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Séminaire de Théorie des Nombres 
Année 1970-1971 - exposé n° 11 

RECIPES FOR SOLVING DIOPHANTINE PROBLEMS 
BY BAKER'S METHOD 

by 

W. J. ELLISON 

§. I. - In recent years Alan Baker has proved a remarkable series of theorems 

about the maximum magnitude of the integral solutions to a wide class of d io-

phantine problems. A typical example is the following theorem. 

THEOREM. If_ k / 0 is an integer, then all integral solutions (x, y) of the 
2 3 

diophantine equation y = x + k satisfy the inequality 
4 

max { | x j , | y | } * exp ( W l * 0 ) . (1) 
Thus, in principle, a constructive algorithm for find all the integral 

solutions of the above equation for a given value of k would be : "Try all pos 

sible values of (x, y) which satisfy ( l ) ! l . 

Needless to say, this could never be done in practice for any given 

value of k . 

Here is another example of one of Baker 's theorems. 



11-02 

THEOREM. If_ d is a positive integer such that : 

(1) The field Q( / /^d) has class number 2 

a n ( ^ (2) The field has even discriminant, d ^ 1 0 ^ ^ . 

Again, n i n principle", one can use this result to find all complex 

quadratic number fields with class number 2 and even discriminant, by-

testing each value of d ^ 1 0 ^ ^ . But of course this simple procedure cannot 

be carried out in practice. 

Whenever Baker's method is applied to a diophantine problem one 

always reduces the problem to that of finding all the integral solutions 

{ b ^ , . . . , b^} of an inequality of the type 

0 < |b_ log CL+. . . +b log a | < e " & H , (2) 1 1 n n 

where H = max {jb | , . . . , jb^J } and {a , . . . , 0 , ^ } are given algebraic numbers 
and 6> 0 is a given real number. 

There will be a simple relationship between the integral solution of 

(3) and the integral solutions of the original diophantine problem. 

Baker [ ] has given an explicit upper bound for the possible magnitude 

of H in (2). His theorem is a follows. 

THEOREM. For n ^ 2 let 0L, , . . . , CC be non-zero algebraic numbers whose  I n Q 

heights and degrees do not exceed A and d respectively, where A > 4 , d ^ 4 . 

Furthermore, suppose that 0 < 6 ̂  1 . If rational integers { b ̂ , . . . , b } exist  

such that 

0 < I b j log 0 ^ + . . . + b n log a | < e " 6 H , (3) 

where H ^ max { j b | , . . . , |b j , then 
1 n ' 

0 £ H £ (4 o d log A) . (4) 

So, in solving a specific diophantine problem by Baker ' s method, 

the real problem is to find all the integral solutions of an inequality of type 

(3) where H is in the range (4). This is a non-trivial problem,, Even in the 
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simplest case when n = 2 and a , a ? are quadratic irrationals the upper 
3 0 0 

bound for H given by ( 4 ) is about 10 (which is greater than the cube of the 

number of atomic particles in the observable Universe 11). 

To-day I wish to show you that for any specific diophantine p ro 

blem to which Baker's method is applicable one can always find all the inte

gral solutions of the corresponding inequality of type ( 4 ) . Of course one does 

need an electronic computer, but the computation time needed is quite small ; 

it is only a matter of minutes rather than hours or days, . . . 

§. II. - From now on I am going to consider the following problem. 

"Given real numbers 6, , . . . , 8 and C> 1 , K> 1 find all integers 
I n 

{b , . . . , b } which satisfy 1 n 

I b . e . + . . . + b e I < K ~ H , 
1 1 n n 

where H = m a x f j b j , . . . , lb } and H lies in the range 
1 n 

0 ^ H £ C . , ! 

To fix ideas about the numerical quantities involved in a specific 

problem one can expect K to always be about 2 , for n = 2 , C is about 
3 0 0 7 0 0 2 0 0 0 

10 ; for n = 3 , C is about 10 ; for n = 4 , C is about 10 

The simplest case is n = 2 , 8 = 0 , ^ = 1 . (This is the case which 

arose when Baker proved that all complex quadratic fields Q(*f-d) with class 

number 2 and even discriminant satisfy d ^ 1 0 ^ ^ ) . 

The inequality which we are to consider is 

| e b + b | < K " H with O ^ H ^ C U i o 3 0 0 ) . ( 1 ) 

We recall a classic lemma of Legendre about continued fractions, 

LEMMA. ( l ) If_ 0 is a real number and p /q is a rational approximation to 

0 which satisfies 

then p /q occurs as a convergent in the continued fraction expansion of 0 . 
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(2) If p / q is a convergent in the continued fraction expansion of 

G and a is the corresponding partial quotient, then the following inequalites  

hold 

- L — 2 < | e - ^ - l < - L - 2 -
(a , + 2)0 n a , . q v n+1 n n+1 n 

We now write inequality ( l ) as 

If |b I is sufficiently large, say jb | ^ C , we have 
| b , | 

2K 1 > | b j 

and so _ j b | 

K 1 __L 

2 | b l | 2 ' 

lo 
A possible value for C is ^ , but in a numerical case one can 

o log K 
usually take to be smaller than this quantity. 

Thus, for values of ( b , , b 1 which satisfy ( l ) and C £ b . 
1 2 o 1 

we know, by Legendre's lemma, that b^/b^ must occur as a convergent in 

the continued fraction expansion of 0 and that the corresponding partial quo

tients must satisfy | 

1 K ] _ 

( a n + 1 + 2)bf < | b j 

or | b | C 
K 1 , K ° 0 

1' o 
K x -1 since the function —— is increasing for x > (log K) and we are assuming 

|b | * c . X 

1 l 1 o log K 
(In a numerical case the lower bound for a will be quite large, 
10, 

about 10 ) . 
So in order to check the range C £ |b | £ C for possible solutions of 

o 1 

( l ) we merely evaluate the continued fraction expansion of 0 until the deno

minators of the partial convergents exceed C . Then we check to see if any 

large partial quotients have occurred. If all the partial quotients are less than 
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C 
K ° 

— " 2 ) then there are no solutions of the inequality (1) with jb^| in the 
° K C ° 

range C £ |b I . However, if some partial quotient does exceed ( -2) o 1 

then we must test the corresponding partial convergent p / q to see if 

the inequality is indeed satisfied. 

For values of | b^ | in the range 0 ̂  |b^ | ^ one can test the ine -

quality direct ly , since is only about 300 . 

It was in this way that Baker's method was used to find all complex 

quadratic fields with class number 2 and even discriminant. The computation 

took about 90 seconds. 

One can extend this reduction technique to the n variable case, but 

the amount of work which the computer is forced to do increases very quickly. 

A possible reduction method when n = 3 is as follows. 

We wish to find all integral solutions to the following inequality 

o < I b ^ ^ b 2 e 2 + b 3 l < K " H ( i ) 

with ^ ^ t t _ , , 700 . . x 

0 £ H <> C (~ 10 ) . (2) 

Let ( p j /q , P 2 / C 1 ) be rational approximations to (6j>6 2) which 

satisfy 
p. , 

| e . - — I = k | < 7 -77 for 1 * 1 * 2 . 
1 q 1 2 q C 

2 

(By Dirichlet 's theorem such approximations do exist if we allow q > 4C 

and there are several practical computational methods of finding them, though 

none of them are very efficient)„ 
We can write ( l ) as 

o < | b 1 ^ + b l V b 2 ^ + b 2 u , 2 + b 3 | < K " H 

or 

0 < | b 1 p 1 + b 2 p 2 + b 3 q + b l q ( j Q 1 + b 2 q a ) 2 l < q K ~ H 

If C is such that q K ~ H < l ( i . e . C >]°& ̂  will do) , then if o o log K 

{ b j , b 2 , b^} satisfy ( l ) with, H in the range * H * C we must have 

b l P l + b 2 P 2 + b 3 q = ° a n d ' b l U U l + b 2 U D 2 ' < K H ' 
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since kjPj + ^2?2 + ^3 ̂  is an integer and 

| b i q « » 1 + b2qu)2l*: | b 1 q a . 1 l + | b 2 q U , 2 l < i ^ . + ^ r = 1 . 

We can now find all the integral solutions to |b uo + b tjo | < K ^ 

by using the previons reduction process and hence we find all the integral 

solutions to (l) which satisfy C ^ C . For values of H £ C it is very 7 J o o 
easy to do a direct search. 

The above reduction process does work, but it would be desirable to 

find a more efficient method. So far, the above technique has not been used 

to solve any specific diophantine problems. 

When one uses Baker's method to find all the integral solutions of an 

equation of the form f(x, y) = k , where f(x, y) is a binary form of degree n 

with integral coefficients, then the diophantine inequality which one obtains is 

inhomogenous. It is of the form 

0 < j b . log a. + . . . +b .log a _ -log a | < e 6 H , 
1 1 n -1 n -1 n 

where 
0 £ H £ C . 

The first non-trivial case is n = 3 and the following lemma can be 

used to reduce the upper bound for H f m C to about log C . 

i 

LEMMA. Suppose that 0 > 3 , K > 1 are given real numbers and that 
C , B > 6 are given positive integers. Let p, q be integers such that 

1 £ q ^ B C and |qe- p | £ . 

Then if ||q g|| ^ — there are no solutions in integers b , b of the inequality 
.D 1 Cd 
o < |b 1 e +b 2 p| < K " H 

with H satisfying 

log K 

p i i 2 Proof. - Let 0 = uu , where |u) £ ~ — . We have - - - - - - - q qBC 

0 < |b q 0 + b 2 q - qp| < q K ~ H £ B C K ~ H 
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° r 0 < | b i P + b 2 q + b j q uu - qp | < BC . K " H . 

Because ||q(3 || £ |- and since |b quu| ^ ^ 2 = ^ it follows that 
Jo 1 B U q B 

llbjqil) -q P II • 

This implies that 

^ * j b l P + b 2 q + b i q u ) - q a | < B C K " H 

i. e. : I S B 2 C. K " H 

or , / T , 2„ , 
H S iHKi^cl . 

log K 

In order to apply this lemma in a numerical case, one is given 0, 3 

and one can compute p , q with the required property by the usual continued 

fraction algorithm. Once one has found q it is then a very simple matter to 

test whether or not ||(3 q|| ^ — . If the test is satisfied we have a very much 

smaller upper bound for H . We can either apply the lemma again or do a 

direct test of all the possible values of (b , b ) . In numerical cases one can 
1 700 

usually reduce the upper bound for H , which is initially about 10 9 to 
about 20 by two or three applications of the lemma. 

However, if ||q g|| ^ — then all is not lost, for we do know that if 

log K 
-H 1 

then B C K < 1 and that 11> q a)j < ~ and q ¡3 = c + e , where c is an 
3 1 2 

integer and j e j ^ - . And we can conclude that b p + b q - c = 0 , since 
B 1 2 

b p+b q - c is an integer with absolute value less than 1 . 

So in this exceptional case we have 
b^p = -c (mod q) . 

This congruence has two solutions (mod q) with 0 < |b^| ^ q which 

we can find quite easily. But we know that |b^| £ C and if q > C it means 

that these two solutions of the congruence are the only possible values of b^ 

which satisfy 

1 Q S ( B 2 C ) S |b I * C 
log K 1 l 1 
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and H 

Ib 1 e + b 2 - p | < K* . 

We must test these two values of to see if, in fact, they do satis

fy the two inequalities. 

Perhaps I ought to mention that the condition ||q — has never 
B 

failed in any of the numerical calculations. We have had C ~ 10^^ a n c j 
20 II n B ~ 10 . The computed values of ||q g|| have never been less than 0. 01, 

usually they were 0. 2 ; 0. 1 , etc. 

As before it is possible to extend this reduction technique to the n 

variable case. I shall only give the case n = 4 . 

4 2 LEMMA. Let C , B > 10 be given integer with B > C and let 

0 ^ , 0^ , (3 , K > 1 be given real numbers. If p^ , p , q are integers such 

that 
l P i | 2 

l £ q £ B C ; |e.-—1< r r - for i = 1,2 , 
then_if_ , 1 q ^ ~ ~ 

l lqell>-T74- d) 
B 1 

there are no solutions of the inequality 

' b l 9 l + b 2 6 2 + b

3 " Pi < K " H ( 2) 

with H satisfying 
1 ° " ( B

K

5 / 4 C ' « H « C . (3) 
log K 7 • 

Pi , , 2 Proof. - Let 0. - —•= u). , where u). ^ rrr and substitute into (2) . 
- — 1 q 1 1 ( b o 3 / 2 

We obtain x 

' b l P l + b 2 P 2 + b 3 q + b i q U U l + b 2 q "V q3 I < q K ~ H ^ B C K " H . 
Now 

I , I „ B C 2 2 C.l /2 2 . „ , 2 
, q b i u , i l ~~ 2 ( T } < H 7 T • B i n c e 

( B C ) B 
ii ii 5 

and by hypothesis ||q (3 || > —JTTJ , so as before we have 
B ' 

^ ( B C ) K " H 
B 7 
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which implies that 

log K 

If the inequality (l) does not hold then we have q |3 = c + e , where c 

is an integer and |ej < S / B } ^ . If there Ĵ s a solution of (2) with H in the 

range (3) then we certainly have 

jq iwj < ~ and |q uuj < ~ . 

This implies that 

b p + b p + b q - c = 0 1F1 2 P2 3 4 

a n d H 
) b i quu i + b 2 quu 2 - e| < (B C)K . (4) 

We can now use our previous reduction process to find all the integral 

solutions of (4) with H in the range (3) . 

Again we remark that inequality (l) has never failed in any numerical 

case which has been tested. 

§. III. - So for I have not spoken about the computing techniques which must 

be used in order to apply the above reduction methods. First of all one must 

have an electronic computer to-gether with efficient multiprecision arithmetic 

routines, for we are calculating with numbers which may be several thousand 

decimal digits long. Writing such a set of programs is fairly straightforward 

but rather labourious. I have such a program suitable for an I. B. M. 360/67 

machine. If anybody wants a copy of it I will gladly send them a copy0 

Once one has a multiprecision package the computation of the algebraic 

numbers [cc^, . . . > a

n }> which are roots of polynomial equations, is simple and 

well known, One uses the Newton approximation method. 

However we must also compute {log , . . . , log a j and it seems 

that a very efficient way of doing this is less well known, The standard text

books on Numerical Analysis suggest either using a modified series expansion, 

of log (l+x) or using a continued fraction expansion, due toThiele. The methods 

are very useful when one only need the logarithm correct to about 16 decimal 
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places. For higher accuracy they are both fairly inefficient. 

The method which we adopted in our calculations was as follows. 

Given the real number a , we require log a to several thousand decimal 

places, and we compute log a by solving the equation 0 = f(x) = e - a using 

the Newton approximation method. If one starts with a reasonable approxi

mation to log a , say to 10 decimal places, and arranges to take advantage 

of the nice properties of e , then one can compute log aQ to about 2000 

decimal places in 8 iterations. This will only take about 15 seconds compu

tation time. 

In a similar manner one can compute tan ^(a) , a function which is 

useful for computing the arguments of complex numbers. 

W. J. ELLISON 
U. E. R. de Mathématiques 

et d' Informatique 
Université de Bordeaux 1 
3 51, cours de la Libération 
33 - T A L E N C E 


