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ON A TRIPLET OF
EXPONENTIAL BROWNIAN FUNCTIONALS

Larbi ALILI ! , Hiroyuki MATSUMOTO and Tomoyuki SHIRAISHI

Abstract. We study the three-dimensional joint distribution of a Brownian
motion and the integrals of its exponential and its exponential squared from
some points of view. We show an explicit expression of the Laplace transform of
the distribution, which gives an extension of Yor’s result on the two-dimensional
one. We apply the result to some problems, in particular, to the calculation
of an explicit form of the heat kernel of the semigroup generated by the Maass

Laplacian on the Poincaré upper half plane.

1. INTRODUCTION

Let B = {B,t 2 0} be a one-dimensional standard Brownian motion starting from
0. In this paper we are concerned with the Brownian functionals of exponential type

a; and A; defined by

t t
(1.1) ay = / exp(Bs)ds and @ Ai= / exp(2B;) ds,
0 0

respectively. These functionals have recently been studied extensively by many au-
thors (see, e.g., (1], [3], [11], [15], [22] and [24]) in relation to mathematical finance,
Brownian motions on hyperbolic spaces, some disordered systems, generalized Bessel
processes and so on. In particular, the explicit form of the two-dimensional joint dis-
" tribution of (A, B;) is known by Yor [22] (see (2.3) in the next section) and it plays
important roles in those domains.

The purpose of this paper is to discuss the three-dimensional joint distribution of
(A, ar, B) and to show some applications; in particular, we will show an explicit
formula, which is of simpler form than Fay’s original expression ([6]), for the heat
kernel of the semigroup generated by the Schrédinger operator Hj with constant

magnetic field or the Maass Laplacian on the Poincaré upper half plane H2.

1Partially supported by the Austrian Science Foundation (FWF) under grant Wittgenstein-Prize
Z36-Mat.
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We will show explicit expressions of the Laplace transform

1
(1.2) Elexp (—-2—)\2At) ;a¢ € dv, By € dy, t>0,A>0,v>0,y €R,
and, equivalently,

1
(1.3) Elexp ()\ka,t - §A2At) |B; = y], keR,

by means of the density function of the Hartman-Watson law (cf. Yor [21]). By
the Feynman-Kac formula, the latter gives the heat kernel corresponding to the
Schrédinger operator HY, with the Morse potential V¥ on R defined by

1d2

1
— M M _ 2 2z T
H)\,k - _§d1'2 + ‘/,\,Iu V/\Yk(z) = ‘é)\ e“® — Ake®.

In [11], the close relation between Hy and H ,{"’k has been shown and, in particular, it
has been shown that H %c is obtained by a separation of variables from the operator
H, on H2.

The three-dimensional distribution has been considered by Leblanc [13] for the
study of some models, in particular of a stochastic volatility model introduced by
Hull and White [10], in mathematical finance and by Ikeda-Matsumoto [11] for the
study of Hy and H f\"’k mentioned above. They have considered the Laplace transform
(in time t) of the distribution or the Green functions for Hy by several methods. Alili
[1] has also studied it and has given an alternative decomposition via an exponential
formula of the excursion theory.

We will show a closed form for (1.2) by reducing the computations on the three-
dimensional distribution to those on the two-dimensional one and by using Yor’s
result. We need not consider the Laplace transform in time or the Green functions
for H f\"’k However, it should be noted that, starting from the explicit expressions of
the Green functions for H %c which are obtained by the general theory of the Sturm—
Liouville operators (see [11] and also Section 4) and using the integral representation
of a product of the Whittaker functions, we can also show our result for (1.2) by
analytic methods on the basis of (1.3). Furthermore we are able to carry out the
explicit calculations for the Laplace transform by using time change argument instead
of Yor’s result and to see the correspondence between the probabilistic and analytic
methods. Thus we approach our problem from several points of view and, in the

course of study, we obtain other proofs of Yor’s fundamental result.
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We end this Introduction by mentioning the organization of this paper. An explicit
expression for (1.2) will be given in the next Section 2 and the proof will be given in
Section 3. In Section 4 we will obtain a closed form of the heat kernel for H ,{"Ik by using
the result in Section 2. An important feature is that we can trace our way back, as
we shall see in Sections 3 and 4. We will show a closed form of the heat kernel for Hy
in Section 5. Other applications of our results, to the studies on the distributions of a
hyperbolic drifted diffusion process which appears in relation to generalized Bougerol
identity and of the asset process in the Hull-White model mentioned above, will be

given in Section 6.

2. MAIN RESULT

We first recall the Hartman-Watson distribution. For details, see Yor [21]. For

r > 0, the probability distribution 7,(du) on [0, 00) characterized by

(2.1) | ez mtan = 225,

is called the Hartman-Watson distribution, where I, is the usual modified Bessel

v>0

function. The probability measure 7,.(dt) has the density with respect to the Lebesgue

measure given by
8.(¢)
Io(r)

n-(dt) = dt,

where
r
)= ——
) (2m3t)172
For the distribution of the exponential functional A; given in the Introduction, Yor

[22] has shown

(2.2) 6. ( em /2 / e /21 g cosh(e) sinh(¢) sin(wé /t) dé.
0

1 2z
;f V0. so(t) dvdz, v >0,z €R,

1
(23) P(A;€edv,B,edz) = ;exp(—

which is also proved by modifying the arguments in Section 4. By the self-similarity of
Brownian motion, we may rewrite (2.3) in the following form which is more convenient

for our purpose:
(2.4) P(a; € dv, B; € dz) = (v, z) dvdz,

where
2(1+€%)
v

1
/(/"t(v1 .7}) = % exp(_ ) 6461/2/v(t/4)'



399

We set

_ 2)exp(z/2)

(255) ¢=od(v,z;\) = Smh(w/2) A>0,v>0z€R.

Then we show the following:

Theorem 2.1. For anyt > 0,A>0,v > 0,z € R, it holds that

E[exp(—%/\2At)|at =, B; = z] 1 (v, x)
(2.6)

= Em—h?,w—m exp (—A(1 + €%) coth(A\v/2)) 0,4(t/4).

3. PROOF OF THEOREM 2.1
In order to prove Theorem 2.1, we consider
1
It(’Y?ﬂ, A) = E[exp (’YBL‘ - ﬁat - 'é')\zAt)]v 77ﬂ S R7 /\ > 0,

and show that we can reduce the calculation for this Laplace transform of the three-
dimensional distribution to some formula which are calculated by using Yor’s result

(2.3) on the two-dimensional distribution. For this purpose we prepare two lemmas.

Lemma 3.1. For any locally bounded Borel function ¢ : [0,00) — R and A > 0, the
solution of the stochastic differential equation
dX; = dB; — Aexp(X; + ¢(t)) dt
is explicitly given by
X; = Xo+ B; — log (1 + )\/Ot exp(Xo + Bs + ©(s)) ds) .
Proof. We can prove the lemma by using It6’s formula, but we give another proof

based on the ordinary differential equation method. In fact, only the continuity of

Brownian motion plays a role here. We set Y; = X; — Xy — B;. Then Y; satisfies
dY; = —Xexp(B; + Y;) dt,

where 8, = Xo + B: + ©(t). Hence the process {Y;,t = 0} is absolutely continuous in

t and solves the equation

exp(—Y;)dY; = —Aexp(G;) dt.
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Therefore, since By = 0, we obtain

1—-exp(-Y;) = —)\/t exp(8,) ds.
0

The rest of the proof is easy. O

Lemma 3.2. Let {X;,t 2 0} be a one-dimensional Brownian motion starting from
0. Then, if X > 0, the stochastic process A* = {A},t = 0} defined by

t 4
(3.1) A} = exp (—)\/ exp(X,) dX, — %/\2/ exp(2X;) ds)
0 0

is a (true) martingale with respect to the canonical filtration.

Proof. The local martingale property of A* is easily seen. Moreover, Ité’s formula

yields
1 1 t
—-/\/ exp(X;) dXs — 5/\2/ exp(2X;) ds
0 0
1 T 1 1
= - (exp(Xt) -1- 5/ exp(X,) ds) - -2—/\2/ exp(2X,) ds
0 0
_ -lv/t exp(X)— L) ds+ et rexp(Xy)
-7t \FPWYTx) TR Pt
and

A} S exp(A+1/8 — Aexp(X,)) < exp(A +1/8),

which shows that A* is bounded on any bounded time interval. [

Remark 3.1. By using the result mentioned in McKean [14], Section 3.7, the martin-
gale property of A* corresponds to the conservativeness of the diffusion process given
as the unique solution of the stochastic differential equation dX; = dB; — Aexp(X;)dt
considered in Lemma 3.1. This gives another proof of Lemma 3.1 in this case and
shows that the local martingale A* is not a martingale if A < 0. For such “strict”

local martingales, see [5], [16] and the references cited therein.

Now let X = {X;,t 2 0} be a one-dimensional Brownian motion starting from 0
defined on a probability space (2, F, 13) and set F; = 0{X;, s < t}. Moreover, letting
A} be the martingale given by (3.1), we define another probability measure P by

dP|z, = A} - dP|y,.
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Then Lemma 3.2 implies that the stochastic process B = {B,t = 0} given by

t
B, =X, + /\/ exp(X,) ds
0

is a Brownian motion under P by the Girsanov—Maruyama theorem.

For a non-negative Borel function g on R, we set

J. = BP[g(By) exp (—Aexp(Bt) ~ fa, - -;-m)l.

By Itd’s formula, it is easy to show

J, = e *E¥[g(B;) exp (—)\ /t exp(Bs) dBs — (B + g) ay — —;—VAt)].
0

Then we obtain

Il

gi= Bl exp (~(6+3) [ explxi)ds))

= e EP[(1 + 4\Aya) "2V g(2B, )4 — log(1 + 4XAy4))],

where we have used Lemma 3.1 and the self-similarity of Brownian motion for the
second line.
Finally, setting
g(x) = exp(yz + Aexp(z)),

we have proved the following:

Proposition 3.3. For a Brownian motion B = {B;,t 2 0} and for anyt > 0,7,8 €
R, )\ > 0, it holds that

Aexp(2B
(32)  L(y,8,)) = e E[(1 + 4AAy )"V exp (27Bt/4+ exp( ‘/“)).

1 + 4)\At/4

Now the proof of Theorem 2.1 is easy. We recall Yor’s result (2.3). Then we have

00 2y
L(v,B8,\) = e"’\/ dy/ du (14 4 u) ™7 V2B A exp (273/ + Ae )
rR Jo

1+4)\u

1 1+e%
X —exp (— o )Oey/u(t/4).

Changing the variables (y,u) into (z,v) by

_w+x _exp(Av) —1
= B and u = —r,
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we obtain

(.8, / erde / e v 4s1nh?/\v/ 2)
X exp(—A(1 + %) coth(\v/2))0,(t/4)
and, consequently, (2.6) by the uniqueness of the Laplace transform.

In order to show the correspondence to an analytic proof of (2.6) given in the next
section, we give another probabilistic proof by calculating the Laplace transform in
time ¢ of both hand sides of (3.2) instead of using Yor’s result (2.3). The assertion
of the following proposition is equivalent to that of Theorem 2.1 by virtue of the

uniqueness of Laplace transforms.

We set
G.(7,6,\) = /000 exp(—%rﬂt)[t(y, B, A) dt, v >0,

and
Uy (y,v;A) =

where ¢ is given by (2.5).

m exp(—A(1 + e¥) coth(\v/2)) L, (¢),

Proposition 3.4. For any v > 0, it holds that
(3.3) Gu(7,8,)) = -/Rew dy /000 e 0, (y,v; \) dv
Proof. We first recall the Lamperti relation (see [20], p.452): there exists a two-
dimensional Bessel process R = {R;,t = 0} starting from 1 such that
exp(B;) = Ra,, t20.
Then, by (3.2), we obtain

Gu(’yaﬁv )‘) = 46_)‘/ exp(—2u2t) dt
0

B
X E[(1 4 4A\A,) V25X expy <2th + ’\Lp@—t)) ]

1+4XA,;
= 46_)‘/ (14 4Xs) ™77 Y2B/2 (g
0

_ A(R)?
2y-2 —_9,,2 S
x E[(Rs) exp ( 2v°Cs + 7 +4)\s)]’

where C; is the inverse function of s = A, given by

= / ®X
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Note that there exists a complex Brownian motion Z = {Z; = Zt(l) +v —1Zt(2),t 2
0} with Zo = 1 and a continuous process ® = {®;,t 2 0} with &, = 0 such that

Z, = Riexp(V—1®,), t20.

® is the total winding of Z about 0. Moreover we recall the following formulae (cf.

Pitman-Yor, [18], [19]): for r,s,a > 0,

Elexp(v/—1a®,); R, € dr] = E[exp(—%oﬁcs); R, € dr]

1472 r.rdr

= - Ia -) .
exp( 5s ) (s) -
Then we obtain
* d
GV(’Y’ﬁ? A) = 46—)‘/ (1 +4)\5)"7_1/2_ﬂ//\ ?S
0
* )‘72 1+T2 r
o - ) L) dr
X/o T exp(1+4>\s % > 2,,(3) r

Finally, changing the variables from (s,) into (y,v) by

s exp(\v) — 1,

- 4)g)/2eY/2
r=(1+4Xs)/e and 75)

we obtain (3.3). O

4. SCHRODINGER OPERATORS WITH MORSE POTENTIALS

For A > 0 and k € R, we consider the Schrodinger operator H, f\‘j’k on L}(R) with
the Morse potential V}} given by

1 d?

2 dz?

For the motivation about the study of this operator and its close relation to the Maass

1
HY, = + Vi, Vii(z) = —2-)\262’” — Ake®.

Laplacians on the Poincaré upper half plane which we will study in the next section,
see [11] and the references cited therein.

In this section we first show, by using our result (2.6), an integral representation
(4.2) below of the heat kernel qﬂ”fk(t, z,y),t > 0,2,y € R, with respect to the Lebesgue
measure of the semigroup generated by H %c Next, after showing that (4.2) is also
obtained by using (2.1) and some results in [11], we give another analytic proof of

(2.6).
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By the Feynman-Kac formula, we have

(4.1)

1 ) 1 ly — z|?
M (¢ =F —=A\2e% A, + \ke® =y — — .
Ot z,y) [exp e ¢+ Ake®a, | |By =y — z] mexp 5

Using (2.6), we easily obtain the following proposition. It should be remarked that
the right hand side of (4.1) may be regarded as a (double) Laplace transform of the

joint distribution of (A, a;, B;) and (4.2) below is an equivalent assertion to (2.6).
Proposition 4.1. Let A > 0 and k € R. Then, for any t > 0, it holds that

o 1
M = 2ku J— — z Y -
42) ooy /0 e b () exp(—A(€” + €¥) coth(w)) 05(¢/4) du,
where 6, is the function defined by (2.2) and

_ 22 exp((z +)/2)
sinh(u)

-

Remark 4.1. It is not difficult to show that 6,(t) = O(r") holds as r | 0 for any
N > 0 and, as a consequence, that the integral on the right hand side of (4.2) is
convergent for any A > 0 and k£ € R.

Remark 4.2. 1t is easy to show from (4.2) that

43)  @itzy) = /00o ek ﬁu—) exp(—|A|(e” + e¥) coth(u)) 05 (t/4) du,

holds with ¢/ = 2|\| exp((z + y)/2)/sinh(u) when A < 0.

Next, starting from an explicit formula for the Green function G}, for A}, which
has been obtained in [11] in two ways, by using the general theory of the Sturm-
Liouville operators and by using the theory of the Bessel diffusions, we show (4.2)
and then (2.6) conversely.

By Proposition 4.1 in [11], we have for y > z and a > 0

[e o]
1
G¥(z,y;0%/2) = / exp(— 50’ t)gui(t, 7,y) dt
0

Tla—k+1/2)
T +20) ¢

where it should be assumed that @ > k — 1/2 when k£ > 0. W, and M, are the

(4.4)
SN2 (20eY) My o (2X€7),

Whittaker functions. Moreover, by the integral representation of the product of the
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Whittaker functions (cf. [7], p.729), we also have

(4.5)
” o o [ exp(2ku) 2)e(=+9)/2
Grl@,y;07/2) = 2/0 sinh(u) sinh(u) v

Now, recalling the characterization (2.1) of the Hartman-Watson distribution, we

obtain (4.2).

exp(—A(e” + €¥) coth(u)) ra (

Remark 4.3. In [11], the reference measure has not been mentioned and it has caused
the difference of a constant factor “2” in the expressions of the Green functions.
Formulae (4.4) and (4.5) give them with respect to the Lebesgue measure. Moreover
the condition for a has been dropped in Proposition 4.1 in [11]. (4.4) and (4.5) do
not hold for all « in general when k > 0 because H ,{"’k may have negative eigenvalues

which are obtained as poles of the Gamma function on the right hand side of (4.4).

Our result (2.6) is obtained easily from (4.2). Setting z = 0 in (4.1) and (4.2), we
have

o 1
/ e’\k“E[exp(—-z—)\2A,)|a,t = u, B; = y] ¥1(u,y) du
0

= ;/ er“E[exp(—%)\zAtﬂat = 2u/)\, By = y] ¥ (2u/\,y) du
0

— /Ooo %?Z—Z; exp(—A(1 + €¥) coth(u)) 04, (t/4) du

for all k € R, where
6 = 2Xexp(y/2)
"7 sinh(u)
Therefore the uniqueness of the Laplace transform implies (2.6).

Remark 4.4. Since we have shown (2.6) without using Yor’s result (2.3) or (2.4), we
obtain another proof of it by letting A tend to zero in (2.6). Moreover, in the case

where k = 0, it is easy to show (cf. [11]) that

(4.6) GYo(z,y; a?/2) = 2I,(\e") K, (Ne?)

holds for & > 0, A > 0 and = < y. (4.6) is also obtained from (4.4) if we recall
Moa(z) = 22°T(a + 1)vz1a(2/2)  and  Woa(2) = V/z/TKa(2/2).

By using the integral representation

1 [ 1 a® + b? ab, du
Ia Ka b) =2 —zu— Ioz ) 5
(a)Ka(b) 2/0 exp( 2u 5 ) (u)u 0<a<b
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of the product of the modified Bessel functions (cf. [7], p.725) and (2.1), we can
show Yor’s result (2.3) from (4.6) by the explicit inversion of the Laplace transform.
It should be mentioned that Yor’s result (2.3) is closely related to the study of the
winding number of the two-dimensional Brownian motion. For details, see, e.g., Ito—

McKean [12] Chapter 7, Pitman-Yor [19], Yor [21].

5. MAASS LAPLACIAN

In this section, by using our result (4.2) in the framework developed in [11], we
give an explicit expression of the heat kernels of the semigroups generated by the
Schrodinger operators with constant magnetic fields or the Maass Laplacians on the
Poincaré upper half plane. Our result gives a simpler expression than Fay’s original
one (see [6],[11] and also [17]).

We begin with recalling some results in [11]. Letting H? be the upper half plane

with rectangular coordinates (z,y),
H? = {(z,y);z € R,y > 0},

with the usual Poincaré metric ds? = y~2(dz? + dy?), we consider the Schrodinger
operator with magnetic field Hy, k € R, defined by
2
mo b (L ) - L
A trivial modification —2H + k? gives the Maass Laplacian which plays important
roles in several fields of mathematics. For details, see [11] and the references cited
therein.
Let qx(t, 21, 22),t > 0, 21, 20 € H?, be the heat kernel with respect to the Riemannian
volume y~2dzdy of the semigroup generated by Hj. Then it is known that there exists

a function ¢:(-) on [0, 00) such that

=\ k
(.) ) = (252 aldlen, ),

)

where z; = (x;,;) € H? is identified with 2; = z; + v/—1y; € C as usual, d(z1, 23)
is the hyperbolic distance between z; and z and, for w = |w|exp(v/—16) € C with
-1 < 0 <7, wk = |w|¥ exp(v/—1k6).
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Moreover it has been shown in [11] that gk(t,21,22) and qf\"”,c(t,ﬁ,n), studied in
the previous section, are related through a one-dimensional Fourier transform in the

following way:

(5.2)  q(t,z1,22) =€ ary(t,1og yy, log ys) dA.

—tys—k2ta VY2 [ e~V T(@a—z1)A
2 J_o

With the help of harmonic analysis on H?, Fay [6] has shown an explicit form of the
Green function for Hy, its spectral decomposition and, as a consequence, an explicit
expression for g (¢, 21, 22). The Green function is also obtained by taking the Laplace
transform of both hand sides of (5.2) and by using (4.4) or (4.5).

The following gives another simpler expression for gx(t, 21, 22), which, in fact, coin-
cides with the expression of Fay, and completes the story developed in [11] about the

Selberg trace formula on H? in the framework of stochastic analysis .

Theorem 5.1. Let p(b,7),0 S r £ b, be a function defined by
_ _; [ cosh(b/2)
(b, ) = cosh <_———cosh(r/2) .
Then the function g, on the right hand side of (5.1) is given by

V2exp(—t/8 — k*t/2) /°° cosh(2kp(b, 7))bexp(—b?/2t)

(5.3) 9:(r) = (2mt)3/2 (coshb — coshr)1/2 db.

Before proceeding to the proof, we give some remarks on (5.3). By setting k = 0,
we immediately obtain the well known formula for the heat kernel p? for Hy, the half
of the Laplacian on H?. We refer to Davies [4] for the heat kernels of the semigroups
generated by the Laplacians on the real hyperbolic spaces. Moreover, setting r = 0,

we also easily obtain

_exp(—t/8 —k’t/2) cosh(kb)bexp(—b%/2t)
a(t, 2, 2) = (27t)3/2 / sinh(b/2) db,

which coincides with (3.5) in [11]. In general, we can show that our expression (5.3)

for g; coincides with that of Fay [6] (see [11] for details including some comments on
Fay’s original result). We omit the detailed proof since it only needs easy but lengthy
calculations.

In the proof of (5.3) below, we shall use Gruet’s calculation ([8]) of the heat kernel
for the Laplacian on the three-dimensional hyperbolic space, which is available without
any change. We recall his result for the reader’s convenience. See also Gruet [9] for

more general result.
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Theorem 5.2 (Gruet). Let Ay~ be the Laplacian on the hyperbolic space H* = {z =
(z,y);z € R*1,y > 0},d = 2, endowed with the Riemannian metric y~2(3 o, dx?+
dy?®). Then the heat kernel p™(t, 21, 2;) for Apn/2 with respect to the Riemannian

volume 1is given by

exp(~(n — 1)7t/8) (n + 1)

p"’(t) 21, 22) =3 7T(27T)n/2t1/2 2
/ *  e(n*=¥)/2 ginh(b) sin(rb/t) i
o [cosh(b) + cosh(d, (21, zp))]>t1)/2 ™7

where dn(21, z2) is the hyperbolic distance between z; and z, in H".

(5.4)

Gruet has also shown that, from his expression (5.4), we can derive the classical
formulae for p? = gy mentioned above and p?, for which we know ([4])

e—t/? d3 (zb 22)
2t)3/2 sinh(ds (21, 22))

In particular, the right hand side of (5.5) is obtained from (5.4) by a simple residue

(5.5) Pt 21, 2) = ( exp(—ds(z1, 22)%/2t).

calculus. Millson’s formulae are also shown from (5.4) and the explicit forms of p*, n =
3,4, ..., are obtained inductively. It should be mentioned that Gruet’s proof of (5.4)
heavily depends on Yor’s result (2.3).

Now we give a proof of (5.3).

Proof of Theorem 5.1. First of all we note that, by (5.1) and (5.2), we need only
consider the case where z; = z;. In this case the hyperbolic distance r = d(zy, 29) is
given by \

2

Yit Y

cosh(d(zy,2)) = =—==
‘ (d(e1,22)) 2y192
and we have

—t/8—k2t/2 V Y1Y2 / «
2T J_w

a(t,z1,22) =€ @ (t,Jog 1, log o) d.

Next we note that gx(t, 21, 22) and the function defined by the right hand side of
(5.3) are, as functions in k, analytic on C. The analyticity of g (¢, z1, z2) is seen from
the probabilistic representation for it (see Section 2 of [11]). Therefore it is sufficient to
show (5.3) when |k| < 1/2 by virtue of the uniqueness theorem for analytic functions.

Now we assume that z, = z; and |k| < 1/2. Then it holds that

VY2 _t/s-k2t/2

gi(r) = o

/0 (@35 + @™\ 1) (¢, log y1,log y2) dA.
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Moreover, setting ¢ = 2\\/7192/ sinh(u), we have by (4.2) and (4.3)

* cosh(2ku
(@ + 05,06 ogan o) = [ o) exp-A(ys + ) coth(1) B (¢/4)du
o  sinh(u)

and, therefore,

(r) = \/ﬁyl?h e—t/B—kzt/2+2‘n2/t
a\r) = 5/2¢1/2

/ A dA / du / de C;i;féf;;z p(=A(y1 + v2) coth(u))

X eXp (-2—52 - %—-— ,}fz;y)z cosh(§)) sinh(&) sin(47¢ /t).

Noting that the integral on the right hand side is absolutely convergent since |k| < 1/2,

we first carry out the integral in A. Then, after some calculations, we obtain

1

—t/8—k%t/2 =
a:(r) = me t/8=k%t/ /0 cosh(2ku)F(u) du,

where

[ exp(2(n? — £%)/t) sinh(€) sin(4m€ /1)
Plu) = /0 (cosh(r/2) cosh(w) + cosh(@)? %
Now we use (5.4) and (5.5). Then, setting

@(r,u) = cosh™*(cosh(r/2) cosh(u)),

we obtain
_ Ang(r,u) . 9
F(u) = Tsmh((r, v) exp(—2¢(r,u)"/t)

and
(r) = 4exp(—t/8 — k?t/2) /°° cosh(2ku)@(r, u) exp(—2(r, u)2/t)
g\T) = (2nt)3/2 o sinh(@(r, u))
Finally, changing the variable from u into b by 2¢(r,u) = b or, equivalently, u =
o(b,T), we obtain (5.3). O

6. FURTHER APPLICATIONS OF THEOREM 2.1

In this section we apply Theorem 2.1 to the computation of the semigroup of a
hyperbolic drifted diffusion, which appeared naturally in Alili-Dufresne-Yor (2] in
the context of a generalization of the Bougerol identity, and for the distribution of

the asset process in a stochastic volatility model ([10]) in mathematical finance.
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6.1. A hyperbolic drifted diffusion. Let P be the law of the original Brownian
motion B = {B,t 2 0} starting from 0 on the canonical path space C([0, c0); R) and
denote F; = 0{B,, s < t}. We consider the stochastic differential equation

v
Y, =dB h —_— =
dY, = dB; + (utan (Yt)—}-cosh(yt))dt, Yo ==z,

for u,v € R and denote by P** the probability law of the unique strong solution
Y = {Y" t 2 0}. Setting

v v

t 1 t
Y h K - 2
D! exp </0 (utanh(B;) + cosh(Bs)) dB, 2/0 (utanh(B,) + cosh(Bs)) ds) ,

we have by the Girsanov—-Maruyama theorem
dPI‘r"I}_t = D;"V . dP']:t.
The following theorem characterizes the law of Y;*” for a fixed time.

Proposition 6.1. For anyt > 0, > 0, it holds that
E;[exp(v —1Asinh(Y*"))]

= e"‘zt/2/ dv/ dy exp(v—1Asinh(z)e? + py + v -1 vv)
0 —00
—_— —A(eV+1 2 .
X Ish(w/2) exp (—A(e¥ + 1) coth(Mv/2)) 0,(t/4)
Proof. We first borrow the following identity in law between the involved processes
from [2];

(law)

61)  {snh(x7),t 2 0} foxp(Bt)(sinb(x) + [ exp(-BE) )1 2 0},

where B = B; + us and 7£”) = v, + vs for an auxiliary independent Brownian
motion v = {v,}. We recall that this result is obtained by applying Ito’s formula and
simplifying the martingale part of the right hand side. Reversing time in the integral
on the right hand side of (6.1), we get the identity

(law)

t
(6.2) sinh(Y/*") "=" sinh(z) exp(Bt(”)) +/ exp(BW) dy™.
0

for fixed t > 0. The theorem follows by taking the Fourier transform of both hand
sides, using the independence of B and v and applying Theorem 2.1. O
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Remark 6.1. Since B and v are independent, Dambis-Dubins-Schwarz Theorem (see

[20], p.181) allows us to conclude that, for fixed ¢,
(6.3) Y 02 siph ! (sinh(z) exp(B*) + 1/ AY'N +val?),

where AW a*) are defined as A;,a; with {B;} replaced by {B*} and N stands for a
standard normal variable independent of B. The Cameron-Martin theorem shows that
we need an explicit expression for the probability density of the triplet (A, a, B;) in
order to obtain that for the transition probability density p,"”(z,y) of {Y}*"}. Indeed,

a straightforward calculation shows that

o (z,y) = cosh(y)E[e“B‘_“zt/2 —L(sinh(y) —vay — sinh(z)eB‘)2>]

1
——ex
vV 27rAt P < 2A¢
Clearly the difficulty in expressing out p,*(z,y) relies on the explicit inversion of the

Laplace transform figuring in Theorem 2.1.

Remark 6.2. Now we clarify some connections of the present computations with those
in a recent paper by Yor [23]. We assume that 4 < 0 and z = 0. In this case, by
the time reversal, we see that the process {sinh(Y;/**),t = 0} converges in law to
I exp(B¥ ))d’yg"), which is called a subordinated perpetuity in [23]. The fact that the
distribution of the later random variable is the unique invariant probability measure
for the diffusion process {sinh(Y*"),t = 0} has been extensively exploited to find out
the explicit formula for the probability density of the subordinated perpetuity. In the
spirit of the previous study (and only for ¢ = co) the required object is the density of
the couple ([~ exp(B*)dn,, N exp(B{")ds), which seems to have some connections

with generalized Lévy stochastic area formulae. This fact breaks down the hope to

invert explicitly the Laplace transform figuring in Theorem 2.1.

6.2. The Hull-White model. In this paragraph we consider the Hull-White model
in mathematical finance (see [10], [13]), which serves a model of an asset price process
{S:,t = 0} with a stochastic volatility {o;,¢ = 0}. Our objective is to obtain an
explicit form (via an elementary integral) of the distribution of S; for fixed time ¢ by
applying Theorem 2.1.

The model is described by the following system of stochastic differential equations;

ds,
(6.4) —S—t =rdt++/1 - po; dwt(l) + poy dw§2), do =adt+b dwf),
t

o
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where a,b,r are real constants and {w(l) t 2 0} and {wt(2),t 2 0} are independent
Brownian motions defined on a probability space (2, F, P) with a usual filtration
(Ft). Moreover p € [0,1) is also a constant which describes the correlation between
{5;} and {o:}.

We set
5 - _ 2gexp(y/2) a 1
— — (2a? + —C90 _ \yi/2 = 27 I/ 2] =— =
9=9(q9) = (2(q +8(1_p2)b2)) , @ smh(gv3) =B 2
and
KEKt(x,y,v)—x—rt—l-—gﬁ(l— y)+a<;op

Then we show the following:

Proposition 6.2. Assume bog < 0. Then, for any fized t > 0, the probability density
¢i(z) of log(S;/Sy) with respect to Lebesgue measure is given by

(65) wu(z) = V 27r2(1 — p?)od / dq/ dy/ 4smh gv/2) (b2t/4)

xexp (—g(e¥ + 1) coth(gv/2)) cos (—fl )exp< 20— YT 72b2t>.

q
ooy 1 — p? 2
As a first argument towards a proof of Proposition 6.2, we remark that the volatility

process {o:} is a geometric Brownian motion given by
0, = opexp(bw® + b2yt)
and that
t t 1 t
log(S:/S0) =1t + /1~ p2/ o, dwiV +p/ o, dw® — 5/ ol ds.
0 0 0

The following is easily obtained.

Lemma 6.3. The conditional distribution of log(S;/S,) given F* = of{w? s <

t} = o{os,s St} is the normal distribution with mean m, and variance V;, where

t 1 t t
mt:rt+p/ a3dw§2)—§/ olds and Vi =(1—p2)/ ol ds.
0 0 0

Proof of Proposition 6.2. By Lemma, 6.3, we have

(@) = Bl exp(—~ Z )"

27V, 2V, )}



413

Now, letting P* be the probability measure on {2 defined by

1
dP*Ife = exp (_b’ywt@) - §b272t> : dP‘fu
wy = wﬁ” + byt is a Brownian motion under P* by virtue of the Cameron-Martin

theorem and we obtain

o2 ®) /912
o) = E°| ! (_(c1+ 240/2)

e exp(byw} — b*7*t/2)],
2r(1 — p2)o§A§"’ 2(1 - PZ)U(z)Agb) )

where E* denotes the expectation with respect to P*,
t
AP = / exp(2bw}) ds
0

and

t t
G'l::c—rt—p/asdw;‘+pb7/ 05 ds.
0 0

Note that Itd’s formula yields

t b2 t
[ oz = Pexplour) -1~ o), o = | exo(buz) ds.
0 0

Furthermore we define another Brownian motion {w;,t 2 0} under P* by w; =
bw;_., and set

t t
A = / exp(2ws) ds a; = / exp(ws) ds.
0 0

Then it is easy to show

o b? b2(Gy + 02 Ay, /20)? )
pr(z) = B 27 (L= )02 Ay P (‘ 2(1 = )02 A ) exp(yYwsze — b°7°t/2)],

where

Gy=z—rt+ g%—p-(l — exp(wyz)) + E%g—pabzt.

Finally we recall the identity

/ e P cos(aq) dg = \/ge_"‘z/‘w, ae€R,0>0.
R

Then we obtain

_ B2 X ) a2 V2bG,
#i(@) = \/m/lldq’f o0 {0+ g 2 | o V= oo

X ex —i——l- w -—b272t ]
p 2(1__p2) YWp2¢ 2 .
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Now, noting that the integral is absolutely convergent since bay < 0, we get (6.5) by
using (2.6). O
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