GROUPE D'ÉTUDE DE THÉORIES STABLES

BRUNO POIZAT

Le rang U selon Lascar

Groupe d'étude de théories stables, tome 2 (1978-1979), exp. nº 6, p. 1-7

http://www.numdam.org/item?id=STS_1978-1979_2_A6_0

© Groupe d'étude de théories stables (Secrétariat mathématique, Paris), 1978-1979, tous droits réservés.

L'accès aux archives de la collection « Groupe d'étude de théories stables » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

LE RANG U SELON LASCAR par Bruno POIZAT (*)

Comme nous le savons déjà, le rang U est le plus petit de tous les rangs ; il est défini par l'induction suivante :

- pour α limite, RU(p) $\geqslant \alpha$ si RU(p) $\geqslant \beta$ pour tout $\beta < \alpha$,
- RU(p) $\geqslant \alpha$ + 1 si pour tout cardinal λ il existe un ensemble de paramètres où p a au moins λ fils de RU supérieur à α .

On montre sans peine que si p est instable $RU(p) = \infty$, et que si p est stable $RU(p) \geqslant \alpha + 1$ si, et seulement si, p a un fils déviant de RU supérieur à α (ce qui permet de montrer la propriété de complétion). On voit donc que dès que p a au moins $(2^T)^+$ fils de RU supérieur à α , ou même seulement deux si on est sur un modèle, alors $RU(p) \geqslant \alpha + 1$; que pour un type stable, RU(p) est le rang de fondation de la borne de p dans l'ordre fondamental; on peut alors montrer que si $RU(p) \geqslant |T|^+$, $RU(p) = \infty$ (Pour plus de détails voir [1], exposés 1 et 4, ainsi que ma thèse).

Le rang U est la seule notion de rang possédant la propriété suivante : si RU(p) = $\alpha < \infty$, et si $\beta < \alpha$, p a un fils de RU β .

Nous allons examiner aujourd'hui les conséquences qu'a sur le rang U la symétrie de la déviation ; tous ces résultats sont dûs à Lascar et sont exposés dans sa thèse. $t(\overline{a}/A)$ désignera le type de \overline{a} sur A , $RU(\overline{a}/A)$ le rang U de ce type; tous les types considérés seront supposés stables.

Les ordinaux ω^{α} sont définis par l'induction suivante :

- si α est limite, $\omega^{\alpha} = \sup \omega^{\beta}$ pour $\beta < \alpha$,
- $\omega^{\alpha+1} = \omega^{\alpha} \omega$ (Dans ω , on remplace chaque point par ω^{α} : c'est l'ordre lexicographique d'un dictionnaire arabe). On remarquera que si $\alpha > \beta$, $\omega^{\beta} + \omega^{\alpha} = \omega^{\alpha}$; tout ordinal s'écrit de manière unique sous la forme $\omega^{\alpha} 1 n_1 + \ldots + \omega^{\alpha} s n_s$ où $\alpha_1 > \ldots > \alpha_s$: cette écriture est connue sous le nom de <u>développement de Cantor.</u> Si donc $\alpha = \sum \omega^{\beta} n_{\beta}$, $\alpha + \omega^{\gamma}$ est obtenu en effaçant dans le développement de Cantor les termes d'ordre inférieur à γ , et en augmentant d'une unité celui d'indice γ . La <u>somme naturelle</u> de deux ordinaux, $\alpha = \sum \omega^{\gamma} n_{\gamma}$, $\beta = \sum \omega^{\gamma} m_{\gamma}$, est l'ordinal $\alpha \oplus \beta = \sum \omega^{\gamma} (n_{\gamma} + m_{\gamma})$; cette somme est commutative et associative ; elle permet, contrairement à la somme ordinaire, de récurrer sur les deux termes : si $\alpha' < \alpha$, $\beta' < \beta$, et $\alpha' < \alpha$ ou $\beta' < \beta$, alors $\alpha' \oplus \beta' < \alpha \oplus \beta$; en outre, $\alpha \oplus \beta$ est le plus petit majorant strict des $\alpha' \oplus \beta$ et des $\alpha \oplus \beta'$.

^(*) Bruno POIZAT, 11 parc d'Ardenay, 91120 PALAISEAU.

1. L'inégalité de Lascar.

THEOREME 1. - $RU(\overline{b}/A \cup {\overline{a}}) + RU(\overline{a}/A) \leq RU(\overline{a}\overline{b}/A)$; $RU(\overline{a}\overline{b}/A) \leq RU(\overline{b}/A \cup {\overline{a}}) \oplus RU(\overline{a}/A)$.

On vérifiera sans peine cet encadrement lorsque certains de ces rangs sont ∞ (avec par convention $\infty = \alpha + \infty = \infty + \alpha = \alpha \oplus \infty$).

Hormis ce cas, la première inégalité se montre par induction sur $RU(\overline{a}/A) = \alpha$; pour tout $\beta < \alpha$, il existe A' tel que $RU(\overline{a}/A') = \beta$; plaçons A' par rapport à \overline{b} de manière à ce que $t(\overline{b}/A' \cup \{\overline{a}\})$ ne dévie pas sur $A \cup \{\overline{a}\}$; par hypothèse d'induction: $RU(\overline{b}/A' \cup \{\overline{a}\}) + RU(\overline{a}/A') \leq RU(\overline{a}^*\overline{b}/A')$ et $RU(\overline{b}/A' \cup \{\overline{a}\}) = RU(\overline{b}/A \cup \{\overline{a}\})$, $RU(\overline{a}^*\overline{b}/A) > RU(\overline{a}^*\overline{b}/A')$ (car $t(\overline{a}^*\overline{b}/A')$ dévie sur A si, et seulement si $t(\overline{a}/A')$ dévie sur A ou $t(\overline{b}/A' \cup \{\overline{a}\})$ dévie sur $A \cup \{\overline{a}\}$; voir [1], exposé 5, lemme 4); d'où le résultat par continuité à droite de la somme, et le fait qu'il est trivial lorsque $RU(\overline{a}/A) = 0$.

La deuxième inégalité s'obtient par induction sur $RU(\overline{a^*b}/A) = \alpha$; pour tout $\beta < \alpha$, il existe A^* tel que $RU(\overline{a^*b}/A^*) = \beta$, et, par hypothèse d'induction :

$$RU(\overline{a}^{b}/A^{i}) \leq RU(\overline{b}/A^{i} \cup \{\overline{a}\}) \oplus RU(\overline{a}/A^{i})$$
.

Mais comme ça dévie, l'un des deux termes du second membre est strictement inférieur au terme correspondant sur A, donc la somme naturelle aussi.

THEORÈME 2. - Si a et
$$\overline{b}$$
 sont indépendants au-dessus de A ,
$$RU(\overline{a} \overline{b}/A) = RU(\overline{a}/A) \oplus RU(\overline{b}/A) .$$

Il suffit de montrer que $RU(\bar{a}/A) \oplus RU(\bar{b}/A) \leqslant RU(\bar{a}^*\bar{b}/A)$; on le fait par induction sur le premier membre : pour tout $\alpha < RU(\bar{a}/A)$, on prend A' tel que $RU(\bar{a}/A^!) = \alpha$, on place \bar{b} sans dévier, et on en déduit par hypothèse de récurrence que :

$$\alpha \oplus RU(\overline{b}/A) = RU(\overline{a}/A) \oplus RU(\overline{b}/A) \leqslant RU(\overline{a}\overline{b}/A) < RU(\overline{a}\overline{b}/A)$$
.

De même, pour tout $\beta < RU(\overline{b}/A)$, $RU(\overline{a}/A) \oplus \beta < RU(\overline{a}^*\overline{b}/A)$; d'où la conclusion.

Exemple. - On considère la théorie T des corps différentiellement clos de caractéristique nulle, A un tel corps, a différentiellement transcendant sur A, b la dérivée de a:

 $RU(b/A \cup \{a\}) + RU(a/A) = 0 + \omega = \omega = RU(a^b/A) = 0 \oplus \omega = RU(b/A \cup \{a\}) \oplus RU(a/A)$ mais

$$\begin{split} \mathrm{RU}(\mathbf{a}/\mathtt{A} \ \cup \ \{\mathtt{b}\}) \ + \ \mathrm{RU}(\mathtt{b}/\mathtt{A}) \ = \ 1 \ + \ \omega = \ \omega = \ \mathrm{RU}(\mathtt{a}^\mathtt{a}\mathtt{b}/\mathtt{A}) \ = \ \mathrm{RU}(\mathtt{b}^\mathtt{a}\mathtt{a}/\mathtt{A}) \\ &< 1 \oplus \omega = \omega + \ 1 \ = \ \mathrm{RU}(\mathtt{a}/\mathtt{A} \ \cup \ \{\mathtt{b}\}) \oplus \ \mathrm{RU}(\mathtt{b}/\mathtt{A}) \ . \end{split}$$

2. Le lemme de symétrie de LASCAR.

THEOREME 3. - Si t($\overline{a}/A \cup \{\overline{b}\}$) est superstable (c'est-à-dire rangé par le range U), RU(\overline{a}/A) \geqslant RU($\overline{a}/A \cup \{\overline{b}\}$) \oplus α implique RU(\overline{b}/A) \geqslant RU($\overline{b}/A \cup \{\overline{a}\}$) + α .

Par induction sur $RU(\overline{a}/A \cup \{\overline{b}\}) \oplus \alpha$; étant donné $\beta < \alpha$, choisissons A' tel que $t(\overline{a}/A')$ dévie sur A et $RU(\overline{a}/A') > RU(\overline{a}/A \cup \{\overline{b}\}) \oplus \beta$ et plaçons A' de façon que $t(\overline{b}/A' \cup \{\overline{a}\})$ ne dévie pas sur A $\cup \{\overline{a}\}$; distinguons deux cas :

- (i) $t(\overline{b}/A!)$ dévie sur A; $RU(\overline{a}/A) > RU(\overline{a}/A! \cup {\overline{b}}) \oplus \beta$, d'où, par hypothèse de récurrence, $RU(\overline{b}/A) > RU(\overline{b}/A) > RU(\overline{b}/A! \cup {\overline{a}}) + \beta = RU(\overline{b}/A \cup {\overline{a}}) + \beta$.
- (ii) $t(\overline{b}/A^{\bullet})$ ne dévie pas sur A ; le type de A' sur A \cup $\{\overline{b}\}$ ne dévie pas sur A ; mais le type de A' sur A \cup $\{\overline{a}\}$ dévie sur A : il est donc nécessaire (suivez les bornes !) que le type de A' sur A \cup $\{\overline{a}\}$ dévie sur A \cup $\{\overline{b}\}$, c'est-à-dire que $RU(\overline{a}/A^{\bullet}\cup\{\overline{b}\})$ < $RU(\overline{a}/A\cup\{\overline{b}\})$, d'où

$$RU(\overline{a}/A^{\dagger}) \ge RU(\overline{a}/A^{\dagger} \cup \{\overline{b}\}) \oplus (\beta + 1)$$
,

et par hypothèse de récurrence :

$$RU(\overline{b}/A) = RU(\overline{b}/A') > RU(\overline{b}/A' \cup \{\overline{a}\}) + \beta + 1 = RU(\overline{b}/A \cup \{\overline{a}\}) + \beta + 1 .$$

Dans tous les cas de figure $RU(\overline{b}/A) > RU(\overline{b}/A \cup \{\overline{a}\}) + \beta$, d'où le résultat par continuité à droite de la somme.

Remarque. - On a utilisé la stabilité de $t(A^{\bullet}/A)$, mais on peut toujours la supposer.

THEORÈME 4. — Si $t(\overline{a}/A \cup {\overline{b}})$ est superstable, $RU(\overline{a}/A) \ge RU(\overline{a}/A \cup {\overline{b}}) + \omega^{\alpha}$ n implique $RU(\overline{b}/A) \ge RU(\overline{b}/A \cup {\overline{a}}) + \omega^{\alpha}$ n .

Scholie. - Ce théorème généralise la symétrie de la déviation : si \overline{b} fait dévier \overline{a} au moins ω^{α} n fois, \overline{a} fait dévier \overline{b} au moins ω^{α} n fois.

Si $\alpha=0$, $RU(\overline{a}/A\cup\{\overline{b}\})+n=RU(\overline{a}/A\cup\{\overline{b}\})\oplus n$; sinon ω^{α} n est limite et pour tout β qui lui est strictement inférieur $RU(\overline{a}/A\cup\{\overline{b}\})+\omega^{\alpha}$ n > $RU(\overline{a}/A\cup\{\overline{b}\})\oplus \beta$; d'eù le résultat d'après le théorème précédent.

3. Déviation des ensembles indépendants.

On considère un ensemble de paramètres A , et des éléments (ou des uples) a_{β} , pour $\beta<\alpha$; $A_{\beta}=A\cup\{\dots a_{\gamma}\dots\}$ pour $\gamma<\beta$; je rappelle que les a_{β} sont dits indépendants au-dessus de A si pour tout β , $t(a_{\beta}/A_{\beta})$ ne dévie pas sur A ; cela revient au même de dire que pour tout $\beta<\alpha$, $t(a_{\beta}/A_{\alpha}-\{a_{\beta}\})$ ne dévie pas sur A , donc que cette notion est indépendante de l'énumération choisie ([1], exposé n° 5). On remarquera que si on regroupe les éléments d'un ensemble indépendant en paquets de uples, on obtient un ensemble de uples indépendants (toujours pour la même raison : $t(\overline{a^*b}/A^!)$ dévie sur A si, et seulement si, etc. ...).

Soit \overline{b} un uple de paramètres, et appelons p_{β} le type de \overline{b} sur A_{β} ; une application aisée de la symétrie de la déviation nous avait permis de montrer que si $t(a_{\beta}/A \cup \{\overline{b}\})$ dévie sur A, alors $p_{\beta+1}$ est extension déviante de p_{β} ; donc si $t(\overline{b}/A)$ est superstable, le nombre de ces a_{β} est fini, et même, dans le cas où $RU(\overline{b}/A)$ est fini, majoré par ce dernier. Le théorème suivant montre que même lorsque $RU(\overline{b}/A)$ est infini, à condition que tous ces $t(a_{\beta}/A)$ soient superstables, leur nombre peut être majoré en fonction seulement de $RU(\overline{b}/A)$.

THEOREME 5. - Soit S un ensemble indépendant au-dessus de A , tel que, pour tout a de S , t(a/A) soit superstable ; soit \overline{b} tel que $RU(\overline{b}/A) = \omega^{u} n_{u} + \cdots + \omega^{1} n_{1} \text{ avec } \alpha_{u} > \cdots > \alpha_{1} ,$

et que, pour tout a de S, $t(a/A \cup \{\overline{b}\})$ dévie sur A. Alors S a strictement moins de $(n_u + 1)$... $(n_1 + 1)$ éléments.

On montre par induction sur i que si S satisfait les hypothèses du théorème et a $(n_{\underline{i}}+1)$... $(n_{\underline{i}}+1)$ éléments, alors $\text{RU}(\overline{b}/A \cup S) < \omega^u$ $n_{\underline{u}}+\ldots+\omega^{\underline{i}+1}$ $n_{\underline{i}+1}$; cela donne bien la conclusion du théorème car s'il existait un S de cardinal $(n_{\underline{u}}+1)$... $(n_{\underline{i}}+1)$, on devrait avoir $\text{RU}(\overline{b}/A \cup S) < 0$:

Pour i = 1; si $a_j \in S$, par symétrie $t(\overline{b}/A \cup \{a_j\})$ dévie sur A, et à cause de la forme de $RU(\overline{b}/A)$, $RU(\overline{b}/A) \geqslant RU(\overline{b}/A \cup \{a_j\}) + \omega^1$; donc d'après le théorème 4, $RU(a_j/A) \geqslant RU(a_j/A \cup \{\overline{b}\}) + \omega^1$; vu l'indépendance de S, $RU(a_j/A) = RU(a_j/A_j)$, et par conséquent $RU(a_j/A_j) \geqslant RU(a_j/A_j \cup \{\overline{b}\}) + \omega^1$; une nouvelle application du théorème 4 donne alors $RU(\overline{b}/A_j) \geqslant RU(\overline{b}/A_j \cup \{a_j\}) + \omega^1$. Le type de \overline{b} dévie donc $n_1 + 1$ fois d'au moins ω^{α_1} ,

$$RU(\overline{b}/A) \ge RU(\overline{b}/A \cup S) + \omega^{\alpha_1}(n_1 + 1)$$
,

d'où le résultat.

Le passage de i à i + 1 se fait ainsi : on découpe S en n_i + 1 paquets de cardinal $(n_{i-1}+1)$... (n_1+1) , soient \overline{a}_1 , ... , \overline{a}_j , ... ; par hypothèse d'induction $RU(\overline{b}/A \cup \{\overline{a}_j\}) < \omega^{u}$ n_u + ... + ω^{i+1} n_{i+1} , donc

$$RU(\overline{b}/A) \ge RU(\overline{b}/A \cup {\overline{a}_{i}}) + \omega^{\alpha_{i+1}}$$
.

On en déduit comme précédemment, par un aller et retour du lemme de symétrie de Lascar, que chaque paquet fait dévier le type de \overline{b} d'au moins ω^{α} i+1 fois, d'où le résultat.

4. Applications.

4-A. Types de rang U ω^{α}

PROPOSITION. - Soient A un ensemble de paramètres, a de rang U ω^{α} sur A, et B un ensemble d'éléments tous de rang U strictement inférieur à ω^{α} sur A; alors le type de a sur A \cup B ne dévie pas sur A.

Si ce type déviait, il dévierait à cause d'un ensemble fini $\bar{b} = \{b_1, \dots, b_n\}$ d'éléments de B; donc d'après l'inégalité de Lascar,

 ${\tt RU}(a/A) < {\tt RU}(a'A) < {\tt RU}(a/AU\{\overline{b}\}) \otimes {\tt RU}(b_1/A) \otimes \ldots \otimes {\tt RU}(b_n/A) \ ;$ c'est impossible car ω^{α} n'est pas somme naturelle d'ordinaux strictement inférieurs.

Cette proposition permet de faire une théorie de la dimension : soit B un ensemble d'éléments tous de rang U égal à ω^{α} au-dessus de A ; on montre alors sans peine que les ensembles indépendants sur A maximaux extraits de B ont tous même cardinal, car on a les propriétés de réfléxivité, extension-finitude, symétrie de la dépendance, et en outre, à cause de la proposition ci-dessus, également la transitivité (voir exercice 14, 1978). Exemples de cette situation : $\alpha=0$, $\omega^{\alpha}=1$: dimension d'une formule fortement minimale, base d'un espace vectoriel, base de transcendance d'un corps ; $\alpha=1$, $\omega^1=\omega$: base de transcendance différentielle d'un corps différentiel.

On peut aussi démontrer à peu de frais que si T est ω_1 -catégorique, tous les types sont de RU fini (ce qui est beaucoup plus faible que le résultat de Baldwin); en effet, sinon on aurait un modèle M dénombrable, avec un type p de RU égal à 1 , et un type q de RU égal à ω ; formons la suite de Morley S de p de longueur $\lambda > \omega$, et prenons le modèle premier N au-dessus de M \cup S : tout élément de N a un type isolé sur M \cup S , qui ne peut cohériter de sa restriction à M que si cet élément est dans M , donc (air connu) tout élément de N - M a un type sur M \cup S qui dévie sur M ; d'après la proposition, q est omis dans N , qui est un modèle non saturé de cardinal λ .

4-B. Nombre de modèles dénombrables d'une théorie superstable.

THÉORÈME 6 (LACHLAN, LASCAR). - Soit T complète, dénombrable, superstable, non ω -catégorique; T a une infinité de modèles dénombrables deux à deux non isomorphes; plus précisément, il existe une suite \mathbb{M}_n , $n \in \omega$, de modèles dénombrables de T telle que \mathbb{M}_n se plonge (élémentairement) dans \mathbb{M}_m si, et seulement si, $n \leq m$.

1° Si pour un certain N , $S_N(\emptyset)$ n'est pas dénombrable, on prend $^M\!O$ dénombrable, $^M\!O$ extension élémentaire dénombrable de $^M\!O$ réalisant un N-type omis par $^M\!O$, etc. ...

2º On suppose donc que pour tout N , $S_N(\emptyset)$ est dénombrable, ce qui revient à dire que pour tout \overline{a} fini $S_1(\overline{a})$ est dénombrable ; d'après le théorème de Baire, pour tout \overline{a} fini les types isolés de $S_1(\overline{a})$ sont denses, et on n'a aucun mal à construire un modèle atomique premier sur \overline{a} (à la nième étape, satisfaire le test de Tarski pour chacune des n premières formules de chacun des ensembles de paramètres finis introduits précédemment).

Comme T n'est pas w-catégorique, pour un certain N , S_N est infini et contient un type p non isolé ; soit $\overline{a_1}$, $\overline{a_2}$, ... , $\overline{a_n}$, ... une suite indépendante de réalisations de p , par exemple la suite de Morley d'un type fort étendant p , et soit M_n le modèle premier sur $A_n = \overline{a_1}, \overline{a_2}, \ldots, \overline{a_n}$; tous les uples de M_n ont un type isolé sur A_n , et ceux qui réalisent p ont un type sur A_n qui dévie sur \emptyset (Théorème de l'application ouverte : voir appendice ci-après) ; donc, d'après le théorème 4, il existe un entier k , qui ne dépend que de $RU(A_n/\emptyset)$, tel que M_n ne contienne pas de suite indépendante de réalisations de p de longueur k : pour j > k , M_j n'est pas isomorphe à une restriction élémentaire de M_n

On n'a alors aucun mal à extraire de la suite \mathbf{M}_n une suite ayant la propriété demandée.

Remarque. - Il suffit d'avoir p superstable et non isolé dans $S_N(\emptyset)$ pour avoir le résultat ; on remarquera que si T est superstable et non ω -catégorique, un modèle atomique sur un ensemble fini ne peut réaliser tous les types absolus.

4-C. Les modèles dénombrables d'une théorie ω_1 -catégorique.

Nous savons (exposé 3) que si T est ω_1 -catégorique, il existe une formule minimale $f(x,\overline{b})$, à paramètres \overline{b} de type isolé dans $S(\emptyset)$, et que les modèles se décrivent ainsi : on prend une réalisation de \overline{b} dans M, une suite indépendante $A = \{a_0, \ldots, a, \ldots\}$ maximale dans la formule minimale, et alors M est le modèle premier sur $A \cup \{\overline{b}\}$. Si A est de cardinal $\lambda > \omega$, on obtient ainsi l'unique modèle de cardinal λ ; si A est dénombrable, on obtient le modèle dénombrable saturé M_{ω} ; c'est évidemment le seul modèle dénombrable si T est ω -catégorique, ce qui signifie que la suite \overline{b} , a_0 , ..., a_n , ... est atomique sur \emptyset .

Sinon il existe un plus grand entier k tel que la suite \overline{b} , a_0 , ..., a_k soit atomique, et elle doit bien sûr être présente dans tous les modèles. Appelons alors M_0 le modèle premier sur \overline{b} , a_0 , ..., a_k (c'est le modèle premier sur \emptyset), M_1 le modèle premier sur \overline{b} , a_0 , ..., a_k , a_{k+1} , ..., M_n le modèle premier sur b, a_0 , ..., a_{k+1} , ... Nous sommes sûrs d'avoir ainsi décrit tous les modèles, et dans le cas où f est sans paramètres, nous voyons que $M_n \neq M_m$ si $n \neq m$; mais si f a un paramètre \overline{b} , il se pourrait que pour une autre interprétation \overline{b} de ce paramètre M_n apparaisse comme isomorphe à M_m , avec $n \neq m$ (ω est exclus car M_n n'est pas saturé); en fait, cela est impossible, et tous nos M_n sont distincts d'après la proposition suivante :

PROPOSITION. - Si M est un modèle dénombrable non saturé d'une théorie ω_1 -catégorique, M n'a pas de restriction élémentaire propre qui lui soit isomorphe.

(La proposition montre bien que $\, {\rm M}_n \neq {\rm M}_m \,$ si $\, n < m$, car $\, {\rm M}_n \,$ est visiblement restriction de $\, {\rm M}_m \,$.)

Supposons donc que $M=M_n$ ait une restriction isomorphe propre M^1 ; soit \overline{b}^1 l'image de \overline{b} par cet isomorphisme : comme $f(x , \overline{b}^1)$ n'a pas de paires de Vaught, il y a dans $M-M^1$ des éléments qui la satisfont, et M a une restriction isomorphe à M_{n+1} . Il en est de même de M^1 , et M a une restriction propre isomorphe à M_{n+1} , donc aussi une restriction isomorphe à M_{n+2} , etc. : si $m \geqslant n$, M_m se plonge élémentairement dans M_n .

Mais alors les modèles dénombrables de T sont M_0 , ..., M_{n-1} , M_{ω} , plus tous ceux de la forme M_{n+s} qui se plongent les uns dans les autres : on contredit la conclusion du théorème 6.

Appendice. Le théorème de l'application ouverte

THEOREME 7. - L'application restriction de l'espace des types forts St₁(A) dans l'espace des types S₁(A) est ouverte.

Nous savons que si Ω et Ω^1 sont deux types forts qui se projettent sur le même type p, il existe un automorphisme σ , conservant les types sur A, de $St_1(A)$ tel que $\sigma\Omega=\Omega^1$. Si donc 0 est un ouvert de $St_1(A)$, le complémentaire de sa projection est la projection de l'intersection des complémentaires des σ^0 , où σ parcourt l'ensemble des automorphismes de $St_1(A)$ qui conservent les types; ce dernier ensemble est fermé, donc compact, et sa projection est fermée.

THÉORÈME 8 (dit de l'application ouverte, de LASCAR). - T stable ; soient $A \subset B$ deux ensembles de paramètres, X le fermé de $S_1(B)$ formé des types qui ne dévient pas sur A ; alors la restriction à X de l'application-restriction de $S_1(B)$ sur $S_1(A)$ est ouverte.

Si B est un modèle, c'est une conséquence du théorème 7 car la restriction de $S_1(\mathbb{M})$ sur $St_1(\mathbb{A})$ induit un isomorphisme de X sur $St_1(\mathbb{A})$ (Application bijective continue de X vers $St_1(\mathbb{A})$: par compacité l'application réciproque est continue); sinon on considère un modèle M contenant B, et Y les types sur M qui ne dévient pas sur A: si O est un ouvert de X, son image réciproque O'est un ouvert de $S_1(\mathbb{M})$; la projection de O' dans $S_1(\mathbb{A})$ est ouverte, et c'est aussi la projection de O.

COROLLAIRE. - T stable ; A \subset B ; si p \in S₁(B) est isolé et ne dévie pas sur A , p/A est isolé dans S₁(A) .

BIBLIOGRAPHIE

[1] Groupe d'étude de Théories stables (Bruno POIZAT), 1re année, 1977/78. - Paris, Secrétariat mathématique, 1978