## GROUPE D'ÉTUDE EN THÉORIE ANALYTIQUE DES NOMBRES

#### **GUY ROBIN**

### Sur l'ordre maximum d'un élément du groupe des permutations

*Groupe d'étude en théorie analytique des nombres*, tome 2 (1985-1986), exp. n° 6, p. 1-6 <a href="http://www.numdam.org/item?id=TAN\_1985-1986\_2">http://www.numdam.org/item?id=TAN\_1985-1986\_2</a> \_ A3\_0>

© Groupe d'étude en théorie analytique des nombres (Secrétariat mathématique, Paris), 1985-1986, tous droits réservés.

L'accès aux archives de la collection « Groupe d'étude en théorie analytique des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



# SUR L'ORDRE MAXIMUM D'UN ÉLÉMENT DU GROUPE DES PERMUTATIONS par Guy ROBIN (1)(2)

#### 1. Introduction.

Soit  $g(n) = \max_{\sigma}$  (ordre de  $\sigma$ ) le maximum portant sur l'ensemble des permutations de n éléments. L'évaluation asymptotique de g(n) a été réalisée par LANDAU ([LAN], 1909), SHAH ([SHA], 1939), SZALAY ([SZA], 1980). Ce dernier donnait :

$$\log g(n) = \sqrt{n \log n} \left( 1 + \frac{\log \log n - 1}{2 \log n} - \frac{(\log \log n)^2 - 6 \log \log n + \sigma(1)}{8 \log^2 n} \right).$$

Le but de l'exposé est de donner le meilleur développement asymptotique possible de  $\log g(n)$  et de  $\omega(g(n))$ , compte tenu des connaissances actuelles sur le terme reste dans le théorème des nombres premiers (  $\omega(n)$  désigne le nombre de facteurs premiers de n ).

#### 2. Notations.

$$\theta(\mathbf{x}) = \sum_{\mathbf{p} \leq \mathbf{x}} \log \mathbf{p}$$

$$\psi(\mathbf{x}) = \sum_{\mathbf{p} \leq \mathbf{x}} \log \mathbf{p}$$

$$\pi_{\mathbf{r}}(\mathbf{x}) = \sum_{\mathbf{p} \leq \mathbf{x}} \mathbf{p}^{\mathbf{r}}, \quad \mathbf{r} \in \mathbb{R} ; \quad \pi(\mathbf{x}) = \pi_{\mathbf{0}}(\mathbf{x})$$

$$\Pi_{\mathbf{r}}(\mathbf{x}) = \sum_{\mathbf{p} \leq \mathbf{x}} \frac{\mathbf{p}^{\mathbf{r} \mathbf{m}}}{\mathbf{m}}, \quad \mathbf{r} \in \mathbb{R} ; \quad \Pi(\mathbf{x}) = \Pi_{\mathbf{0}}(\mathbf{x})$$

$$\zeta(\mathbf{s}) = \sum_{\mathbf{n} \geqslant 1} \mathbf{n}^{-\mathbf{s}} \quad \text{prolongée analytiquement}$$

$$\Theta = \sup \{ \Re \mathbf{e} \ \rho ; \quad \zeta(\rho) = 0 \} .$$

On désigne par R(x) une majoration du terme d'erreur dans le théorème des nombres premiers de telle sorte que

$$\pi(x) - \text{Li}(x) = O(R(x)) \quad x \longrightarrow \infty$$

$$\Pi(x) - \text{Li}(x) = O(R(x))$$

$$\psi(x) - x = O(R(x) \log x).$$

On définit S(x) par

si 
$$\Theta = 1$$
,  $S(x) = R(x)$ ; si  $\Theta < 1$ ,  $S(x) = x^{\Theta}/\log x$ .

<sup>(1)</sup> Guy ROBIN, UER Sciences, Département de Mathématiques, Université de Linoges, 123 rue Albert Thomas, 87100 LIMOGES

<sup>(2)</sup> Travail en collaboration avec J.-L. NICOLAS et J.-P. MASSIAS.

On sait que, si  $\Theta = 1/2$ ,  $R(x) = \Omega_{\pm}(S(x) \log \log \log x)$ .

#### 3. Résultats.

Nous démontrons les résultats suivants.

THEORÈME 1. - On a, pour n -> ...

(i) 
$$\log g(n) = \sqrt{\text{Li}^{-1}(n)} + O(\log n S(\sqrt{n \log n}))$$
.

et, en particulier si 🖰 < 1,

$$\log g(n) = \sqrt{\text{Li}^{-1}(n)} + O((n \log n)^{\Theta/2}).$$

 $\underline{\text{Si}} \ \Theta > 1/2$ , on a, pour tout  $\xi < \Theta$ ,

(ii) 
$$\log g(n) = \sqrt{\text{Li}^{-1}(n)} + \Omega_{+}((n \log n)^{\xi/2})$$
,

et s'il existe un zéro de partie réelle 0,

(iii) 
$$\log g(n) = \sqrt{\operatorname{Li}^{-1}(n)} + \Omega_{+}((n \log n)^{\Theta/2})$$
.

Enfin, si l'hypothèse de Rienann est vraie,

(iv) 
$$\log g(n) < \sqrt{\text{Li}^{-1}(n)}$$
 pour n assez grand,

(v) 
$$\log g(n) = \sqrt{\text{Li}^{-1}(n)} - \frac{2 - \sqrt{2}}{3} (n \log n)^{1/4} + \Omega_{\pm}(n \log n)^{1/4})$$
.

THEORÈME 2. - On a, pour n -> ...

(i) 
$$\omega(g(n)) = \text{Li}(\sqrt{\text{Li}^{-1}(n)}) + O(S \sqrt{n \log n})$$
,

et, en particulier si  $\Theta < 1$ ,

$$\omega(g(n)) = \operatorname{Li}(\sqrt{\operatorname{Li}^{-1}(n)}) + O((n \log n)^{\Theta/2}/\log n).$$

Si  $1/2 < \Theta < 1$ , on a, pour tout  $\xi < \Theta$ ,

(ii) 
$$\omega(g(n)) = \operatorname{Li}(\sqrt{\operatorname{Li}^{-1}(n)}) + \Omega_{+}((n \log n)^{5/2})$$
,

et s'il existe un zéro de partie réelle 0,

(iii) 
$$\omega(g(n)) = \text{Li}(\sqrt{\text{Li}^{-1}(n)}) + \Omega_{+}((n \log n)^{\Theta/2}/\log n)$$
.

Enfin, si l'hypothèse de Riemann est vraie,

(iv) 
$$\omega(g(n)) < \text{Li}(\sqrt{\text{Li}^{-1}(n)})$$
 pour n assez grand.

COROLLAIRE. - On a, pour  $n \longrightarrow + \infty$ , et  $k \in N$ ,

$$\log g(n) = \sqrt{n \log n} \left(1 + \sum_{i=1}^{k} \frac{A_i(\log \log n)}{(\log n)^i} + O\left(\left(\frac{\log \log n}{\log n}\right)^{k+1}\right)\right)$$

$$\omega(g(n)) = 2\sqrt{\frac{n}{\log n}} \left(1 + \sum_{i=1}^{k} \frac{B_i(\log \log n)}{(\log n)^i} + O\left(\left(\frac{\log \log n}{\log n}\right)^{k+1}\right)\right)$$

où A et B sont des polynômes de degré i . On a, en particulier,

$$A_1(x) = \frac{x-1}{2}$$
,  $A_2(x) = -\frac{1}{8}(x^2 - 6x + 9)$ ,  $A_3(x) = \frac{1}{16}(x^3 - 11x^2 + 39x - 53)$ 

$$B_1(x) = -\frac{1}{2}(x-3)$$
,  $B_2(x) = \frac{1}{8}(3x^2 - 22x + 55)$ ,  $B_3(x) = -\frac{1}{16}(5x^3 - 61x^2 + 319x - 711)$ 

#### 4. "Optimisation" du problème.

Il est facile ([NIC 1]) de montrer que la valeur du programme suivant est g(n)

$$P_{n} : \begin{cases} \sum_{i=1}^{r_{i}} p_{i}^{r_{i}} \\ \sum_{i=1}^{r_{i}} p_{i}^{r_{i}} \end{cases}$$

Considérons le problème dual :

$$Q_{N}: \begin{cases} \text{Nin } \sum_{p_{i}}^{r_{i}} \\ \prod_{p_{i}}^{r_{i}} > N \\ \\ p_{i} \text{ premier .} \end{cases}$$

En posant  $\ell(n) = \sum_{p_i}^{r_i}$  si  $n = \sum_{p_i}^{r_i}$ , on a

$$Q_n : \begin{cases} \text{Min } 2(n) \\ n \geqslant N \end{cases}$$

La valeur de ce programme est obtenue pour  $n=N_0$ : c'est la valeur de  $Q_{N_0}$ , problème facile à résoudre compte tenu de l'unicité de la décomposition de  $N_0$  en facteurs premiers.

Considérons encore le problème "relaché" suivant,

$$Q_{\rho}$$
: 
$$\begin{cases} \text{Min } 2(N) - \rho \log N \\ N \text{ entier} \end{cases}$$

et soit  $G = \{N ; \exists \rho > 0 \text{ tel que } N \text{ soit solution de } Q_{\rho}\}$  .

On a alors ([NIC 2])

1° 
$$G \subseteq g(N)$$
.

2º Il y a équivalence entre:

(i) 
$$M \in g(\underline{N})$$
,

(ii) la contrainte de  $G_{M}$  est saturée,

(iii) 
$$\forall M' > M$$
, alors  $\mathcal{L}(M') > \mathcal{L}(M)$ .

Nous commençons à étudier la fonction  $\mathcal L$  sur les éléments de G (qui jouent le rôle des nombres hautement composés de Ramanujan), puis nous prolongerons son étude à tous les éléments de  $g(\underline{N})$ . Nous en déduisons alors le comportement de  $g(\underline{n})$ .

Étude des éléments de G . - Soit  $\rho > 2/\log 2$  et  $x_1 > 4$  , défini par  $x_1/\log x_1 = \rho$  .

Pour  $i \geqslant 2$  , soit  $x_i$  , défini par  $(x_i^i - x_i^{i-1})/\log x_i = \rho$  .

La suite  $(x_n)_{n\in\mathbb{N}}$  décroit vers 1 et, si l'on pose  $\mathbb{N}_{x_i} = \prod_{p\leqslant x_i} p$ , le nombre  $\mathbb{N} = \mathbb{N}_{\rho} = \prod_{x_i\geqslant 2} \mathbb{N}_{x_i}$  est solution de  $\mathbb{Q}_{\rho}$ .

On a alors les propriétés simples suivantes, lorsque p →> ∞:

(i) 
$$x_i = (\frac{x_1}{i})^{1/i} (1 + 0(1/\log x_1))$$
,

(ii) 
$$\log N_{\rho} = \sum_{i \geqslant 1} \theta(x_i) \sim \theta(x_1) \sim x_1$$
,

(iii) 
$$\mathcal{L}(N) \sim \sum_{p \leq x_1} p \sim \text{Li}(x_1^2) \sim x_1^2/2 \log x_1$$
.

En posant N = g(n) , on retrouve, si N  $\in$  G , le résultat de Landau log g(n)  $\sim \sqrt{n \ \log n}$  .

5. Etude de Li( $\log^2 N$ ) -  $\ell(N)$  pour  $N = N_{\rho} \in G$ .

Nous dénontrons successivement les lemmes suivants.

LEMME 1. - Pour  $x_1 \rightarrow \infty$ ,

$$\text{Li}(\log^2 N) - \lambda(N) = \text{Li}(\theta^2(x_1)) - \pi_1(x_1) + \frac{\sqrt{2}}{3} x_1^{3/2} / \log x_1 + O(x_1^{3/2} / \log^2 x_1).$$

LEMME 2.(en utilisant les formules explicites). - Pour  $x \longrightarrow \infty$ ,

$$\operatorname{Li}(\psi^{2}(\mathbf{x})) - \operatorname{ll}_{1}(\mathbf{x}) = -\sum_{\rho} \frac{\mathbf{x}^{\rho+1}}{\rho(\rho+1)} / \log \mathbf{x} + O(\frac{\mathbf{x}^{\Theta+1}}{\log^{2} \mathbf{x}}).$$

LEMME 3. - Pour  $x \rightarrow \infty$ ,

$$\text{Li}(\psi^2(\mathbf{x}) - \Pi_1(\mathbf{x}) = \text{Li}(\theta^2(\mathbf{x})) - \pi_1(\mathbf{x}) + \frac{2}{3} \mathbf{x}^{3/2} / \log \mathbf{x} + 0 (\mathbf{x}^{3/2} / \log^2 \mathbf{x})$$
.

D'où finalement, si  $x_1 \longrightarrow \infty$ ,

$$\text{Li}(\log^2 N) - \&(N) = -\sum_{\rho} \frac{x_1^{\rho+1}}{\rho(\rho+1)} / \log x_1 + \frac{\sqrt{2}-2}{3} \frac{x_1^{3/2}}{\log x_1} + O(x_1^{\Theta+1} / \log^2 x_1).$$

Ces relations permettent d'obtenir facilement les résultats du théorème 1 sur les

n tels que  $g(n) \in G$ .

Précisons les théorèmes d'oscillation lorsque  $\Theta > 1/2$  . Comme

$$Li(log^2 N) - \ell(N) = (Li(\psi^2(x_1)) - \Pi_1(x_1))(1 + \theta(1))$$
,

il suffit d'étudier,

$$\text{Li}(\psi^2(x)) - \Pi_1(x) = \text{Li}(x^2) - x \frac{\psi(x) - x}{\log x} - \Pi_1(x) + O(R^2(x) \log x)$$
.

Lorsque  $\Theta < 1$ , le théorème de Landau, via la transformée de Mellin, est suffisant. Pour  $\Theta = 1$ , il faut procéder comme dans ([ROB 1]) et étudier la fonction,

$$x \mapsto Li(x^2) - II_1(x) - x \frac{\psi(x) - x}{\log x} + x^{\xi+1} \quad \xi \le 1$$
.

Soit maintenant n quelconque de N, et N le nombre de G immédiatement inférieur à g(n) de paramètre  $\rho$ , et soit  $x_1$  tel que  $x_1/\log x_1 = \rho$ .

On montre alors que

$$\begin{cases} n = \lambda(N) + O(x_1) \\ \log g(n) = \log N + O(\log x_1) \end{cases}$$

ce qui permet de démontrer le théorème 1 dans sa généralité.

### 6. Démonstration du théorème 2.

Si l'hypothèse de Riemann est vraie, alors

$$\pi(x) < \text{Li}(\theta(x))$$
 pour x assez grand ([ROB]),

d'où l'on déduit que

$$\omega(n) \leq Li(\log n)$$
 pour n assez grand,

et par suite;

$$\omega(g(n)) \leqslant \text{Li}(\log g(n)) \leqslant \text{Li}(\sqrt{\text{Li}^{-1}(n)})$$
 pour n assez grand.

Si  $\Theta > 1/2$ , le théorème 2 est facile à établir pour les n tels que  $g(n) \in G$ ; pour n quelconque, on utilisera les deux lemmes suivants.

LEMME 4. - Soit  $n \ge 1$ ,  $N \in G$  immédiatement inférieur à g(n),  $\rho$  tel que N soit solution de  $Q_{\rho}$ , et  $x_1$  défini par  $x_1/\log x_1 = \rho$ . Pour  $M \in N$ , on définit le bénéfice de M par rapport à  $\rho$  par bén $_{\rho}(M) = \ell(M) - \ell(N) - \rho$  log M/N.

Alors,

$$b\acute{e}n_{0} g(n) = O(x_{1}/log x_{1}) .$$

LEMME 5. - Sous les mêmes hypothèses qu'au lemme précédent,

$$\omega(g(n)) = \omega(N) + O(\sqrt{x_1}/\log x_1) .$$

Dans la démonstration, on utilise le théorème d'Hoheisel et l'inégalité de Brun-Titschuarsh.

Les résultats sur l'oscillation utilisent le lemme suivant.

LEMME 6. - Si 
$$A(x) = \Pi(x) - \text{Li}^{-1}(\Pi_1(x)^{1/2})$$
, alors 
$$A(x) = O(S(x))$$
, 
$$A(x) = \Omega_{\pm}(S(x))$$
 s'il existe un zéro de  $\zeta$  de partie réelle  $\Theta$ .

#### BIBLIOGRAPHIE

- [LAN] LANDAU (Edmund). Handbuch der Lehre von der Verteilung der Prinzahlen.

  Bände 1 und 2. Leipzig und Berlin, B. G. Teubner, 1909. [2te Auflage. New York, Chelsea publishing Company, 1953.]
- [NIC 1] NICOLAS (Jean-Louis). Ordre maximal d'un élément du groupe S des permutations et "Highly composite numbers", Bull. Soc. math. France, t. 97, 1969, p. 129-191.
- [NIC 2] NICOLAS (Jean-Louis). Sur l'ordre maximum d'un élément dans le groupe S des permutations, Acta Arithm., Warszawa, t. 14, 1968, p. 315-332.
- [ROB 1] ROBIN (G.). Sur la différence Li( $\theta(x)$ )  $\pi(x)$  , Ann. Fac. Sc. Toulouse, t. 6, 1984, p. 257-268.
- [SHA] SHAH (S. M.). An inequality for the arithmetical function g(x), J. of Indian math. Soc., t. 3, 1939, p. 316-318.
- [SZA] SZALAY (M.). On the maximal order in S and S  $_{\rm n}^{*}$  , Acta Arithm., Warszawa, t. 37, 1980, p. 321-331.