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On Itô’s formula of Föllmer and Protter

Nathalie Eisenbaum

Laboratoire de Probabilites et Models Aléatoires - Universites Paris VI et VII

4, Place Jussieu - case 188 - 75252 Paris cedex 05

Abstract : Follmer and Protter have established an Ito formula for the d-dimensional
Brownian motion and a function F in the Sobolev space W12. In this formula, the
usual second order terms are replaced by quadratic covariations. We show here that
these covariations are actually area integrals with respect to local times. We also
extend their formula to the time-dependent case.

1 - Introduction and notations

Let X be a d-dimensional Brownian motion. We write : X = (X~1}, X~2~, ...X ~d~).
Let G be an element of Follmer and Protter have established in [FP], that
for all a in except for some polar set, the quadratic covariation

[G(X),X(k)]t = (G(Xti+1) - (G(Xti))(X(k)ti+1 - X(k)ti)

(where is a partition of [0, 1] depending on n, such that the mesh tends to 0
with n) exists as a limit in probability under IP a for each k in { l, ..., d} and that :

[G(X),X(k)] t = -
t0G(Xs)dX(k)s 

- 11-tG(X1-s)dX(k)1-s (1)

Denote by W1,2, the Sobolev space of functions in such that the weak first
partial derivatives belong to ~C2(1Rd). Let F be an element of Wloc’ They established
that for all a in except for some polar set :

F(Xt) = F(X0) + t0~F ~xk(Xs)dX(k)s + 1 2 [~F ~xk(X),X(k)]t (2)

Clearly, the conditions of F are optimum. Indeed, for a fixed a, the existence of
the process (F(Xt) - F(Xo) - > 0) requires at least that F
belongs to 
In a previous work, Follmer, Protter and Shiryaev [FPS] proved this result for the
special case d = 1 and a = 0. They also established the existence of the covaria-
tion of t), t > 0) and t > 0) and could write an Ito formula in the
time-dependent case. A similar result has been established by Russo and Valois [RV].
Several authors have then extended that kind of result to other processes than Brow-
nian motion, see Bardina and Jolis [BJ] and Moret and Nualart [MN].
In the case of a linear Brownian motion, we showed in [E], that the quadratic covari-
ations appearing in [FPS] were particular examples of area integrals with respect to
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the local time process of X(1) . One of the interests of using local times is to make a
clear connection beetween various Ito’s formulas; namely : Bouleau and Yor’s formula
[BY], Follmer, Protter and Shiryaev’s formula [FPS], and Azema, Jeulin, Knight and
Yor’s formula [AJKY]. In [E], an Ito formula is given, which summarizes and extends
each of the above quoted formulas.
We keep here the point of view of the local times and first show the following propo-
sition. We denote by (Lxs(X(k)), x E IR, s > 0) the local time process of X(k). We
adopt the notation: ..., x, ..., 

= G(Xs) |X(k)s=x.

Proposition 1.1 : : Let G be an element of . Then for any a outside a polar
set, we have 1P a-a.s.

The precise meaning of the double integral with respect to L(X(~)) will be recalled
in the next section. Thanks to Proposition 1.1, (2) can be rewritten as follows :

F(Xt) = F(X0) + t0~F ~xk(Xs)dX(k)s - 1 2 t0IR~F ~xk(Xs)|X(k)s=x dLxs(X(t))

We extend then this formula to the time-dependent case under the following form : :

Theorem 1.2 : : Let F be a function defined on ~d x such that F admits
first order Radon-Nikodym derivatives with respect to each parameter. Moreover, we
assume that these derivatives satisfy the following integrability conditions.
For every compact K of every t > 0 and every k ..., d}

t0 K |~F ~t(x, s))|dxds sd/2  ~

t0 K| ~F ~xk(x, 
s )|dxds s(d+1)/2  ~

Then, we have for every a E lRd, 

F(Xt, t) = F(X0, 0) + t0 ~F ~s(Xs, s)ds + t0 ~F ~xk(Xs, 
s)dX(k)so 0~ k-1 0 C~xk

-1 2t0 IR ~F ~xk(Xs, s)| X(k)s =x dLxs(X(k))

In Section 2, we recall some facts on the stochastic integration with respect to local
times. The proofs of Proposition 1.1 and Theorem 1.2 are given in Section 3.

2 - Preliminaries

We start by recalling a result on the stochastic integration of deterministic functions
with respect to the local times. Without loss of generality, we restrict our attention
to functions defined on IR x [0,1].
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Let f be a measurable function from R x ~0,1~ to R, B a real Brownian motion and
al a real number. We set : :

~f ~a1 = IEa1[10 f2(Bs,s)ds ]1/2 + IEa1[10|f(Bs, s)| |Bs 
-a1| sds] .

We know, thanks to [E], that stochastic integration with respect to (Lg (B), 0  s 
l, x E R) is well defined on the Banach space { f  oo~ in the following sense.
Let f0394 be an elementary function on R x [0, 1], meaning that

f. (z, t) = , 

where ~ _ { (xi, s j ),1  i  r~,1  j  m~ is a grid of IR x ~0, l~, and for every (i, j ),
fi,j is a real number. For such a function, integration with respect to 0 
s  l, x E IR) is defined by

t0 IR
f0394 (x, s)dLxs (B) = fi,j(Lxi+1sj+1 - Lxi+1sj - Lxisj+1 + Lxisj)

Let f be such that ~f~a1  ~. For any sequence of elementary functions 
converging to f for the norm the sequence ( fo IR f0394k (x, converges
in L1. The obtained limit does not depend on the choice of the sequence 
and represents the integral fo f~ f(x, 
Moreover for any t E [0, 1]:

t0 IR f(x,s)dLxs(B) = t0f(Bs, s)dBs + 11-tf(B1-s, 1 - s)dB1-s

and

IEa1 (|t0 IRf(x, s)dLxs(B) |) ~ ~f~a1.

Consider now a measurable function F from IRd x ~0,1~ to Let a = (al, a2, ..., ad)
be an element of IRd. Define :

~F~k,a = IEa[10F2)Xs, s)ds]1/2 + IEa [10|F(Xs, s) ||X(k)s - ak| dds].
For any k, note that conditionally on (X (i),1  i  d, i ~ k), (F(Xs, s), 0  s  1)
is a deterministic function of s), 0  s  1)). Thanks to the above result, we
know hence that as soon as :

~F~k,a  ~
then IPa-a.s.,for any t, fo f~ F(Xs, s) is well defined and

Xs -x

0 t 1R F(Xs, s k ~_ -x 
= + 1-t 1 1- .

Moreover :

IEa[|t0 IRF(Xs,s)|X(k)s=xdLxs(X(k))|] ~ ~F~k,a (3)
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Remark that Follmer, Protter and Shiryaev did compute ( f (B,, .), B,~ for a determin-
istic f. But this computation requires some continuity property in the time variable
for the function f(x, t). Hence Follmer and Protter could not use it to obtain (1) and
had to refine the arguments of [FPS].

We will also need the following theorem, (established in [E],Section 5), concerning
this time, integration of random processes.
Theorem 2.1: Let (A(x, t); x E IR, 0  t  1) be a continuous random process
taking values in IR, such that for any t in [0,1] and almost every c~, A(., t) is absolutely
continous with respect to dx. We note a~ its derivative and ask a to be continuous.
For a  ,Q, let subdivision of and a subdivision of ~0,1~.
Note A the grid {(xi, sj), 1 ~ i  n,1  j  m}. . Then, the expression

A(xi, sj)(Lxi+1sj+1 - Lxi+1sj - Lxisj+1 + Lxisj )

admits a.s. a limit as |0394| tends to 0. This limit is equal to : :

- t0~A ~x(Bs, s)1[03B1,03B2]( Bs) ds + t0A(03B2, s)dsL03B2s - t0A(03B1,s)dsL03B1s.

3 - Proofs

Proof of Proposition 1.1
Let G be a measurable function from IRd to IR. Suppose that

IEa[10G2(Xs)ds]1/2+ IEa[10|G(Xs) ||X(k)s - ak| s ds]  ~ (4)

then, thanks to the remarks of Section 2, we obtain 1Pa-a.s.

t0IRG(Xs )|X(k)s =xdLxs(X(k)) 
= t0G(Xs)dX(k)s + 11-t G(X1-s)dX(k)1-s.

Looking closely to the proof of (1) in [FP], we see that Follmer and Protter first
establish (1) under the assumption (4). Hence we obtain 1P a-a.s.
,

o 
t 

( _ -[G(X), 

To lighten the integrability condition on G, we use the following result of Follmer and
Protter [FP]. They proved that if G is in ,C2 then for any a outside a polar set,
(4) is verified. D

Proof of Theorem 1.2: Let F be a function satisfying the assumptions of Theorem
1.2. By a localization argument, we can assume that F has a compact support. We
note then that for any k in {1,.... d~ and any a E Rd, we  oo. Let g be
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a C°° -function with compact support, from R to R+, and such that: : J, g(s)ds = I .
We set for n e lV* :

gn(s) = ng(ns)

Fn(x, t) = 10 IRdF(y,s)gn(t - s)gn(x1 - y1)gn(x2 - y2)...gn(xd - yd)dsdy

Since the function Fn belongs to x [0, 1], we have, thanks to the usual Itô’s
formula, for every E > 0

Fn(Xt, t) = Fn(X~, ~) + t~~Fn ~t (Xs, s)ds + t~~Fn ~xk ( Xs, s)dX(k)s

+1 2 t~ ~2Fn ~(xk)2 (Xs,s)ds
U sing similar arguments to those developped in [AJKY], we note then that Fn (Xt, t)
(resp. J/ ~Fn ~t) (Xs, s)ds ; )§ (Xs converges in probability to F(Xt, t) (resp.
Jl ~F ~t (Xs , s)ds; Jl £ (Xs , aS n tends to ~. Consequently 1 2 03A3dk=1 Jl £p (Xs , s)ds
converges in probability to :

F(Xt, t) - F(X~, ~) - t~ ~F ~s (Xs, s)ds - t~~F ~xk (Xs, s)dX(k)s (5)
e s 

~_~ e zk

Besides, note that for each k, we have:

(~Fn ~xk (x, s)1(~,t) (s), x ~ IR, s ~ [0, 1]) (~F ~xk (x,s)1(~,t) (s), x ~ IR, s ~ [0, 1])

for the norm [[ . [[k,a. Hence, we obtain

£ (Xs , (X~~’~ ) £ ) (Xs , (X~~’~ ) . (6)
6 R 

(Xs, s) 
S 

dLs (X(k))n °° 6 R 
(Xs, s) 

S s dLs (X). (6)

We compute now for a fixed k, J/ J. §§ k (Xs, Applying Theorem
2. I to the process: A(z, s) = (Xs, s) ) Xs =z 

, we obtain for any a  fl

/~ /~ £ (xS ’ ~) ) ~(k) dLf/ (x~» ~ ~ /~ (xS ’ ~) i d~

+t0~Fn ~xk(Xs, s)|X(k)s=03B2 dsL03B2s( X(k)) - t0~Fn ~xk(Xs, s)|X(k)s=03B1dsL03B1s( X(k))

Letting a and fl tend respectively to -oo and +oo, the left hand term of this equal-
ity converges in L1 to and the right hand term

converges a.s. to - J) (Xs, s)ds. Consequently, we have:

t0IR ~Fn ~xk(Xs, s)|X(k)s=xdLxs( X(k)) = - t0~2Fn ~(xk)2 (Xs, s)ds (7)
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Together (5), (6) and (7) give:

F(Xt, t) = F(X~, ~) + t~~F ~t (Xs, s)ds + t~ ~F ~xk (Xs,s)dX(k)s
~ k

_ ~ ~ § ~ / £ ~) ) x(k)-~ ( ~q (k) )
k=i e m k S ~

By letting then e tend to 0, Theorem 1 .2 is established.[]

References :

[AJKY] Azéma J., Jeulin T., Knight F. and Yor M. : Quelques calculs de compen-

sateurs impliquant l’injectivité de certains processus croissants.Séminaire de
Probabilités XXXII, Lect. Notes in Maths. 1686, 316-327,Springer(1998).

[BJ] Bardina X; and Jolis M. : An extension of Itô’s formula for elliptic diffusion
processes.Stoch.Proc.Appl. 69,83-109 (1997).

[BY] Bouleau N. and Yor M. Sur la variation quadratique des temps locaux de cer-
taines semi-martingales. C. R. Acad. Sc. Paris, V.292,491-494 (1981).

[E] Eisenbaum N. : Integration with respect to local times. To appear in Potential
Analysis.

[FP] Föllmer H. and Protter P. : On Itô’s formula for multidimensional Brownian
motion.Probab. Theory Relat. Fields 116, 1-20 (2000).

[FPS] Föllmer H., Protter P. and Shiryaev A.N. : Quadratic covariation and an ex-
tension of Itô’s formula. Bernoulli, 1 (1/2),149-169(1995).

[MN] Moret S. and Nualart D. : Quadratic covariation and Itô’s formula for smooth
nondegenerate martingales.Journal of Theo. Probab. V.13,1,193-224 (2000)

[RV] Russo F. and Vallois P. : Itô formula for C- functions of semi-martingales.Prob.
Theory Relat.Fields 104,27-42 (1996).


