfluous. (cf. [5]). The case in which the
scalar curvature is a negative constant still remains to be cheked. This will be done in
a succeding paper. A more general problem would be to determine the set
Si(H, 5™ N Sy(k, S™) .

When n = 3 a calculation shows that the scalar curvature of a hypersurface M €
N3_;Si(a;, S*)is givenby k =0, k =3+ [H2 + H8 + H*)'/?]/4 or k = 6+ 2H?/3
where H = a; is the mean curvature of M . The picture shows the possible values for
the mean curvature (H) and scalar curvature (x) when the dimension is two or three.

K

K xk=6+2H?/3
k=2+H?/2
x=3+(H*+ HV8+H?) /4
k=0 I k=0
H H
n=2 n=3, k20

In §1 we give an integral formula involving the mean (H), scalar (x) and Gauss—
Kronecker (K) curvatures for immersed hypersurfaces M C Q*(c) . The proofs of
theorem 1 and 2 are given in §2 and §3 respectively.

1. A formula involving the curvatures

In this section we will prove an integral formula involving the curvature invariants
H,x, K for immersed hypersurfaces M C Q*(c) with distinct principal curvatures. For
this we choose a local orthonormal frame field ¢4 in Q*(c) such that when restricted to
M, ¢y, ¢,, ¢3 give principal directions. We denote by 6 4 the dual coframe and write the
structure equations of Q*(c) as

dda=—) 64pA0p , 64p+6pa=0 ¢))
d0A3=—ZoAc/\0(;B+(‘0A/\93 2)

In general we have 04; = ) hi;6; , hij = hj; . In our case the second fundamental

form
h=> hij6:6; A3)
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is diagonalized, i.e. h;; = );6;; .
As in [5] we let ® be the exterior 2-form on M given by
Pp=012N60—-013AN6,+603 A0, . 4)

Taking exterior derivative of (4) we obtain
dp =dbh2 AO3 — dbi3 A G2 +dba3 A 6 — 612 AdB3 + 013 A dby — 623 A dby
= —[613A 032 —(c+ A A2)61 AG]JAG3+[012A0 —(c+ A1 A3)8; AG] A6,
—[621 A 613 — (c+ A2X3)62 A B3] A 61 + [612 A [631 A 61 + 632 A 6;]
— 6013 A[621 A6y +623 A6G3]1+ 023 A[612 A 6y+013 A05)

After the simplifications we obtain

dp = %01 AN ANO3+613N032A03+6012N030N0+03 A6i3 A6y 5)

We will now compute the right hand side of (5) in terms of H, x, K . For this we

need the covariant derivative, Dh , of h . Recall that the covariant derivatives h; ;) of
h are given by

Z hijxbx = dh;; — Z himOmj — Z B jOmi 6)
Exterior differentiating equation (6) we obtain
D hijxbi A6; =0, @)

From equation (7) and the symmetry of A we conclude that the covariant derivatives
hijx are symmetric in any two of their indices. Observe that in our case h;; = \;6;; .
Therefore

hiix = dhii(€y) . ®)
Equivalently
hiik = (Vi C) . ()
If ¢ # j we obtain
hijk = (hij — hi;)0;;(€x) (10)
this gives
hijx
0;; = 1" 6, . (11)

Using equations (9) and (11) we will compute the exterior derivative of ¢ . From
(5), (11) and the symmetry of h;;;x we obtain

K 1
dp = =01 A0, N0+ h13161+h12362) A [{h32161 +h3n02] A 6
p = 501A62103 (/\3_/\‘)(/\2_,\3)[ 13161 +h123602] A [ha2161+h32202] A 63
1
+ hi12161 +h12303]) A [h32161 +h32603] A 65 (12)
(/\2_,\1)(/\2_/\3)[ 12161 +h12363] A [h32161 +Rh32263) A 62 (
1

* h21262+h21363] A [h13202+ h13363] A 6
(/\1—/\2)(/\3—/\1)[ 21202 +h21363] A [h13202+hi3363] A 6,
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Let us denote by dM the volume form 6; A 6, A 63 and by W the product

[Ti<;( = A;) . With this notation we have
dy = adM (13)
where
K A— A1 — A
a=z+ 2W Lhi13has — h2y] + IW 2 [ha1zhasa — h}zs)
A3 — A
+ 3W 2 [ haar hasy — i1 (14)
A3 — A
2 22 hanhas

A — A A1 — A
+ 2 pi3hos + IW 3hnzhs:«r"

w

K
2
Recall that the principal curvatures J); , ¢ = 1,2, 3 satisfy the polynomial equation

P z)=J[(A=X)=0,z € M. In our case
p(A—z)=,\3—H,\2+'°;6°A—K. 15)
Differentiating the equation p()\;,z) =0, : = 1,2,3 we obtain
oP
0= a(/\i,z)d/\i - (16)
a; = \dH - %,\.-dn-r dK . (17
This gives the following identities :
(A1 = A2)(A1 = A3)dh = (18)
(A2 = M)Az = M3)dAz2 = a2 (19)
(A3 — M)(A3 — A2)dA3 = a3 . (20)
An easy computation shows that
1
a =3+ mala@an(t) + a@as(@) + az@)as(@)] - @1
Given p € M we may regard the second fundamental form h,(v,w) as a linear
map A : T,M — T, M given by
h(v,w) = (A(v), w) . (22)
We then consider the symmetric operator L given by
(23)

L= %(HZ—S)I—HA+A2.

Where I is the identity operator. The operator L is diagonalizable with respect to the
orthonormal frame field ¢;,4;, /5 . Its associated matrix is the following

A2 0 0
LE( 0 A\ 0 )
0 0 A1 A2

(24)
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A straightforward computation gives

1 1 H
a= g + o [(L(VH),L(VH)) + 7(L(VR), Vi) = = (L(VH), L(Vr))
+ 2 (VH,Vx) + S(VH,VK) - & (V, VK) (26)

+|VKP - (A(VH), A(VK)) + -;—(A(Vn), VK)] .

Since M is compact without boundary we apply Stokes’s theorem to obtain

/ dp =0 @7)
M
This gives the following

THEOREM. — Let M3 C Q*(c) be a closed immersed 3—-manifold in a space
form Q*(c) . Suppose M is orientable and its principal curvatures are all distinct on
M . Then we have the following integral formula

1 1 H
0= / {-;: s [(L*(VH),VH) + 2(L(VR), Vi) E(LZ(VH ), V)

+ 2 (VH,Vr) + S(VH,VK) - 2-(Vx, VK)

+|VK[ + (A(VH), A(VK)) + %(A(Vn), VK)] }dV .

2. Proof of theorem 1

With the assumptions of theorem 1 we have H and « constant. Therefore the
integral formula of §1 becomes

0=/{§+%|VK|2}¢1V .

Since k > 0 by assumption, then x = 0 and |VK| = O . Therefore M is a scalar
flat isoparametric hypersurface. It is well known (cf. [14]) that if ¢ < O the number of
distinct principal curvatures of an isoparametric hypersurface in Q%(c) is < 2 . We may
conclude that ¢ = 1 . The only possibility left is that M be one of the hypersurfaces in
the isoparametric family obtained from Cartan’s example.
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3. Proof of theorem 2

In theorem 2 we assume that K and « are constant. Therefore applying the integral
formula of §1 we get

K 1
0= /M {-2- + 5 (L(VHD, L(VH))}dV

1
- / {5+ 57z DIRGE? + X305 Y + 3G Jav .
Since « > 0 and K # 0 we obtain that «k =0 and VH = 0. Then M is isoparametric
and the theorem follows as in the proof of theorem 1.
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