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OCCUPATION TIMES OF LEVY PROCESSES
AS QUADRATIC VARIATIONS

NATHALIE EISENBAUM

Laboratoire de Probabilités et Modéles Aléatoires
Université Paris VI - 4, Place Jussieu - Case 188 - 75252 Paris Cedez 05

Abstract: Bouleau and Yor [BY] have shown that the occupation time of a contin-
uous martingale can be obtained as a quadratic variation. We extend this result to a
large class of Lévy processes.

1 - Introduction

We first recall a result established by Bouleau and Yor [BY]. Let Y be a semi-
martingale such that Y o<,<; |AYs| < 0o. Y admits then the following decomposition

Y=Yo+M+A (1)

where M is a continuous local martingale and A a process with bounded variation.
Let (m,)neN be a sequence of partitions of an interval [a,b] of IR such that |m,|
converges to 0 as n tends to oo.

They show that (Ty,ex, (J§ Lizszi) (Ys-)dYs)%n € N) converges in probability uni-
formly in ¢ on any compact of IR", to

t t
/0 Loy (Ys-)d[Y]s +2 /0 dAs /( ; dAu (a5 (Ys-) (v =v,_)- (2)

In the particular case when Y is a continuous square-integrable martingale, they
obtain the following convergence .

t 2 [t
ONY TR AT A= [ TV AR /)3 3)
TiETn

uniformly in ¢ on compacts.

In the special case when Y is a Brownian motion, (3) has also been proved by Perkins
[Per].

We establish here a similar result for a large class of Lévy processes.

Theorem 1: Let (Y;,t > 0) be a Lévy process starting from 0. Assume that Y is
not a pure step process and that 3 o<, |AY;| < oo.

Let (mn)neN be a sequence of partitions of an interval [a,b] of IR such that |m,|
converges to 0 as n tends to co. Then
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in probability, uniformly in t on any bounded interval of IR".

The assumption on the jumps of the Lévy process Y is equivalent to

/ (1 A |z])w(dz) < oo
where v is the Lévy measure of Y.

Remark : IfY is a pure step process, we have immediately thanks to (2)

t
17%9 Z (/(; 1(1i,ri+1]()/3‘)dYs)2

T;EMn

t
= [Vl + T Ter o s(AY)(AY,)

0<u,v<t
uFv
in probability. There are simple examples of compound Poisson processes such
that the second term on the right hand side is different from 0.

Applications : Let (Y; ,¢ > 0) be a stable process of index a € (0,2). We have :

Y= Y (AY.)?

0<s<t

We note that for any A > 0
(V] £ 2 02 (e, ¢ > 0)

Consequently [Y] is a stable subordinator of index /2. If @ is in (0,1), ¥ satisfies
the assumptions of Theorem 1. We see then that [Y] can be obtained as the limit in
probability of (Xg,cr. (J§ Lzizisa) (Yo=)dY5)2, T > 0) as |m,| tends to 0, where (m,,n €
N) is a sequence of subdivisions of IR.

2 - Proof of Theorem 1

From now on Y is a Lévy process satisfying the assumptions of Theorem 1. Consider
the process W defined by : W, =Y; — Y g<s<: AY;. This process is a continuous Lévy
process. Let o be the constant such that : E(W,) = at. The process (W; — at,t > 0)
is hence a continuous martingale. Consequently, the process A associated to Y, in the
decomposition (1), is equal to (Fo<,<:(AYs) + ot,t > 0).

Similarly, for every a > 0, there exists a constant b, such that :

Y, = M2 + bot + V&

where : V% = Yocs<: AYsliavi|zas
and M® is a martingale with bounded jumps such that : < M® >;= c,t (for more
details about this general decomposition , see for example [Pro] p.32)

We have to prove that : [§ dA, Jis) GAuL @) (Ys-)1(vu_=v,_) is equal to 0.
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We start by showing that
[ave [ aveteailon ) @)
is equal to 0. We write for a fixed ¢ > 0 :
[ 1ol (Y)Y,

t t t
= /0 1(v>o)1{o}(YL—)de+/O 1(v>0)1{0}(}/v—)d‘/ua+ba/0 Loy (Yo-)dv

Since M is a square integrable martingale, we have :
t t
E[( /0 Lwso) Loy (Yo-)dMP)?] = | /0 Lw>0) 1oy (Yo-)d[M°],]

calB Loy (Yoo )]

Since Y is not a pure step process, we have thanks to Theorem 1 of [BR] : P(Y,- =
0)=0.

Hence we obtain :  [§ 1i0}(Y,—)dv =0 and [§ 1(u>0)1{0}(Yo—)dMZ = 0 as.

We note then that V' converges to 0 as « tends to oo. Consequently, thanks to (5) :

t
/0 Lw>0)1{0}(Yo-)dY, = 0

Making use once more of (5), we obtain :

13
/0 1ws>0ylgoy(Yo-)dV,» =0 as. (6)

Thanks to the right continuity of V*, the process (fs 1(v>0)1{0}(Yo-)dV,®, ¢t > 0) is a.s.
identically equal to 0. This result remains true if the function 1y} is replaced by 1(x}
with X any random variable , independent of Y.

We define now the sequence of stopping times (7},)n>1 by :
Ty =inf{s > 0: |AY{| > a}

Tny1 = inf{s > T, : |AY;| > a}

Let n be a fixed integer. Conditionally on {T}, < 400}, the process ¥ = (Yr,4; —
Yr,,t > 0) is independent of Fr,, , and has the law of Y. Similarly , we can write the
following decomposition of Y’

Y, = M + bt + V2
Note that : V* = Vg, — V&,
Since the variable AY7, is independent of Y, we have , thanks to (6)

/o. Lwso)l(-avg,} (Yoo )dVr =0



332

which means that a.s.
[ oty (o V7 =0

We come back now to the expression (4) :

t t
/0 Lia,(Ya-)dVyy /0 Lwsuwly,_=v,)dVy

¢
= Z 1(a,b](YTn—)AYTn/T 1(”>T")1(YTn‘=Yu_)dVva

To<t

Consequently, we have obtained

t
/0 Lo (Y5)dVy? /( ) Ly, =y, )dV;* =0 (7)

Similarly, we have for every n > 0

/T. 1{1/(Tn)_}(}/,,__)d’v =0 as.
which leads to .
Z l(a,b](YTn—)AYT,./T 1(YT,._=Yv—)dv =0.

T.<t
We have actually obtained

t
/0 Lo (Ys-)dVy /( ; Liy,_=y,)dv =0 (8)

The previous argument made at the stopping time T,,, can similarly be written for a
fixed time s such that 0 < s < t. We hence obtain
t t
/ 1(v>s)1(yu_=ya_)qu° =0 and / 1(yu_=y5_)d’l) =0 a.s.
s S
which lead to

t t t t
/Ol(a,b](y.s)ds/ 1(U>3)1(y_:y3_)d%"=0 and /Ol(a,b](ys)dS/ Liy,_=v,ydv (9)

We set then
A =V + ot
Thanks to (7),(8) and (9), we can write

t t
/0 Lo (Ys)dAS / Lwss)l(v,_=v,_)dAy = 0

Letting « tend to 0, we finally obtain, by dominated convergence

t t
/Ol(a,b](ys)dAs/ Lwss)l(v,_=v,)dA, =0 O
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