SÉminaire de Théorie SPECTRALE ET GÉOMÉTRIE

Sebastião de Almeida
Fabiano Brito
\section*{The geometry of closed hypersurfaces}
Séminaire de Théorie spectrale et géométrie, tome 6 (1987-1988), p. 109-116
http://www.numdam.org/item?id=TSG_1987-1988_6_109_0

© Séminaire de Théorie spectrale et géométrie (Chambéry-Grenoble), 1987-1988, tous droits réservés.

L'accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE GEOMETRY OF CLOSED HYPERSURFACES

by Sebastião de ALMEIDA \& Fabiano BRITO

0. Introduction

Let M be an oriented hypersurface in a ($n+1$)-dimensional Riemannian manifold W We denote by $\lambda_{1}, . \quad \lambda_{n}$ the principal curvatures at a point $p \in M$. The r-th curvature κ_{r} of M at the point p is defined by

$$
\kappa_{r}=\sum_{i_{1}<\cdots<i_{r}} \lambda_{i_{1}} \cdots \lambda_{i_{r}} . r=1, \ldots, n .
$$

For a given real number a we consider the class of closed hypersurfaces

$$
\mathcal{S}_{r}(a, W)=\left\{M \subset W: \kappa_{r} \equiv a\right\}
$$

and denote by $\mathcal{S}_{r}^{*}(a . W)$. Curvature properties of closed hypersurfaces have been studied by several authors during the last year. From the work of Hsiung [9], Aleksandrov [1] and Ros [17] we know that if $M \in \mathcal{S}_{i}^{*}\left(a, \mathbf{R}^{n+1}\right), \imath \in\{1,2, n\}$, then M is an embedded sphere. Hsiang, Teng and Yu [8] and Wente [18], constructed examples showing that $\mathcal{S}_{1}^{*}\left(a, \mathbf{R}^{n+1}\right) \varsubsetneqq \mathcal{S}_{1}\left(a, \mathbf{R}^{n+1}\right)$ when $n=2 k-1$ and $n=2$ respectively. Obviously $\mathcal{S}_{1}\left(0, \mathbf{R}^{n+1}\right)=\emptyset$. When $W=S^{n+1}$ the situation is quite different. For example for each integer $g \geqslant 0$, there is a compact surface of genus g in $S_{i}^{*}\left(0, S^{3}\right)$, and if g is not prime this embedded surface is not unique. On the other hand given $M \in \mathcal{S}_{1}^{*}\left(0, S^{3}\right)$ there exists a diffeomorphism $f: S^{3} \rightarrow S^{3}$ such that $M=\Sigma_{g}$ where Σ_{g} is a standardly embedded surface in S^{3} (cf. [11], [12]). This unknottedness result was first proved by Lawson [12] assuming only that the 3 -sphere S^{3} has a positive Ricci curvature metric. The unknottedness result was extended to metrics of positive scalar curvature ($c f$. [3], [131). Given any sequence of minimal surfaces $\Sigma, \in \mathcal{S}_{1}^{*}\left(0, S^{3}\right), j=1, \ldots, m$ we take connected sum at tiny disks away from the surface to produce a minimal embedding

$$
\Sigma_{1} \coprod \cdot \coprod \Sigma_{m} \in S_{1}^{*}\left(0, S^{3} \# \cdots \# S^{3}\right)
$$

This produces disjointed minimal surfaces in a 3 -sphere of positive scalar curvature. This is the only possibility topologically(cf. [3]). Chern, do Carmo, Kokayashy [6], Lawson [10], proved that if

$$
M \in \mathcal{S}_{1}\left(0, S^{n+1}\right) \cap \mathcal{S}_{2}\left(a, S^{n+1}\right)
$$

with $a \geqslant-n / 2$, then up to rotations of S^{n+1}, M is one of the minimal products of spheres $S^{k}(\sqrt{k / n}) \times S^{n-k}(\sqrt{(n-k) / n}), k=0, \ldots,[n / 2]$. These products belong to $\cap \mathcal{S}_{i}\left(a_{i}, S^{n+1}\right)$. They are isoparametric hypersurfaces. For $n=3$ we have the following results.

Theorem ([2]). - Let $M \in \mathcal{S}_{1}\left(0, S^{4}\right) \cap \mathcal{S}_{2}\left(a, S^{4}\right)$ such that $\kappa_{3} \neq 0$. Then up to rotations of S^{4}, M is the product $S^{1} \times S^{2}$ embedded in S^{4}.

Theorem ([4]). - Let W be a 4-dimensional Riemannian manifold of constant curvature c and $M \in \mathcal{S}_{1}(0, W) \cap \mathcal{S}_{3}(a, W), a \neq 0$. Then $c>0$ and M is isoparametric.

Theorem ([4]). - LetM $\in \mathcal{S}_{1}\left(0, S^{4}\right) \cap \mathcal{S}_{3}\left(a, S^{4}\right)$ such that the second fundamental form of M is never zero then M is either the isoparametric Clifford torus $S^{1} \times S^{2}$ or M is boundary of the tube of a minimally immersed 2-dimensional $\Sigma \subset S^{4}$.

From a compact minimal surface in S^{4} one may construct a hypersurface $M_{\Sigma} \in \mathcal{S}_{1}\left(0, S^{4}\right) \cap \mathcal{S}_{3}\left(0, S^{4}\right)$. This involves mapping the unit normal sphere bundle of the minimal surface of S^{4}, back into S^{4} in the natural way. This process works only if the normal curvature K^{\perp} of Σ is nowhere zero. By a result or Tribuzy and Guadalupe [7] $\Sigma \cong S^{2}$. (cf. [4], [16]).

The following result is due to Terng and Peng.
Theorem ([15]). - Let $M \in \mathcal{S}_{1}\left(0, S^{4}\right) \cap \mathcal{S}_{2}\left(a, S^{4}\right)$ such that the principal curvatures are distinct. Then M is isoparametric.

In this note we will consider immersions of M into $W=Q^{4}(c)$ where $Q^{4}(c)$ stands for $\mathbf{H}^{4}, \mathbf{R}^{4}$ or S^{4}. We will prove the following two theorems.

Theorem 1. - Let $M \in \mathcal{S}_{1}\left(H, Q^{4}\right) \cap \mathcal{S}_{2}\left(a, Q^{4}\right)$ with distinct principal curvatures and non-negative scalar curvature κ. Then $\kappa \equiv 0$ and M is isoparametric. In particular $c=1$ and M is one of the hypersurfaces in the isoparametric family obtained form Cartan's example.

Theorem 2. - Let $M \in \mathcal{S}_{2}\left(H, Q^{4}\right) \cap \mathcal{S}_{3}\left(K, Q^{4}\right)$ with $K \neq 0$, non-negative scalar curvature and distinct principal curvatures. Then $c=1, \kappa \equiv 0$ and M is one isoparametric hypersurface in Cartan's family.

Theorem 1 is a partial answer to the following question.
Question. - Let \mathcal{C} be the isoparametric hypersurfaces of S^{4}. Is $\mathcal{S}_{1}\left(H, S^{4}\right) \cap$ $\mathcal{S}_{2}\left(\kappa, S^{4}\right)=\mathcal{C}$?

If the scalar curvature is non-negative the answer to the above question is positive.

The condition on the principal curvatures is superfluous. (cf. [5]). The case in which the scalar curvature is a negative constant still remains to be cheked. This will be done in a succeding paper. A more general problem would be to determine the set

$$
\mathcal{S}_{1}\left(H, S^{n+1}\right) \cap \mathcal{S}_{2}\left(\kappa, S^{n+1}\right)
$$

When $n=3$ a calculation shows that the scalar curvature of a hypersurface $M \in$ $\cap_{i=1}^{3} \mathcal{S}_{i}\left(a_{i}, S^{4}\right)$ is given by $\kappa=0, \kappa=3+\left[H^{2} \pm H\left(8+H^{2}\right)^{1 / 2}\right] / 4$ or $\kappa=6+2 H^{2} / 3$ where $H=a_{1}$ is the mean curvature of M. The picture shows the possible values for the mean curvature (H) and scalar curvature (κ) when the dimension is two or three.

$n=2$

$n=3, \kappa \geqslant 0$

In §1 we give an integral formula involving the mean (H), scalar (κ) and GaussKronecker (K) curvatures for immersed hypersurfaces $M \subset Q^{4}(c)$. The proofs of theorem 1 and 2 are given in $\S 2$ and $\S 3$ respectively.

1. A formula involving the curvatures

In this section we will prove an integral formula involving the curvature invariants H, κ, K for immersed hypersurfaces $M \subset Q^{4}(c)$ with distinct principal curvatures. For this we choose a local orthonormal frame field ℓ_{A} in $Q^{4}(c)$ such that when restricted to $M, \ell_{1}, \ell_{2}, \ell_{3}$ give principal directions. We denote by θ_{A} the dual coframe and write the structure equations of $Q^{4}(c)$ as

$$
\begin{align*}
d \theta_{A} & =-\sum \theta_{A B} \wedge \theta_{B} \quad, \quad \theta_{A B}+\theta_{B A}=0 \tag{1}\\
d \theta_{A B} & =-\sum_{c} \theta_{A C} \wedge \theta_{C B}+c \theta_{A} \wedge \theta_{B} \tag{2}
\end{align*}
$$

In general we have $\theta_{4 i}=\sum h_{i j} \theta_{j}, h_{i j}=h_{j i}$. In our case the second fundamental form

$$
\begin{equation*}
h=\sum h_{i j} \theta_{i} \theta_{j} \tag{3}
\end{equation*}
$$

is diagonalized, i.e. $h_{i j}=\lambda_{i} \delta_{i j}$.
As in [5] we let φ be the exterior 2-form on M given by

$$
\begin{equation*}
\varphi=\theta_{12} \wedge \theta_{3}-\theta_{13} \wedge \theta_{2}+\theta_{23} \wedge \theta_{1} \tag{4}
\end{equation*}
$$

Taking exterior derivative of (4) we obtain

$$
\begin{aligned}
d \varphi= & d \theta_{12} \wedge \theta_{3}-d \theta_{13} \wedge \theta_{2}+d \theta_{23} \wedge \theta_{1}-\theta_{12} \wedge d \theta_{3}+\theta_{13} \wedge d \theta_{2}-\theta_{23} \wedge d \theta_{1} \\
= & -\left[\theta_{13} \wedge \theta_{32}-\left(c+\lambda_{1} \lambda_{2}\right) \theta_{1} \wedge \theta_{2}\right] \wedge \theta_{3}+\left[\theta_{12} \wedge \theta_{23}-\left(c+\lambda_{1} \lambda_{3}\right) \theta_{1} \wedge \theta_{3}\right] \wedge \theta_{2} \\
& -\left[\theta_{21} \wedge \theta_{13}-\left(c+\lambda_{2} \lambda_{3}\right) \theta_{2} \wedge \theta_{3}\right] \wedge \theta_{1}+\left[\theta_{12} \wedge\left[\theta_{31} \wedge \theta_{1}+\theta_{32} \wedge \theta_{2}\right]\right. \\
& -\theta_{13} \wedge\left[\theta_{21} \wedge \theta_{1}+\theta_{23} \wedge \theta_{3}\right]+\theta_{23} \wedge\left[\theta_{12} \wedge \theta_{2}+\theta_{13} \wedge \theta_{3}\right]
\end{aligned}
$$

After the simplifications we obtain

$$
\begin{equation*}
d \varphi=\frac{\kappa}{2} \theta_{1} \wedge \theta_{2} \wedge \theta_{3}+\theta_{13} \wedge \theta_{32} \wedge \theta_{3}+\theta_{12} \wedge \theta_{32} \wedge \theta_{2}+\theta_{21} \wedge \theta_{13} \wedge \theta_{1} \tag{5}
\end{equation*}
$$

We will now compute the right hand side of (5) in terms of H, κ, K. For this we need the covariant derivative, $D h$, of h. Recall that the covariant derivatives $h_{i j k}$ of h are given by

$$
\begin{equation*}
\sum h_{i j k} \theta_{k}=d h_{i j}-\sum_{m} h_{i m} \theta_{m j}-\sum h_{m j} \theta_{m i} \tag{6}
\end{equation*}
$$

Exterior differentiating equation (6) we obtain

$$
\begin{equation*}
\sum h_{i j k} \theta_{k} \wedge \theta_{j}=0 \tag{7}
\end{equation*}
$$

From equation (7) and the symmetry of h we conclude that the covariant derivatives $h_{i j k}$ are symmetric in any two of their indices. Observe that in our case $h_{i j}=\lambda_{i} \delta_{i j}$. Therefore

$$
\begin{equation*}
h_{i i k}=d h_{i i}\left(\ell_{k}\right) \tag{8}
\end{equation*}
$$

Equivalently

$$
\begin{equation*}
h_{i i k}=\left\langle\nabla \lambda_{i}, \ell_{k}\right\rangle \tag{9}
\end{equation*}
$$

If $i \neq j$ we obtain

$$
\begin{equation*}
h_{i j k}=\left(h_{i j}-h_{i i}\right) \theta_{i j}\left(\ell_{k}\right) \tag{10}
\end{equation*}
$$

this gives

$$
\begin{equation*}
\theta_{i j}=\sum \frac{h_{i j k}}{\lambda_{j}-\lambda_{i}} \theta_{k} \tag{11}
\end{equation*}
$$

Using equations (9) and (11) we will compute the exterior derivative of φ. From (5), (11) and the symmetry of $h_{i j k}$ we obtain

$$
\begin{align*}
d \varphi=\frac{\kappa}{2} \theta_{1} \wedge \theta_{2} \wedge \theta_{3} & +\frac{1}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)}\left[h_{131} \theta_{1}+h_{123} \theta_{2}\right] \wedge\left[h_{321} \theta_{1}+h_{322} \theta_{2}\right] \wedge \theta_{3} \\
& +\frac{1}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)}\left[h_{121} \theta_{1}+h_{123} \theta_{3}\right] \wedge\left[h_{321} \theta_{1}+h_{322} \theta_{3}\right] \wedge \theta_{2} \tag{12}\\
& +\frac{1}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{1}\right)}\left[h_{212} \theta_{2}+h_{213} \theta_{3}\right] \wedge\left[h_{132} \theta_{2}+h_{133} \theta_{3}\right] \wedge \theta_{1}
\end{align*}
$$

Let us denote by $d M$ the volume form $\theta_{1} \wedge \theta_{2} \wedge \theta_{3}$ and by W the product $\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)$. With this notation we have

$$
\begin{equation*}
d \varphi=a d M \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
a= & \frac{\kappa}{2}+\frac{\lambda_{2}-\lambda_{1}}{W}\left[h_{113} h_{223}-h_{123}^{2}\right]+\frac{\lambda_{1}-\lambda_{3}}{W}\left[h_{112} h_{332}-h_{123}^{2}\right] \\
& +\frac{\lambda_{3}-\lambda_{2}}{W}\left[h_{221} h_{331}-h_{123}^{2}\right] \tag{14}\\
= & \frac{\kappa}{2}+\frac{\lambda_{2}-\lambda_{1}}{W} h_{113} h_{223}+\frac{\lambda_{1}-\lambda_{3}}{W} h_{112} h_{332}+\frac{\lambda_{3}-\lambda_{2}}{W} h_{221} h_{331} .
\end{align*}
$$

Recall that the principal curvatures $\lambda_{i}, i=1,2,3$ satisfy the polynomial equation $p(\lambda, x)=\Pi\left(\lambda-\lambda_{i}\right)=0, x \in M$. In our case

$$
\begin{equation*}
p(\lambda-x)=\lambda^{3}-H \lambda^{2}+\frac{\kappa-6 c}{2} \lambda-K \tag{15}
\end{equation*}
$$

Differentiating the equation $p\left(\lambda_{i}, x\right)=0, i=1,2,3$ we obtain

$$
\begin{align*}
0 & =\frac{\partial P}{\partial \lambda}\left(\lambda_{i}, x\right) d \lambda_{i}-\alpha_{i} \tag{16}\\
\alpha_{i} & =\lambda_{i}^{2} d H-\frac{1}{2} \lambda_{i} d \kappa+d K \tag{17}
\end{align*}
$$

This gives the following identities :

$$
\begin{align*}
& \left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right) d \lambda_{1}=\alpha_{1} \tag{18}\\
& \left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right) d \lambda_{2}=\alpha_{2} \tag{19}\\
& \left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right) d \lambda_{3}=\alpha_{3} \tag{20}
\end{align*}
$$

An easy computation shows that

$$
\begin{equation*}
a=\frac{\kappa}{2}+\frac{1}{W^{2}}\left[\alpha_{1}\left(\ell_{3}\right) \alpha_{2}\left(\ell_{3}\right)+\alpha_{1}\left(\ell_{2}\right) \alpha_{3}\left(\ell_{2}\right)+\alpha_{2}\left(\ell_{1}\right) \alpha_{3}\left(\ell_{1}\right)\right] \tag{21}
\end{equation*}
$$

Given $p \in M$ we may regard the second fundamental form $h_{p}(v, w)$ as a linear $\operatorname{map} A: T_{p} M \rightarrow T_{p} M$ given by

$$
\begin{equation*}
h(v, w)=\langle A(v), w\rangle \tag{22}
\end{equation*}
$$

We then consider the symmetric operator L given by

$$
\begin{equation*}
L=\frac{1}{2}\left(H^{2}-S\right) I-H A+A^{2} \tag{23}
\end{equation*}
$$

Where I is the identity operator. The operator L is diagonalizable with respect to the orthonormal frame field $\ell_{1}, \ell_{2}, \ell_{3}$. Its associated matrix is the following

$$
L \cong\left(\begin{array}{ccc}
\lambda_{2} \lambda_{3} & 0 & 0 \tag{24}\\
0 & \lambda_{1} \lambda_{3} & 0 \\
0 & 0 & \lambda_{1} \lambda_{2}
\end{array}\right)
$$

A straightforward computation gives

$$
\begin{align*}
a=\frac{\kappa}{2} & +\frac{1}{W^{2}}\left[\langle L(\nabla H), L(\nabla H)\rangle+\frac{1}{4}\langle L(\nabla \kappa), \nabla \kappa\rangle-\frac{H}{2}\langle L(\nabla H), L(\nabla \kappa)\rangle\right. \\
& +\frac{K}{2}\langle\nabla H, \nabla \kappa\rangle+S\langle\nabla H, \nabla K\rangle-\frac{H}{2}\langle\nabla \kappa, \nabla K\rangle \tag{26}\\
& \left.+|\nabla K|^{2}-\langle A(\nabla H), A(\nabla K)\rangle+\frac{1}{2}\langle A(\nabla \kappa), \nabla K\rangle\right] .
\end{align*}
$$

Since M is compact without boundary we apply Stokes's theorem to obtain

$$
\begin{equation*}
\int_{M} d \varphi=0 \tag{27}
\end{equation*}
$$

This gives the following
Theorem. - Let $M^{3} \subset Q^{4}(c)$ be a closed immersed 3-manifold in a space form $Q^{4}(c)$. Suppose M is orientable and its principal curvatures are all distinct on M. Then we have the following integral formula

$$
\begin{aligned}
0=\int\left\{\frac{\kappa}{2}\right. & +\frac{1}{W^{2}}\left[\left\langle L^{2}(\nabla H), \nabla H\right\rangle+\frac{1}{4}\langle L(\nabla \kappa), \nabla \kappa\rangle-\frac{H}{2}\left\langle L^{2}(\nabla H), \nabla \kappa\right\rangle\right. \\
& +\frac{K}{2}\langle\nabla H, \nabla \kappa\rangle+S\langle\nabla H, \nabla K\rangle-\frac{H}{2}\langle\nabla \kappa, \nabla K\rangle \\
& \left.\left.+|\nabla K|^{2}+\langle A(\nabla H), A(\nabla K)\rangle+\frac{1}{2}\langle A(\nabla \kappa), \nabla K\rangle\right]\right\} d V
\end{aligned}
$$

2. Proof of theorem 1

With the assumptions of theorem 1 we have H and κ constant. Therefore the integral formula of $\S 1$ becomes

$$
0=\int\left\{\frac{\kappa}{2}+\frac{1}{W^{2}}|\nabla K|^{2}\right\} d V
$$

Since $\kappa \geqslant 0$ by assumption, then $\kappa \equiv 0$ and $|\nabla K|=0$. Therefore M is a scalar flat isoparametric hypersurface. It is well known (cf. [14]) that if $c \leqslant 0$ the number of distinct principal curvatures of an isoparametric hypersurface in $Q^{4}(c)$ is $\leqslant 2$. We may conclude that $c=1$. The only possibility left is that M be one of the hypersurfaces in the isoparametric family obtained from Cartan's example.

3. Proof of theorem 2

In theorem 2 we assume that K and κ are constant. Therefore applying the integral formula of $\S 1$ we get

$$
\begin{aligned}
0 & =\int_{M}\left\{\frac{\kappa}{2}+\frac{1}{W^{2}}\langle L(\nabla H), L(\nabla H)\rangle\right\} d V \\
& =\int\left\{\frac{\kappa}{2}+\frac{1}{W^{2}}\left[\lambda_{1}^{2} \lambda_{2}^{2}\left(\ell_{3} H\right)^{2}+\lambda_{2}^{2} \lambda_{3}^{2}\left(\ell_{1} H\right)^{2}+\lambda_{3}^{2} \lambda_{1}^{2}\left(\ell_{2} H\right)^{2}\right]\right\} d V
\end{aligned}
$$

Since $\kappa \geqslant 0$ and $K \neq 0$ we obtain that $\kappa \equiv 0$ and $\nabla H \equiv 0$. Then M is isoparametric and the theorem follows as in the proof of theorem 1.

References

[1] ALEKSANDROV A.D. - Uniqueness theorems for surfaces in the large, Vestnik Leningrad Univ. Math., 13 (1958), 5-8.
[2] ALMEIDA S.C. - Minimal hypersurfaces of S^{4} with non-zero Gauss-Kronecker curvature, Bol. Soc. Bras. Math. , $14 \mathrm{n}^{\circ} 2$ (1983), 137-146.
[3] Almeida S.C. - Minimal hypersurfaces of a positive scalar curvature manifold, Math. Z., 190 (1975), 73-82.
[4] Almeida S.C. and Brito F.G.B. - Minimal hypersurfaces of S^{4} with constant GaussKronecker curvature, Math.Z., 195 (1987), 99-107.
[5] BRITO F.G. - Uma restriçāo para a curvatura escalar de hipersuperficies de \boldsymbol{S}^{4} com curvatura media constante, IME-USP (Livre Docencia).
[6] Chern s.s., do Carmo m., Kobayashi s. - Minimal submanifolds of the sphere with second fundamental form of constant length, Functional analysis and related fields ed. F. Browder. Berlin Heidelberg New York, Springer, 1970.
[7] GUADALUPE I.V., TribuZY R. - Minimal immersions of surfaces into space forms, Rendiconti del Seminario Mathematico della Universita di Padova, 73 (1985), 1-13.
[8] Hsiang W.Y., TENG Z.H., YU W.C. - New examples of constant mean curvature immersions of $(2 k-1)$ spheres into Euclidean $2 k$-space, Ann. of Math., 117 (1983), 609-625.
[9] HSIUNG C.C. - Some integral formulas for closed hypersurfaces, Math. Scand., 2 (1954), 286294.
[10] LAWSON H.B., JR. - Local rigidity theorems for minimal hypersurfaces, Ann. of Math, 89 (1969), 187-197.
[11] LAWSON H.B., JR. - Complete minimal surfaces in S^{3}, Ann. of Math., 92 (2)(1970), 335-374.
[12] LAWSON H.B., JR. - The unknottedness of minimal embeddings, Invent. Math., 11 (1970), 183-187.
[13] MEEKS W., SimON L., YaU S.T.. - Embedded minimal surfaces, exotic spheres, and manifolds of postiive Ricci curvature, Ann. of Math., 116 (1982), 621-659.
[14] NOMIZU K. - Elie Cartan's work on isoparametric families of hypersurfaces, Proceedings of Symposia in Pure Mathematics, 27, $1975 \cdot$
[15] Peng C.K., TERNG C.L. - The scalar curvature of minimal hypersurfaces in spheres, Math. Ann., 266 (1983), 105-113.
[16] RAMANATHAN J. - Minimal hypersurfaces in S^{4} with vanishing Gauss-Kronecker curvature, To appear.
[17] ROS A. - Compact hypersurfaces with constant scalar curvature and a congruence theorem, J. Differential Geometry , 27 (1988), 215-220.
[18] WENTE H.C. - Counterexample to a conjecture of H. Hopf, Pacific J. Math., 121 (1986), 193-243.

