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On a new Wiener-Hopf factorization by Alili and
Doney

Philippe Marchal*

1 Introduction

Let S be a real-valued random walk starting at 0 and denote by (T,)nen the ladder
times of S, i.e. the successive times at which S reaches a new maximum: T, = 0 and
Th41 = inf{k > T,, Sy > Sg,}. Denote by H the ladder heights defined as usual by
H, = Sr,. One of the various formulations of the Wiener-Hopf factorization in this
setting is the celebrated Spitzer-Baxter identity [3]:

m=1

(1 - EB(rn e_“H‘)) = exp <Z %E(e”s"‘, Sy > 0)) (1)

for 0 <r <1and g > 0. An equivalent form is the following:
= 1y
P(S, € dx) —P(T,=n, Hyed >0
€ dz) ; 7P Ti=n, Hy € z), T

Alili and Doney [1] recently established the following refinement of this formula:
P(Ty =n,S, € dz) = kP(H-1 < S, < Hy, S, € dx) (2)

for all integers k,n > 0 and every real z > 0.
This can also be stated in terms of transforms. Set N, = min{k, Hy > z}, then
for all real 7, € [0,1) and 6 > 0,

n

Z T——E e SngNsn S > 0) = —log(1 - aE(rT‘e_"H‘))
n
n=1
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Taking o = 1, we recover (1). Two proofs of this result are given in [1]. One
is analytical, the other uses a path transform together with a well-known lemma by
Feller ([2], p. 412) involving all the possible cyclical permutations of the steps of
the random walk up to time n. Alili and Doney derive from (2) several results on
the asymptotic behaviour of the ladder variables, in the case when E(S;) = 0 and
var(S;) < oo.

The aim of this note is to prove (2) by means of another path transform, avoiding
the use of Feller’s lemma.

2 Proof

2.1 Two classes of paths

Fix z € R, and n € N. Conditioning on the steps X;, (1 < i < n) of S up to time n,
with 1" | X; = z, we consider all the possible n-step paths on R whose increments
are the X;’s, possibly in a different order. We shall use for these deterministic paths
the same notations T;, H; as above, and an n-step excursion of the reflected process
will refer to a path such that T3 =n.

To prove (2), it suffices to establish a one-to-one correspondance between two
classes of such paths.

o The paths satisfying Ty, = n, with a distinguished time a € {0,1,...n—
1}.

e The paths such that Ty < n, Hy_; < v < Hj, with a distinguished
ladder time T3, b € {0,1,...k —1}

The one-to-one correspondance is obtained by cutting each path into 5 parts.

For the first type, put ¢ = sup{j, T; < a}. Suppose T; # a. Let a’ be the first
time at which the path reaches its overall maximum between a and T;;; — 1. Then
the five parts are:

e (1) from 0 to T;

e (2) from T; to a

(
(2)

e (3) from a to '
(4) from a' to Ti4q
(5)

e (5) from T;4y to Ty =n

Particular cases If T; = a then parts (2) and (3) are suppressed. If a = a’ then part
(4) is suppressed. If Ty, = Ty then part (5) is suppressed. If k = 1 then parts (1)
and (5) are suppressed. It is a good exercise to check that no other particular case
can occur.

For the second type, let &' be the first time of the overall supremum between 0
and n. The five parts are:
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Figure 1: a path of the first type

T, (m<k) Ty, Ty

® ® @ o o

Figure 2: its transform
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1’) from 0 to T

2") from Ty to Ty_;

(1)
(2)

e (3) from Ti—; to Tk
(4) from Ty to ¥/
()

o (5’
Particular cases If T, = n then parts (4’) and (5’) are suppressed. If T = Tj_; then
part (2’) is suppressed. If ¥ = T} then part (3’) is suppressed. If k¥ = 1 then parts
(1’) and (2’) are suppressed.

2.2 The path transform

Let P, (resp P,) be a the set of paths of the first (resp. second) type. Then (2) is a
direct corollary of the following proposition:

Proposition 1 The transformation obtained by cutting a path of P, into five parts
as above, concatenating successively (1), (5), (4), (3) and (2), and distinguishing the
time T;, establishes a one-to-one correspondance between P, and P,.

The inverse transformation is obtained by dividing a path of P, into five parts,
concatenating successively (1°), (5°), (4°), (3’) and (2’), and distinguishing the time
T, + ('Il — bl).

Proof

We begin by proving that the first path transform effectively constructs a path of
the second type. We check that the two paths have the same steps, although in a
different order, and that the distinguished time T; is a ladder time with 0 < ¢ < k—1.
The new path has ¢ ladder times in part (1) and k£ — (i + 1) in part (5), so that the
(k—1)-th ladder time is at the end of part (5). Furthermore part (4) is by construction
an excursion of the reflected process, thus the k-th ladder time of the new path is at
the end of part (4).

Put h = S, — Sp,, W = S, — S,y b = Sp,,, — Su, S refering for the initial
path. Then since the concatenation of (2), (3) and (4) is an excursion of the reflected
process, the following inequalities hold: h + A’ + h" > 0 and A + A’ < 0. Denote by y
the value of the new path at the end of part (5), z the value of the new path at the
end of part (3), and recall that the final value is . Then the two inequalities above
entail y < z < z, which completes this part of the proof.

Next we show that we get by the second transform a path of the first type. Indeed
it suffices to show that the path E obtained by concatenating (5’), (4’) and (3’) is an
excursion of the reflected process, because then the concatenation of (1’), £ and (2’)
will have exactly k ladder times, the last being at time n.

Put i = Sy, — St,_,, ¢ = Sp — Sq,, ' = Sp — Sp, S refering for the initial
path. Then by definition of a path of the second type the following inequalities hold :
i+i'+i" >0, +1" < 0. We deduce from the second inequality that the path obtained
by concatenating (5') and (4’) is always negative, and from the first inequality that
E is a path whose last value is positive. But since part (3’) is an excursion of the
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reflected process and E has a negative value at the end of (4’), it cannot reach a
positive value before its endpoint. Hence E is an excursion of the reflected process.

The proof that the two path transforms are inverse of each other is left to the
reader, as well as the study of the particular cases. See figures 1 and 2 for the first
path transform.

Remark. Suppose that the random walk has integer increments and is right-
continuous, that is, the only possible positive steps have size 1. Then S, = Sy, for a
path of the second type. Consequently the part of such a path between Ty and n (i.e.
its restriction to (4’) and (5’)) is a bridge of the random walk. The exchange of the
pre- and post-maximum parts, obtained by putting (5’) before (4’) and constructing
by this manner a negative bridge, is exactly Vervaat’s transform.

Acknowledgements. I thank Ron Doney and Larbi Alili for some interesting dis-
cussions about this new Wiener-Hopf formula.
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