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THE GEOMETRY OF CLOSED HYPERSURFACES

by Sebastiao de ALMEIDA & Fabiano BRITO

0. Introduction

Let M be an oriented hypersurface in a (n+ l)-dimensional Riemannian manifold
W We dénote by A],. . An the principal curvatures at a point p G M . The r-th
curvature /cr of M at the point p is defined by

For a given neal number a we consider the class of closed hypersurfaces

= {MC W :Kr = a}

and dénote by S* (a. W). Curvature properties of closed hypersurfaces have been studied
by several authors during the last year. Rrom the work of Hsiung [9], Aleksandrov [1]
and Ros [17] we know that if M G 5*(a,Rn + 1) ,t e {1 ,2 ,n} , then M is an embedded
sphère. Hsiang, Teng and Yu [8] and Wente [18], constructed examples showing that
Sj*(fl., Rn+1) § 5i(a,Rn + 1) when n = 2k - 1 and n = 2 respectively. Obviously
Si(0,R"+1) = 0 . When W = Sn+1 the situation is quite different. For example for
each integer g ^ 0 , there is a compact surface of genus g in 5*(0, S3) , and if g is
not prime this embedded surface is not unique. On the other hand given M G <S*(0, S3)
there exists a diffeomorphism ƒ : S3 -> S3 such that M = Eff where Eff is a standardly
embedded surface in S3 (cf. [11], [12]). This unknottedness resuit was first proved by
Lawson 112] assuming only that the 3-sphere S3 has a positive Ricci curvature metric.
The unknottedness resuit was extended to metrics of positive scalar curvature (cf. [3],
113]). Given any séquence of minimal surfaces T,} G «S*(0, S3) , j = l , . . . , m w e take
connected sum at tiny disks away from the surface to produce a minimal embedding

This produces disjointed minimal surfaces in a 3-sphere of positive scalar curvature.
This is the only possibility topologically(c/ [3]). Chern, do Carmo, Kokayashy [6],
Lawson [10], proved that if

M e 5 i ( 0 , S n + 1 ) n 5 2 ( a , 5 n + 1 )
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with a ^ —n/2 , then up to rotations of 5n+1 ,M is one of the minimal products of
sphères Sk(y/k/n) x Sn~k(y/(n - k)/n), k = 0 , . . . , [n /2] . These products belong to
n5,(aj, 5n+1) . They are isoparametric hypersurfaces. For n = 3 we have the following
results.

THEOREM ([2]). — Let M e Si(0, S4) n 52(a, 54) jwc/i that K3 ^ 0 . 7YK?/Î M/?

to rotations of S4, M is the product S1 x S2 embedded in S4 .

THEOREM ([4]). — Let W be a 4-dimensional Riemannian manifold of con-
stant curvature c and M G Si(0, W) n £3(0, W) , a ^ 0 . 7Vu?« c > 0 and M is
isoparametric.

THEOREM ([4]). — LetM G S I ( 0 , S 4 ) nS 3 (a ,S 4 ) such that the second fun-
damental form of M is never zero then M is either the isoparametric Clifford torus
S1 xS2 or M is boundary ofthe tube ofa minimally immersed 2-dimensional E C S4 .

Rrom a compact minimal surface in S4 one may construct a hypersurface
M E G 5 I ( 0 , S4) n 53(0, S4) . This involves mapping the unit normal sphère bundle
of the minimal surface of S4 , back into S4 in the natural way, This process works only
if the normal curvature Kx of E is nowhere zero. By a resuit or Tribuzy and Guadalupe
[7] E ^ S2 . (cf [41 [16]).

The following resuit is due to Terng and Peng.

THEOREM ([15]). — Let M G 5 I ( 0 , 5 4 ) n 52(a,54) such that the principal
curvatures are distinct. Then M is isoparametric.

In this note we will consider immersions of M into W = Q4(c) where Q4(c)
stands for H4 , R4 or S4 . We will prove the following two theorems.

THEOREM 1. — Let M e S\(H,Q4) n £2(0, Q4) with distinct principal cur-
vatures and non-negative scalar curvature K . Then K = 0 and M is isoparametric.
In particular c = 1 and M is one of the hypersurfaces in the isoparametric family
obtainedform Cartons example.

THEOREM 2. — Let M e S2(H, Q4) n S^(K, Q4) with K / 0 , non-negative
scalar curvature and distinct principal curvatures. Then C = 1 , K = 0 and M is one
isoparametric hypersurface in Cartan's family.

Theorem 1 is a partial answer to the following question.

QUESTION. — LetCbe the isoparametric hypersurfaces of&.Is S\(H, S4) n
ic, S4) = C ?

If the scalar curvature is non-negative the answer to the above question is positive.
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The condition on the principal curvatures is superfluous, {cf. [5]). The case in which the
scalar curvature is a négative constant still remains to be cheked. This will be done in
a succeding paper. A more gênerai problem would be to détermine the set

When n = 3 a calculation shows that the scalar curvature of a hypersurface M e
nfŒl5i(aô S4) is given by K = 0 , K = 3 + [H2 ± H(S + H2)1*2]/* or « = 6 + 2H2/3
where H = a\ is the mean curvature of M . The picture shows the possible values for
the mean curvature (H) and scalar curvature (K) when the dimension is two or three.

n=2

H

n=3 ,

In §1 we give an intégral formula involving the mean (H\ scalar (K) and Gauss-
Kronecker (K) curvatures for immersed hypersurfaces M C Q4(c) . The proofs of
theorem 1 and 2 are given in §2 and §3 respectively.

1. A formula involving the curvatures

In this section we will prove an intégral formula involving the curvature invariants
H,K,K for immersed hypersurfaces M c Q4(c) with distinct principal curvatures. For
this we choose a local orthonormal frame field tA in Q4(c) such that when restricted to
M, ^1,^2, h give principal directions. We dénote by 0A the dual coframe and write the
structure équations of Q4(c) as

= 0 (1)

(2)dB AS = - A 6B

form
In genera! we have 04, = Z) h{j9j , hij = hji. In our case the second fundamental

h = (3)
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is diagonalized, Le. h^ — At6tJ .

As in [5] we let tp be the exterior 2-form on M given by

tp = 0,2 A 03 - Qn A 02 + 023 A 0i . (4)

Taking exterior derivative of (4) we obtain

dtp = dOn A 03 - d0i3 A 02 + c/023 A 0i - 0 Î 2 A <f03 + 013 A d62 - 023 A <f0i

= - [ 0 i3 A 032 - (c + AÏ A2)0i A 02] A 03 + [0 ï 2 A 023 - ( c+ AiA3)0i A 03] A 02

- [021 A 0i3 - (c + A2A3)02 A 03] A 0i + [0i2 A [03i A 0i + 032 A 02]

- 013 A [021 A 0i + 023 A 03] + 023 A [012 A 02 + 013 A 03]

After the simplifications we obtain

dtp = ^ 0 i A 02 A 03 + 013 A 032 A 03 + 012 A 032 A 02 + 021 A 0 Î 3 A 0i (5)

We will now compute the right hand side of (5) in ternis of H,K,K . For this we
need the covariant derivative, Dh , of h . Recall that the covariant derivatives hiik of
h are given by

^ 2 imQmj - 2 ^ hmj0mi (6)

Exterior differentiating équation (6) we obtain

0 i = O . (7)

Irom équation (7) and the symmetry of h we conclude that the covariant derivatives
hijk are symmetrie in any two of their indices. Observe that in our case hij — At-5tj .
Therefore

(8)

Equivalently
(9)

If i JE j we obtain
hijk = (hij - hiïWijVà (10)

this gives

Using équations (9) and (11) we will compute the exterior derivative of tp . Erom
(5), (11) and the symmetry of h^k we obtain

K 1
d<p = - 0 , A02A03 + - r—TJ r^[ftl3î01+^12302] A [^32101+^32202] A 03

2 (A3-A1XA2-A3)

[/ll2101+/ll2303] A [/l32101+^32203] A 02 (12)
(A2-A1KA2-A3)

- — r-"
(A1-A2KA3-A1)



The geomeiry of closed hypersurfaces 113

Let us dénote by dM the volume form 8\ A Q% A Ö3 and by W the product
^* "~ ^>) • With this notation we have

dtp = adM (13)

where

= 2 + ï^?—[^113^223 - ^123] + « ? 1^112^332 - ^12

(14)

« , A 2 - Ai Ai - A3 L , A3 - A 2 L ,
= X + Î7F—«113/1223 + f7?—«112«332 + 7ZZ A*22l/l331 .

2 W W W
Recall that the principal curvatures Aj , i — 1,2,3 satisfy the polynomial équation

p(A, x) = [J(A — Aj) = 0 , x 6 M . In our case

p(X - x) = A3 - iïA2 + ̂ ^ A - ÜT . (15)

Differentiating the équation p(Aj,x) = 0 , i = 1,2,3 we obtain

- a i (16)

i A,-dic + dü: . (17)

This gives the following identities :

(Ai - A2XA1 - A3WA1 = ai (18)

(19)

(20)

An easy computation shows that

a = \ + T^Ia i^)a2(^3) + ai(«2)as02) + a 2(^)a 3^i)] . (21)

Given p G M w e may regard the second fundamental form hp(v, w) as a linear
map A : TPM —• TPM given by

h(ViW)=(A{v),w). (22)

We then consider the symmetrie operator L given by

L = ^(H2 - 5 ) / - ÜTA + A2 . (23)

Where I is the identity operator. The operator L is diagonalizable with respect to the
orthonormal frame field ^1,^2^3 • lts associated matrix is the following

/A2A3 0 0 \
L* 0 A,A3 0 (24)

V 0 0 AiA2/
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A straightforward computation gives

+ y {Vtf, V/c) + S{VH, VK) - f (VK, VÜT) (26)

Since M is compact without boundary we apply Stokes's theorem to obtain

/ .
d<p=O (27)

M

This gives the following

THEOREM. — Let M3 c Q4(c) be a closed immersed 3-manifold in a space
form Q4(c) . Suppose M is orientable and its principal curvatures are ail distinct on
M . Then we have the following intégral formula

0 = ƒ { i + w * [<L2( V F } ' Vi7)+\ {L(VK)' VK) " f <
+ y (Vif, Vie) + 5{ Vif, Vif) - y ( V«, V/l)

+ \VK\2 + (A(Viï), A(VAO) + J(A(VK), VK)] )dV .

2. Proof of theorem 1

With the assumptions of theorem 1 we have H and K constant. Therefore the
intégral formula of §1 becomes

Since K ^ 0 by assumption, then K = 0 and |VÜT| = 0 . Therefore M is a scalar
flat isoparametric hypersurface. It is well known {cf. [14]) that if c < 0 the number of
distinct principal curvatures of an isoparametric hypersurface in Q*(c) is < 2 . We may
conclude that c = 1 . The only possibility left is that M be one of the hypersurfaces in
the isoparametric family obtained from Cartan's example.



The geometry of closed hypersurfaces 115

3. Proof of theorem 2

In theorem 2 we assume that K and K are constant. Therefore applying the intégral
formula of §1 we get

0 = L t ï + w
= ƒ ( f + Ŵ ) )dV .

Since K ̂  0 and /f ^ 0 we obtain that K = 0 and V # = 0 . Then M is isoparametric
and the theorem follows as in the proof of theorem 1.
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