Séminaire de Théorie spectrale et géométrie

LAURENT GUILLOPÉ

Introduction aux quasicristaux

Séminaire de Théorie spectrale et géométrie, tome 3 (1984-1985), exp. nº 8, p. 1-21 <<u>http://www.numdam.org/item?id=TSG_1984-1985_3_A8_0></u>

© Séminaire de Théorie spectrale et géométrie (Chambéry-Grenoble), 1984-1985, tous droits réservés.

L'accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ 1984-1985

INTRODUCTION AUX QUASICRISTAUX par Laurent GUILLOPE

L'origine de cet exposé est un article du Monde ([5], voir aussi [15,16]) "L'interdit du pentagone" relatant "la découverte d'un cristal paradoxal" Son mystère nous motiva suffisamment pour tenter de cerner le paradoxe . pourquoi la symétrie d'ordre 5 était-elle bannie du monde des cristallographes, quelles structures nouvelles étaient proposées, comment comprendre le néologisme introduit de "quasicristal" ?

En cristallographie classique, toute structure cristalline macroscopique (SC) provient d'une distribution en réseau (&c) de la matière à l'échelle microscopique des constituants atomiques. Cette structure (&c) est étudiée via des expériences de diffraction, dont nous exposons, pour commencer, le principe général ([12]) : les figures de diffraction résultent des interférences des ondes diffusées par chacun des sites de (&c). L'amplitude de diffusion globale s'exprime en terme de transformée de Fourier et d'après la formule de Poisson, son support est lié au réseau réciproque de (&c). Ainsi les symétries des figures de diffraction reflètent celles ae (&c).

Les figures de diffraction obtenues par Schechtman-Blech-Gratias-Cahn [10] à partir d'un certain alliage d'aluminium-manganèse présentent sans conteste des symétries d'ordre 5, ce qui est contradictoire avec la théorie classique comme nous le voyons dans le second paragraphe.

Les cristallographes se doivent donc de trouver de nouveaux

modèles. Les pavages de Penrose, qui présentent des symétries locales d'ordre 5, avaient déjà attiré l'attention à propos de cristaux d'or ([8]). Nous les présentons brièvement, à la manière originale i.e. comme des puzzles ordinaires. Après avoir établi qu'on peut réellement paver le plan tout entier avec les deux types de pavés (un losange fin F de plus petit angle $\pi/5$, un losange gros G de plus petit angle $2\pi/5$) conformément à certaines règles, on montre que tout pavage a, asymptotiquement, une proportion de $\frac{1}{2}$ pavés F pour 1 pavé G, où $\frac{1}{2}$ note le nombre d'or $(1+\sqrt{5})/2$. En corollaire aucun pavage de Penrose ne possède deux translations linéairement indépendantes le laissant invariant. En passant notons les pavages de Penrose tridimendionnels ([8]) et les propriétés exotiques des pavages planaires (citées dans [4]).

Le modèle de Duneau-Katz ([2,3]) présenté au §4, permet de générer les pavages de Penrose de manière globale. On se limite à traiter le cas d'une structure unidimensionnelle "quasi-périodique". Le principe général n'est pas difficile à décrire ; la justification des résultats étant malgré tout liée à des problèmes combinatoires et géométriques bien délicats, nous renvoyons aux papiers de Duneau-Katz.

Nous terminons par un calcul de transformée de Fourier $\mathfrak{F}(S)$ de structures discrètes S à la Duneau-Katz. Formellement, ce n'est qu'un exercice utilisant la formule de Poisson et les propriétés des différents produits fonctionnels relativement à la transformation de Fourier : $\mathfrak{F}(S)$ est la somme de masse de Dirac en les points d'un sous-groupe (en général non discret) de type fini. On a ainsi une justification aux appellations ''quasipériodique, quasicristal''. L'étude des convergences en jeu introduit des conditions diophantiennes classiques dans les problèmes quasipériodiques.

Notons pour finir la similarité frappante des figures de diffraction de [10] avec celles obtenues par le calcul des transformées de Fourier de pavages de Penrose ([3], [8]).

J. - FIGURES DE DIFFRACTION

A - DIFFUSION

Soit l'espace E (de dimension n = 3 dans la pratique), de dual H et notons $\langle \cdot \rangle$ le produit de dualité entre E et H. Si E est muni d'une structure euclidienne on peut identifier E et H, ce qu'on évitera néanmoins de faire dans cet exposé. On notera C le point origine standard de E et pour le point courant M de l'espace affine, r notera le vecteur OM.

Etant donné un échantillon de matière \mathcal{M} , d'étendue macroscopique finie et dont certaines propriétés macroscopiques laissent supposer une structure microscopique (i.e. à l'échelle atomique, de l'ordre de l'angström) régulière, on se propose par une expérience de diffraction d'étudier cette dernière.

A cet effet, on envoie sur \mathcal{N}_{i} un faisceau monochromatique d'ondes électromagnétiques. Vu la dualité ondes-corpuscules on peut dire de manière équivalente qu'on envoie un faisceau de particules d'un certain type (photons, électrons, neutrons...) d'énergie $E = hv_0 = hc/\lambda_0$ (h constante de Planck, c vitesse de la lumière, v_0 fréquence, λ_0 longueur d'onde) et d'impulsion p_0 ($|p_0| = h/\lambda_0$). On notera \varkappa_0 le vecteur d'onde $\varkappa_0 = 2\pi p_0/h$.

Ce faisceau est décrit par l'onde exponentielle

(1.1)
$$A_{0} \exp\left[i(2\pi h^{-1} \langle p_{0}, r \rangle + \varphi_{0})\right] = A_{0} \exp\left[i(\langle n_{0}, r \rangle + \varphi_{0})\right]$$

En chaque point M_1 de la structure microscopique \mathcal{M} (supposée se composer d'un ensemble discret L de centres diffuseurs), l'onde (1.1) va diffuser i.e. créer pour chaque vecteur d'onde \mathcal{M} , une onde

$$A_0^{f(M_1, \varkappa, \varkappa_0)} \exp(\langle \varkappa, r \rangle + \varphi_1)$$

Le facteur $f(M_1, \varkappa, \varkappa_0)$ est lié aux caractéristiques (charge, masse...)

VIII.4

des particules en présence dans le choc, on le suppose indépendant du site M_1 de L (i.e. L homogène). La phase φ_1 est déterminée par les conditions de continuité $\langle \varkappa, r_1 \rangle + \varphi_1 = \langle \varkappa_0, r_1 \rangle + \varphi_0$. Soit $\varphi_1 = \langle \varkappa_0 - \varkappa, r_1 \rangle + \varphi_0$. Ainsi l'onde diffusée par \mathcal{M} a une composante monochromatique de vecteur d'onde \varkappa du type $A_{\text{diff}}(\varkappa) \exp i(\langle \varkappa - \varkappa_0, r \rangle + \varphi_0)$ d'amplitude

(1.2)
$$A_{\text{diff}}(\varkappa) = A_0^{f}(\varkappa, \varkappa_0) \sum_{M \in L} \exp\left[i\langle \varkappa - \varkappa_0, r(M) \rangle\right]$$

B - TRANSFORMEE DE FOURIER

Soit de une mesure de Haar sur E. On définit la transformée de Fourier sur l'espace S(E) des fonctions de Schwartz sur E par (1.3) $f \in S(E)$, $\hat{f}(\eta) = \int_{E} e^{-i\langle \eta, e \rangle} f(e) de$, $\eta \in H$.

On note alors $d\eta$ la mesure de Haar sur H (dite compatible avec de), définie de manière unique, telle que l'on ait la formule de Plancherel

$$\int_{\mathbf{E}} |f(\mathbf{e})|^2 d\mathbf{e} = \int_{\mathbf{H}} |\hat{f}(\eta)|^2 d\eta \quad , \ f \in \mathcal{S}(\mathbf{E}) \ .$$

La transformée de Fourier inverse est alors donnée par

 $\varphi \in \mathbb{S}(H)$, $\check{\varphi}(e) = \int_{H} \varphi(\eta) e^{i \langle e, \eta \rangle} d\eta$, $e \in H$.

Si $E = IR^n = H$ avec coordonnées $(x_1, ..., x_n)$ et si $de = C dx_1 ... dx_n$, on a $d\eta = C^{-1} (2\pi)^{-n} dx_1 ... dx_n$.

On étend la transformée de Fourier à S'(E), espace des distributions tempérées sur E par

$$T \in S'(E)$$
, $\langle \hat{T}, \varphi \rangle = \langle T, \tilde{\varphi} \rangle$, $\varphi \in S(H)$,

où φ est la fonction sur H définie par $\varphi(\eta) = \varphi(-\eta)$, $\eta \in H$. Ce prolongement de la transformée de Fourier est compatible avec (1.3) si on injecte l'espace $L_m^1(E, de)$ des fonctions intégrables à croissance modérée sur E dans S'(E) en associant à $f \in L^1_m(E, de)$ la mesure f(e)de.

Si L est un réseau de E (i.e. un \mathbb{Z} -module libre de rang n engendrant E), le réseau réciproque Λ de L dans H est le réseau Λ défini par

$$\Lambda = \left\{ \lambda \in H \mid \langle \lambda, L \rangle \subset 2\pi \mathbb{Z} \right\}.$$

La transformée de Fourier de la masse de Dirac $\delta(e_0)$ est l'exponentielle $\exp(i\langle e_0, \eta \rangle)$ et on a la formule de Poisson

$$\sum_{\substack{\ell \in \mathbf{L}}} \delta(\ell) = (2\pi)^{-n} \sum_{\lambda \in \Lambda} \delta(\lambda) .$$

C - FIGURES DE DIFFRACTION

En terme de transformée de Fourier, la formule (1.2) se réécrit

$$A_{diff}(n) = A_0 f(n, n_0) \sum_{M \in L} \delta(M) (n - n_0)$$

Supposons, conformément au canon cristallographique, que \mathcal{M} est homogène, infiniment étendu et constitué de centres diffuseurs disposés en un réseau L. On a alors, d'après la formule de Poisson

Le faisceau diffracté, frappant un écran sensible (ε), imprime sur (ε) des taches de diffraction (qui dans ce modèle sont purement ponctuelles, cf. remarque 3) correspondant aux vecteurs d'onde \varkappa du réseau affine $\varkappa_0 + \Lambda$ (figi.a).

En diffraction monochromatique (i.e. seuls les faisceaux de même énergie que le faisceau incident impriment l'écran), les variations de l'orientation du faisceau incident, et de son énergie, permettent d'étudier le réseau Λ . Dans cette situation, il y a toujours une tache de diffraction correspondant au vecteur d'onde incident et aux hautes énergies, la sphère

 $\Sigma_0 = \{ |\kappa| = |\kappa_0| \}$ a une courbure

Remarques

Les grandes énergies correspondent aux petites longueurs d'on-1.1. de. Dans la pratique sont utilisés les rayons X, dont le spectre s'étale de 10^{-2} à 10^{2} Å (neutrons 1.2 Å, électrons 5.10⁻² Å). Rappelons pour mémoire que les distances interatomiques sont de l'ordre de l'angström et que le spectre visible s'étale de 4000 à 7000 Å.

1.2. En fait les centres diffuseurs ne sont pas ponctuels : ils sont constitués par une distribution de particules (noyaux, électrons, ...) représentée par une fonction de densité p. Supposant que les distributions o soient identiques en chaque site, la distribution cristalline est représentée par la convolution

$$\rho * (\sum_{\ell \in \mathbf{L}} \delta(\ell))$$
 dont la transformée de Fourier est $\sum_{\lambda \in \Lambda} \hat{\rho}(\lambda) \delta(\lambda)$.

Le support S de l'amplitude de diffusion n'est pas affecté, au contraire des intensités de cette amplitude aux vecteurs d'onde diffractés (dont S est l'ensemble). Il se peut même que $\hat{\rho}$ s'annule en un point de Λ , créant un phénomene d'extinction sur la figure de diffraction.

L'échantillon de matiere a été supposé infiniment étendu, autre 1.3. hypothèse peu conforme à la réalité physique. Corrigeons-la en introduisant la fonction caractéristique χ de \mathcal{M} . La distribution cristalline

est alors représentée par

de transformée de Fourier

(1.4)
$$\hat{\chi} * [\hat{\rho} \sum_{\lambda \in \Lambda} \delta(\lambda)]$$
.

Le support de (1.4) n'est plus ponctuel. Néanmoins, $\hat{\chi}$ est pratiquement nul en dehors d'un voisinage de l'origine (c'est la décroissance à l' ∞ de la transformée de Fourier d'une fonction intégrable. Si $\mathfrak{M} = \{ |x_i| \le a \}$, on a $\hat{\chi}(\mathfrak{n}_1, ..., \mathfrak{n}_n) = C \prod_{i=1}^n \frac{\sin(\mathfrak{n}_i a/2)}{\mathfrak{n}_i} \}$. Ainsi le support des fonctions d'onde diffusé (1.4) est dispersé autour des sites du réseau réciproque, ce qui correspond à l'observation des taches de diffraction et aux pics de Bragg (maxima locaux des amplitudes de diffusion).

1.4. Si la distribution $\rho_*(\sum_{\ell \in L} \delta(\ell))$ est invariante sous l'action d'une transformation linéaire g (g est une symétrie de la structure cristallographique), sa transformée de Fourier le sera aussi (pour l'action déduite de celle covariante de g sur H). Généralement, on interprete toute symétrie observée dans une expérience de diffraction comme provenant d'une symétrie de la structure. Si g est d'ordre fini (et ce sera le cas lorsque la maille du réseau cristallin contient un nombre fini de particules élémentaires), alors il existe sur E un produit scalaire ginvariant : on est amené à l'étude des sous-groupes discrets d'isométries de E, à quotient compact dont on évoque quelques résultats au paragraphe suivant.

2. - RESEAUX ET GROUPES CRISTALLOGRAPHIQUES

On suppose dans ce paragraphe E^n euclidien et on note $\mathcal{E}(n)$ le groupe des isométries de E. Un groupe cristallographique Γ est un sous-groupe discret de $\mathcal{E}(n)$ tel que E/Γ soit compact.

THEOREME 2.1. (Bieberbach [14]) <u>Il y a en dimension</u> n <u>un nombre fini de groupes cristallographiques</u>, <u>à conjugaison</u> <u>pres. Le sous-groupe des translations</u> Γ_t <u>de</u> Γ <u>est d'indice</u> <u>fini dans</u> Γ <u>et tout ensemble minimal de générateurs de</u> Γ_t <u>est une base de l'espace vectoriel</u> E.

La classification a été explicitée en dim n = 1(2), n = 2(17), n = 3(230), n = 4(4895), n = 5(?). Sans s'y attarder, nous démontrons directement la proposition suivante qui justifie "l'interdit pentagonal" :

PROPOSITION 2.2. En dimensions 2 et 3, un élément de torsion d'un groupe cristallographique est d'ordre 2,3,4 ou 6.

<u>Preuve</u>. Soit γ un élément de torsion d'ordre m . En dimension 3 (resp. 2), γ a une droite de points fixes (resp. un point fixe). Soit O un point fixe de γ . Le réseau ponctuel $L = \prod_{t} O$ est γ -invariant. Prenant l'espace vectoriel d'origine O, on a un réseau \widetilde{L} invariant par l'isométrie linéaire $\widetilde{\gamma}$ associée à γ .

En dimension 3 si $\widetilde{\pi}$ note la projection orthogonale sur $\widetilde{\Delta}$, la droite invariante de $\widetilde{\gamma}$ on a $1+\widetilde{\gamma}+\widetilde{\gamma}^2+\ldots+\widetilde{\gamma}^{m-1}=m\widetilde{\pi}$, ce qui implique $(1-\widetilde{\pi})\widetilde{L} \subset \widetilde{L}/m$: $(1-\widetilde{\pi})\widetilde{L}$ est discret et de rang maximal dans l'orthogonal de $\widetilde{\Delta}$. La restriction de $\widetilde{\gamma}$ au 2-plan $\widetilde{\Delta}^{\perp}$ étant d'ordre m, on est ramené à la dimension 2.

Tout point M du réseau L est centre d'une rotation γ_{M} d'ordre m. Soient M_0 , M_1 des points du réseau L tel que $d(M_0, M_1)$ soit minimale. Notant $M_{-1} = M_0 - M_0 M_1$, $M_{\pm} = \gamma_{M_0}^{\pm 1} (M_{\pm 1})$, on a $d(M_1, M_{\pm}) = 2\sin(\pi/m) d(M_0, M_1)$, $d(M_{\pm}, M_{\pm}) = 2\cos(2\pi/m) d(M_0, M_1)$ et le lemme résulte alors de l'observation : $\{2\cos(2\pi/5), 2\sin(\pi/m)m \ge 7\}$ $\subset]0, 1[$ (mais $2\sin(2\pi/5) > 1)$. <u>Remarque</u> 2.2. Les ordres 2, 3, 4, 6 sont effectivement possibles. L'ordre 5 n'est pas interdit en dimension supérieure : on a par exemple $(\mathbb{Z}^5, \mathbb{R}^5, g)$ avec $g(x_1, x_2, x_3, x_4, x_5) = g(x_2, x_3, x_4, x_5, x_1)$.

3. - LES PAVAGES DE PENROSE ([1,4,9])

A - DEFINITION

Les pavages de Penrose sont obtenus dans la construction originale à partir de deux pavés élémentaires, des losanges bosselés de côtés identiques d'angles $(4\pi/5, \pi/5)$ pour l'un (F), $(2\pi/5, 3\pi/5)$ pour l'autre (G).

fig. 2.a

Par losange bosselé, on entend un losange avec encoches et dents qui donnent des conditions d'emboitement (fig. 2.a). Pour décrire F et G il est plus commode de préciser les conditions d'adjacence qu'ils satisfont en orientant et en coloriant de manière bicolore leurs côtés. On pointe d'abord G (resp. F) en un sommet P d'angle $2\pi/5$ (resp. $4\pi/5$). Dans G (resp. F) chaque côté pointe vers P (resp. vers son extrémité d'angle $4\pi/5$). Les côtés de couleur (>>) sont ceux qui contiennent P, les autres étant de la couleur complémentaire (>) (fig. 2.b). Notons que l'aire de G est dans un rapport of avec celle de F.

fig. 2.b

LEMME 3.1. Il y a 7 configurations possibles en un sommet.

Remarquons que (*) les côtés (>) d'un pavé F sont toujours adjacents à un pavé G.

En un sommet S d'une partie pavée P on appellera pétales les losanges ayant pour sommet S. Un sommet sera dit unipétale (bipétale resp.) s'il est commun à un pavé (resp. deux pavés). Sur le bord ∂P d'une partie pavée simplement connexe P on a une orientation canonique qui induit la rotation S(P) sur le cycle ordonné des sommets de ∂P et une longueur (si C est une partie connexe de ∂P contenant p sommets, $\ell(C) = p-1$).

> PROPOSITION 3.2. <u>On peut paver le plan avec les pavés</u> F <u>et</u> G.

<u>Preuve</u>. On construit par récurrence une suite de parties pavées simplement connexes (P_i) et une suite de points (S_i) telles que

(i) P_0 est une configuration élémentaire (i.e. il y a un et un seul sommet qui ne soit ni unipétale ni bipétale).

(ii)
$$P_i \subset P_{i+1}$$
.

(iii)
$$S_i \in \partial P_i \cap \partial P_{i+1}$$

(iv) - Si
$$P_i$$
 est convexe en S_i et P_i non convexe, on pose $P_{i+1} = P_i$,
 $S_{i+1} = g(P_i)S_i$
- Si P_i est convexe on pose $S_{i+1} = g(P_i)S_i$ et $P_{i+1} = P_i \cup \overline{P}$ où

 \bar{P} est un pavé (F ou G) le long de $\mathop{\rm SS}_{i\ i+1}$ (avec la restriction (*)) .

- Si P_i est concave en S_i , alors on complète, de manière minimale, P_i en P_{i+1} de sorte que, si P_i est convexe en S_{i+1} , S_i soit intérieur à P_{i+1} , si P_i est concave en S_{i+1} (et alors P_i est convexe en S_{i+2}) S_i et S_{i+1} soient intérieurs à P_{i+1} . On prend pour S_{i+1} le premier sommet convexe de P_i suivant S_i .

Si la récurrence ne s'arrête pas, tout point du bord de P_i est intérieur à P_I pour I suffisamment grand et on tourne indéfiniment autour du pistil initial : la suite P_i converge vers un pavage global du plan.

Et le procédé ne se bloque pas, comme il résulte des remarques suivantes :

• On vérifie que pour les fleurs élémentaires le procédé fonctionne au moins pour gommer tous les sommets concaves de leur bord.

• Les sommets concaves de ∂P_i ont au moins deux pétales. Une suite de sommets concaves adjacents en compte au plus deux et s'il y en a deux, l'un au moins est bipétale.

• Les configurations du bord avec un sommet concave entre deux convexes sont en nombre fini et on peut les compléter pour intérioriser ce sommet. Il en est de même pour les configurations du bord avec deux sommets concaves entre deux convexes, à l'exception de deux de type spécial qui n'interviennent pas au cours de la construction de la suite (P_i) grâce à la remarque suivante :

• Le bord de P ne contient jamais d'arc $(S_1 S_2 S_3 S_4)$ bordant 3 pavés G, avec S_2 ou S_3 sommet pointé de G.

B - DEFLATION-INFLATION

La déflation D (dont l'opération inverse, l'inflation I, existe) transforme tout pavage de Penrose P en un pavage D(P), dont les pavés sont homothétiques de ceux \mathcal{P} dans un rapport $1/\Phi$ et satisfont les conditions d'adjacence :

Un pavé P (resp. G) de \mathcal{P} est découpé en un $\frac{1}{2}$ pavé F et deux $\frac{1}{2}$ pavés G (resp. un G, deux $\frac{1}{2}$ G et $\frac{1}{2}$ F) comme il est indiqué sur la figure 3

Les sommets pointés (resp. non pointés) de \mathcal{P} deviennent non pointés (resp. pointés) dans $D(\mathcal{P})$ et les sommets de $D(\mathcal{P}-\mathcal{P})$ sont non pointés. On vérifie facilement qu'ainsi, les règles d'adjacence sont vérifiées.

Un sommet du pavage ρ de type J (resp. D, K, Q, S₃, S₄, S₅, S) se transforme en un sommet de type K (resp. Q, S₄, S₃, S, S, S, S₅) dans D(ρ). Chaque pavé G de ρ (resp. chaque côté (>) des pavés F) donne un sommet de type J (resp. D). En outre le bord de la fleur élémentaire de type S dans D(ρ) obtenu à partir d'un sommet S₃ (resp. S₄, S₅) contient 3 (resp. 4,5) sommets de type J.

L'opération inverse I de la déflation est alors définissable : les pavés de I(\wp) sont homothétiques de ceux de \wp dans un rapport Φ .

Observons que si la déflation opère de manière locale au sens où l'image d'une partie finie est bien déterminée, ce n'est pas le cas pour l'opération d'inflation. PROPOSITION 3.3. Soit \mathcal{P} un pavage de Penrose et notons $n_{?}(\mathcal{P})(r) = n_{?}(r)$ son nombre de pavés ? inclus dans le disque de rayon r centré en 0. Alors $d(r) = n_{F}(r)/n_{G}(r)$ converge vers le nombre d'or lorsque $r \rightarrow \infty$.

<u>Preuve</u>. Vu la forme explicite des configurations locales (resp. (*)), un pavé G (resp. F) est adjacent a au moins un pavé F (resp. deux G). On en déduit

$$n_{F}(r) \leq 2n_{G}(r) + O(r)$$
$$n_{G}(r) \leq 4n_{F}(r) + O(r)$$

(O(r) provient des effets de bord) et donc $\lim_{n \to \infty} \frac{n}{2} \frac{r}{r^2} > 0$, d(r) borné indépendamment de ρ .

Modulo les effets de bord, (asymptotiquement négligeables) on obtient

$$n_{F}^{(D(\mathcal{P}))(r)} = n_{F}^{(\mathcal{P})(r)} + n_{G}^{(\mathcal{P})(r)}$$
$$n_{G}^{(D(\mathcal{P}))(r)} = n_{F}^{(\mathcal{P})(r)} + 2n_{G}^{(\mathcal{P})(r)}$$

soit, si f est la fonction définie par f(u) = (1+u)/(2+u)

(3.1) d(D(P))(r) = f(d(P)(r)).

Soit (r_i) une suite convergeant à l' ∞ . Par le procédé diagonal, on peut en construire une sous-suite (ρ_i) telle que pour tout n, $d(I^n(P))(\rho_i)$ converge vers d_n . D'après (3.1), on a alors

$$d_n = f(d_{n+1})$$

$$d_0 = f^{(n)}(d_n)$$

En remarquant que les suites (u_n) vérifiant la relation de récurrence $u_{n+1} = f(u_n)$ convergent vers ϕ , uniformément par rapport à la condition initiale on conclut $d_0 = \phi$.

Ainsi la suite $d(\mathcal{P})(r)$, bornée et avec un seul point d'adhérence Φ , est convergente, de limite Φ . COROLLAIRE 3.4. <u>Soit</u> P <u>un pavage de Penrose</u>. <u>Il n'existe</u> pas deux translations de vecteurs linéairement indépendants qui laissent invariantes le pavage</u> P.

<u>Preuve</u>. Supposons que ce soit le cas. Alors le groupe engendré par ces deux translations admet comme domaine fondamental une certaine réunion finie de pavés. On en déduit que d(P)(r) converge vers un nombre rationnel, ce qui n'est pas.

4. - LA GENESE DES PAVAGES DE PENROSE SUIVANT DUNEAU & KATZ ([2,3,6])

Soit E espace vectoriel, E_1 et E_2 deux sous-espaces supplémentaires de E, p_1 la projection de E_1 parallèlement à E_2 , $L = \stackrel{n}{\bigoplus} \mathbb{Z} v_i$ un réseau de E, γ_L la maille $\{\sum u_i v_i | 0 \le u_i \le 1\}$ et D un borné de E.

Alors $p_1(D+E_1)$ est un ensemble discret de E : est-ce l'ensemble des sommets d'un pavage de E_1 (avec éventuellement un nombre fini de pavés élémentaires) ?

Examinons le cas où E est de dimension 2. Si $E_1 = E$, alors la réponse est oui avec le pavage $P(\gamma_L)$ naturellement associé à la maille γ_L . Supposons que E_1 soit une droite (distincte, ainsi que E_2 , de Rv_1 et Rv_2). Une condition nécessaire et suffisante pour que, en projetant l'ensemble des arêtes $G_{\gamma}(D+E_1)$ de $P(\gamma_L)$ contenues dans $D+E_1$, on obtienne un pavage de E_1 est que tout point de $L \cap (D+E_1)$ soit commun à exactement deux arêtes de $G_{\gamma}(D+E_1)$.

Si un point de $(E+E_1) \cap L$ est commun à trois (resp. deux) arêtes de $G_{\gamma}(B+E_1)$ alors on peut modifier D, sans altérer la bande $D+E_1$, de telle sorte que D contienne une translatée de la maille fermée $\overline{\gamma}_L$ (maille ouverte $\mathring{\gamma}_L$ resp.).

Si $D = u_1 e_2 + u_2 e_2$, $0 \le u_1 \le 1$, $0 \le u_2 < 1$, $p_1(e+D+E_1)$ $(e \in E)$ est l'ensemble des sommets d'un pavage P_1 à deux pavés élémentaires.

> LEMME 4.1. P_1 est invariant par une translation si et seulement si la pente de V_1 , relativement à L, est rationnelle.

<u>Preuve</u>. Soit $t_1 (\in E_1)$ le vecteur de la translation laissant invariant le pavage P_1 . Alors la suite des n+m pavés P_i entre e_1 (sommet de P_1) et $e_1 + t_1$ correspond biunivoquement à une suite $(\eta(i))$ $(\eta(i) = 1 n \text{ fois}, \eta(i) = 2 m \text{ fois})$ telle que $P_i = p_1(e_{\eta(i)})$ et entre $e_1 + jt_1$ et $e_1 + (j+1)t_1$ on a la même suite. On en déduit $jnv_1 + jmv_2 = jt_1 + e_2(j)$ (avec $e_2(i)$ uniformément borné), d'où $t_1 = nv_1 + mv_2$. Le lemme en résulte.

La construction précédente est générale :

THEOREME 4.2. (Duneau-Katz). <u>Soient</u> E_1, E_2 <u>comme pré-</u> <u>cédemment</u>, $p = \dim E_1$. <u>On suppose</u> $(\widetilde{\gamma}_L + E_1) \cap L = \{0\}$ <u>où</u> $\widetilde{\gamma}_L$ <u>est d'adhérence</u> $\overline{\gamma}_L$. <u>Alors l'ensemble des p-facettes du</u> <u>pavage</u> \mathcal{C}_L <u>associé à γ_L incluses dans</u> $\widetilde{\gamma}_L + E_1$ <u>est une sur-</u><u>face</u> (linéaire par morceaux) Σ <u>de dimension</u> p. <u>Si la projec-</u><u>tion</u> p_1 <u>restreinte à toute</u> p-facette de \mathcal{C} , <u>est un difféomor-</u><u>phisme</u>, <u>alors la projection</u> $p_1(\Sigma)$ <u>induit un pavage de</u> E_1 , <u>avec au plus</u> $\binom{n}{p}$ <u>types de pavés élémentaires</u>.

Les pavages de Penrose sont obtenus alors en prenant $E = IR^5$, $L = \mathbb{Z}^5$, γ_L le cube unité, E_1 un des plans invariants par l'isométrie $g(g(x_1,...,x_5) = (x_2, x_3, x_4, x_5, x_1)$. Les deux pavés correspondent aux deux orbites dans l'ensemble des 2-facettes de γ_L sous l'action de g.

Si $D_2 = p_2(D+E_1)$, on a $B = D_2 \times E_1$: c'est à partir de cette

forme produit qu'on étudiera la transformée de Fourier des projections $S = p_1(B \cap L)$ au paragraphe suivant.

5. - QUASIPERIODICITE

Soit E un espace vectoriel, E_1 et E_2 deux sous-espaces supplémentaires de E, p_i la projection de E_i parallelement à son supplémentaire. Via la transposée tp_i , le dual H_i de E_i s'identifie à un sous-espace (noté aussi H_i) du dual H de E; on a alors $H = H_1 \oplus H_2$ (π_1, π_2 notent les projections associées à cette décomposition). Si on a des mesures de Haar (de_i, dn_i) sur E_i , H_i compatibles (au sens de 1. B), les mesures de Haar de = de₁ \otimes de₂ et $d\eta = d\eta_1 \otimes d\eta_2$ sont aussi compatibles.

L'espace $g'(E_1) \otimes \mathcal{E}'(E_2)$ (\otimes note le produit tensoriel de la théorie des espaces nucléaires) est un sous-espace de $g'(E) = g'(E_1) \otimes g'(E_2)$, sous-espace appliqué par la transformée de Fourier sur $g'(H_1) \otimes C^{\infty}(H_2)$. D'autre part, $g'(E_1) \otimes \mathcal{E}'(E_2)$ est le dual de $g(E_1) \otimes C^{\infty}(E_2)$. La projection p_1 donne l'opération d'image réciproque $p_1^*: g(E_1) \rightarrow g(E_1) \otimes C^{\infty}(E_2)$ et par dualité l'image directe $p_{1*}: g(H_1) \rightarrow g(H_1) \otimes \mathcal{E}'(H_2)$. On définit enfin l'application $i_1^* \quad g(H_1) \rightarrow g(H_1) \otimes \mathcal{E}'(H_2)$ définie par $i_1^*(\varphi) = \varphi \otimes \delta_{E_2}(0)$ dont on notera i_{1*} l'application duale $(i_{1*}: g'(H_1) \otimes C^{\infty}(H_2) = C^{\infty}(H_2, g'(H_1)) \rightarrow g'(H_1)$ est l'évaluation en 0).

Preuve. Il suffit d'observer que le carré suivant est commutatif

pour conclure d'un argument de densité.

PROPOSITION 5.2. Soit L un réseau de E, soit D un borné suffisamment régulier de E_2 et B la bande $D \times E_1$, de fonction caractéristique χ_B . Alors la transformée de Fourier de $T_{D,L} = \sum_{\ell \in L} \chi_B(\ell) \, \delta(p_1(\ell))$ est limite dans $\mathscr{P}(H_1)$ de som- $\ell \in L$ mes finies de masse de Dirac aux points du sous-groupe $\pi_1(\Lambda)$. Si n = 2 et si H_1 a une pente diophantienne par rapport au réseau Λ alors la convergence a lieu dans $S'(H_1)$.

Un nombre réel ρ est dit diophantien si $\exists \sigma \geq 2$, C > 0, $\forall p,q \in \mathbb{Z}$, $|\rho - p/q| \geq Cq^{1-\sigma}$. Tout nombre algébrique est diophantien : ainsi la condition diophantienne est réalisée si les pentes (relativement à une base de L) de E_1 et E_2 sont algébriques.

<u>Preuve</u>. Soit $(\varphi_n) \in C_0^{\infty}(E_2)$ (resp. $\psi_n \in C_0^{\infty}(E_1)$) telle que $\varphi_n \rightarrow \chi_D$ (resp. $\psi_n \rightarrow 1$) simplement. L'existence de la suite (φ_n) résulte de la régularité supposée de D. Alors

$$T = \lim_{n \to \infty} \lim_{m \to \infty} \sum_{\ell \in L} (\psi_m \otimes \varphi_n) \delta(p_1(\ell)) \quad \text{dans } S'$$

On a

$$\sum_{\substack{\ell \in L}} (\psi_{\mathbf{m}} \otimes \varphi_{\mathbf{n}}) \, \delta(\mathbf{p}_{1}(\ell)) = \mathbf{p}_{1} \, \left((\psi_{\mathbf{m}} \otimes \varphi_{\mathbf{n}}) \sum_{\substack{\ell \in L}} \delta(\ell) \right)$$

$$(\psi_{\mathbf{m}} \otimes \varphi_{\mathbf{n}}) \sum_{\substack{\ell \in L}} \delta(\ell) = (\psi_{\mathbf{m}} \otimes \varphi_{\mathbf{n}}) \, \ast \, \sum_{\substack{\ell \in L}} \delta(\ell) = (\psi_{\mathbf{m}} \otimes \widehat{\varphi_{\mathbf{n}}}) \, \ast \, ((2\pi)^{-n} \sum_{\substack{\ell \in \Lambda}} \delta(\lambda)) \, .$$

Soit d'après le lemme 5.1

VIII. 18

(5.1)
$$\sum_{\substack{\ell \in L}} (\psi_m \otimes \varphi_n) \delta(p_1(\ell))(\eta_1) = (2\pi)^{-n} \sum_{\lambda \in \Lambda} \hat{\psi}_m(\eta_1 - \pi_1(\lambda)) \hat{\varphi}_n(-\pi_2(\lambda)), \ \eta_1 \in H_1$$

On a $\lim_{m \to \infty} \hat{\psi}_m(?-\pi_1(\lambda)) = \delta(\pi_1(\lambda))$ dans S'. Pour passer à la limite dans (5.1) nous utiliserons le lemme :

LEMME 5.3. Soit $\varphi \in S(H_{2})$

- a. $\sum_{\lambda \in \Lambda} \varphi(\pi_2(\lambda)) \delta(\pi_1(\lambda))$ est sommable dans $\mathscr{B}(H_1)$
- b. Si n = 2 et si la pente de la droite H_1 est diophantienne dans une base du réseau Λ , $\sum_{\lambda \in \Lambda} \varphi(\pi_2(\lambda)) \delta(\pi_1(\lambda))$ est sommable dans S'(H_1).

Celui-ci implique la convergence de $\sum_{\lambda \in \Lambda} \hat{\varphi}_n(-\pi_2(\lambda)) \hat{\psi}_m(\eta_1 - \pi_1(\lambda))$ vers $\sum_{\lambda \in \Lambda} \hat{\varphi}_n(-\pi_2(\lambda)) \delta(+\pi_1(\lambda))$ dans $\mathcal{B}'(H_1)$, avec convergence dans $\mathcal{S}'(H_1)$ dans le cas de b, ce qui démontre la proposition.

Preuve du lemme 5.3.

a. Il suffit de montrer que $\sum_{\Pi_1(\lambda) \in K} \varphi(\Pi_2(\lambda))$ est absolument $\Pi_1(\lambda) \in K$ convergente pour tout compact K de H_1 . Soit d_2 une distance sur H_2 . La projection K_2 de $\Pi_1^{-1}(K)$ sur H_2 est un ensemble discret avec $\inf \{d_2(\nu_2, \nu_2')/\nu_2, \nu_2' \in K_2, \nu_2 \neq \nu_2'\} > 0$. On applique alors le lemme suivant :

> LEMME 5.4. Soit χ une fonction C^1 sur E normé. Alors il existe une constante C telle que $\||\chi(e_0)\| \leq C_0 a^{-1} \int_{\||e-e_0\||\leq a} (|\chi| + |\chi'|) de, \forall a > 0, \forall e_0 \in E.$

b. Soit μ_i la pente de la droite H_i dans une base de Λ . On a alors $\pi_1(\lambda_1, \lambda_2) = (\lambda_1 \mu_2 - \lambda_2) v_1$, $\pi_2(\lambda_1, \lambda_2) = (\lambda_2 - \mu_1 \lambda_1) v_2$ où on a posé $\mu = \mu_2 - \mu_1$, $v_1 = (1/\mu, \mu_1/\mu) v_2 = (1/\mu, \mu_2/\mu)$. Munissons H_i et H_2 d'une norme telle que v_1 et v_2 soient unitaires et posons

$$\begin{split} \mathbf{B}_{\mathbf{M}} &= \left\{ \lambda, \left| \pi_{1}(\lambda) \right| \leq \mathbf{M} \right\}, \\ \alpha_{\mathbf{M}} &= \mathrm{Inf} \left\{ \left| \pi_{2}(\lambda - \lambda') \right|, \lambda \text{ et } \lambda' \text{ distincts dans } \Lambda \cap \pi_{1}^{-1}(\mathbf{B}_{\mathbf{M}}) \right\} \end{split}$$

On a alors pour $\ \lambda$, $\lambda^{*} \in B_{\underset{\ensuremath{M}}{M}}$.

(5.2)
$$\left| \pi_{1}(\lambda - \lambda') \right| = \left| (\lambda_{1} - \lambda_{1}') \mu_{2} - (\lambda_{2} - \lambda_{2}') \right| \leq 2M$$

(5.3)
$$|\pi_2(\lambda-\lambda')| = |(\lambda_2-\lambda_2')-\mu_1(\lambda_1-\lambda_1')| \ge C |\lambda_1-\lambda_1'|^{1-\sigma}$$

Si (λ, λ') réalise le minimum $\alpha_{M} (\ll 1)$ approximativement, on a $\lambda_{2}^{-}\lambda'_{2} \simeq \mu_{1}(\lambda_{1}^{-}\lambda'_{1}^{+}) + \varepsilon \ (\varepsilon^{2} = 1)$. On en déduit, avec (5.2) $(\lambda_{1}^{-}\lambda'_{1})(\mu_{2}^{-}\mu_{1}) \lesssim 2M+1$ soit avec (5.3) $\alpha_{M} \ge C'M^{1-\sigma}$. On a donc pour $\theta \in S(H_{1})$

$$\begin{split} \sum_{\lambda \in \Lambda} |\theta(\pi_{1}(\lambda))\varphi(\pi_{2}(\lambda))| &= \sum_{n=0}^{\infty} \sum_{\substack{|\pi_{1}(\lambda)| \in [n, n+1[\\ |\theta(\pi_{1}(\lambda))\varphi(\pi_{2}(\lambda))|}} |\theta(\pi_{1}(\lambda))\varphi(\pi_{2}(\lambda))| \\ &\leq \sum_{n=0}^{\infty} \sup_{\substack{|\pi_{1}| \in [n, n+1[\\ n=0 \\ |\pi_{1}| \in [n, n+1[\\ |\theta(\pi_{1})| \alpha_{n}^{-1} \int_{H_{2}} (|\varphi| + |\varphi'|)d\pi_{2}} |\theta(\pi_{1})| |\alpha_{n}^{-1} \int_{H_{2}} (|\varphi| + |\varphi'|)d\pi_{2} \\ &\leq C'' \sup_{\substack{|\pi_{1} \in H_{1}}} (|\pi_{1}|^{\sigma+1} |\theta(\pi_{1})|) \int_{H_{2}} (|\varphi| + |\varphi'|)d\pi_{2} . \end{split}$$

La proposition est à rapprocher de la notion de fonction presque périodique [13] :

• une fonction continue bornée sur E est presque périodique si la famille de ses translatées est relativement compacte pour la topologie de la convergence uniforme sur E.

Si f est presque périodique, alors $A_{\xi}(f) = \lim \operatorname{vol}(K)^{-1} \int_{K} f(e) e^{i\langle \xi, e \rangle} de$ ((K), pavés compacts convergeant vers E) existe pour tout ξ dans H et est nul pour ξ en dehors d'un sous-groupe dénombrable $\mathfrak{F}(f)$ de H $(\mathfrak{F}(f)$ est appelé ensemble des fréquences de f). La fonction f est alors limite uniforme sur E de polynômes trigonométriques à fréquences dans $\mathfrak{F}(f)$.

Une distribution presque périodique [11] est une distribution bornée T dont la famille des translatées est relativement compacte dans l'espace des distributions bornées G': une condition équivalente est l'écriture de T comme somme finie de dérivées de fonctions presque périodiques. Ces distributions (tempérées) satisfont la propriété faible de presque périodicité suivante : la transformée de Fourier de T est limite dans S' de sommes finies de masse de Dirac à support dans un sousgroupe de type fini de H.

La distribution $T_{D,L}$ est bornée (appliquer le lemme 5.4). L'écriture formelle $\hat{T}_{D,L} = \sum_{\lambda \in \Lambda} \hat{\chi}_D(-\pi_2(\lambda))\delta(\pi_1(\lambda))$ ne semble pas absolument convergente (que ce soit dans \mathcal{B}^1 , S' ou $\mathcal{F}(B^1)$) : la transformée de Fourier $\hat{\chi}_{D_2}$ décroit lentement à l'infini d'une part, les propriétés diophantiennes des quantités géométriques liées à E_1, E_2, L interviennent aussi d'autre part.

BIBLIOGRAPHIE

- [1] N.G. de BRUIJN Algebraic properties of Penrose's non periodic tilings of the plane, I et II. Indag. Math. A 84 (1981), 39-66.
- [2] M. DUNEAU, A. KATZ Paver l'espace : un jeu mathématique pour les physiciens. La Recherche 16 (1985), 816-819.
- [3] M. DUNEAU, A. KATZ Quasi-periodic patterns. Phys. Rev. Letter 54 (1985), 2688-2690.
- [4] M. GARDNER Extraordinary non periodic tiling that enriches the theory of tile. Scientific American (1-1977), 110-121.
- [5] E. GORDON L'interdit du pentagone. Le Monde (3.4-2-1985).
- P. KRAMER, R. NERI On periodic and non periodic spaces fillings of E^m obtained by projection. Acta Cryst. A40 (1984), 580-587.

- [7] D. LEVINE, P. STEINHARDT Quasi-crystals : a new class of ordered structures. Phys. Rev. Letters, 53 (1984), 2477-2480.
- [8] A.L. MACKAY Cristallography and the Penrose pattern. Physica 114 A (1982), 609-613.
- [9] R. PENROSE Pentaplexity. Math. Intell 2 (1979), 32-37.
- [10] D. SCHECHTMAN, I. BLECH, D. GRATIAS, J.W. CAHN-Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev.Letter 53(1984), 1951-1953.
- [11] L. SCHWARTZ Théorie des distributions, Hermann (1962).
- [12] B.K. VAINSHTEIN Modern cristallography, I. Springer (1981).
- [13] A. WEIL L'intégration dans les groupes topologiques et ses applications. Hermann (1940).
- [14] J.A. WOLF Spaces of constant curvature. Mc. Graw Hill (1967).
- [15] Un cristal rêvé. Pour la science (3.85), 7-8.
- [16] Découverte du premier quasicristal. La recherche 16 (1985), 225.