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ON WEAK CONVERGENCE OF FILTRATIONS

François Coquet*, Jean Mémin* and Leszek Slominski**,1

*IRMAR, Université de Rennes 1
Campus de Beaulieu, ~50I~,~ Rennes Cedex, France
**Faculty of Mathematics and Computer Science,

N. Copernicus University, ul. Chopina, 87-1 00 Poland

Abstract. A sequence offiltrations converges weakly to a filtration 
iff, for all B the sequence of processes converges in probability
under the Skorokhod topology to the process . We give some examples
of this kind of convergence; then we study, under the weak convergence of filtrations,
the convergence in probability of processes X where X is an 7t -
adapted semimartingale.

I. Introduction.

In what follows, we are given a probability space (03A9, g, P). Every 03C3-algebra we
deal with, is supposed to be included in ~. We also fix a positive integer T. Unless
otherwise stated, every process or filtration will be indexed by t E [0, T]; a filtration

is denoted by ,~’; the relation c ,~’ means that for all t  T, ,~t c . All

filtrations considered are assumed to be right-continuous; in particular by natural
filtration of a process X we denote the right-continuous filtration associated to
the natural filtration of X. D (resp: ID(S) ) denotes the space of cadlag (right-
continuous with left limits) functions from R+ into R (resp: S).

Following Hoover [12], we say that:
Definition 1. . A sequence of a-algebras An converges weakly to a a -algebra A (we
write An  A) iff, for all B E A, the sequence of random variables 

p

converges in probability to 1B, and we write --~ 1B.

Following again [12], but with another topology, we introduce the following:
Definition 2. A sequence of filtrations Fn converges weakly to the filtration F
(and we write ~ ,~’) iff, for all B the sequence of cadlag martingales

converges in probability under the Skorokhod J1-topology on D to the
martingale 

This notion does not present any interest when the limit filtration is trivial; for
p

example, when ,~"’ is generated by a cadlag process Yn such that yn ---~ y where y
is deterministic, and F. = then the weak convergence of filtrations is trivially
satisfied. For such a case we should introduce a stronger notion of convergence.

Remark 1. Let us describe some easy consequences of the definition of weak

convergence of filtrations. .

1 Partially supported by Komitet Bada Naukowych, grant PB 483/P03/97/12.
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P

1) For a-algebras, clearly enough, An A iff --3 Z for every inte-

grable random variables Z measurable with respect to A.

Similarly for filtrations, F iff under the Sko-

rokhod Ji topology for all integrable random variables X measurable with respect
to In this case, however, the equivalence is not immediate, because the Sko-
rokhod Ji topology is not linear. In view of Doob’s inequality for martingales, for

every 6’ > 0 and every integrable random variable X’, we have

P[sup|E[X]Fnt]| - E[X’|Fnt]| > ~] ~ 1 ~E[|X - X’|],

so it is sufficient to check that  E[X|F] under the Skorokhod J1 topol-
ogy for every random variable of the form X = bilB;, where Bi n Bj = 0
for i 7~ ~’ and bi E IR, Bi i, j = 1, ...k. If Fn -~ .~’ then =

E[1Bi|Fn]  X 2 = i = 1, ...k, and 03A3pi=1Xni 03A3pi=1 Xi for p  k,

since 03A3pi=11Bi = p  k. Hence ...X nk) (X 1, ..., X.k) under the
Skorokhod J1 topology on ID(Rk), which implies that

E[X| Fn] =  
k 

bi Xni 
P 

k 

bi Xi = E[X|F].
i=1 i=1

Actually, from a classical criterion of convergence for J1, for example Proposition
29.2 of [1] or Proposition 3-6-5 in [11], we get and use the following immediate
characterization:

Lemma 1. Let us consider a sequence ((x~, ..., x~)) in (x~, ..., x~) --~
..., xk) under J1 in if and only ifl

i) For every i S k, x ~ -~ ~ under J1 in D

ii) For every p S k, ~p 1 .r~ --~ ~p 1 x~ under J1 on ID.

2) Moreover, suppose that we are given a sequence (Xn) of random variables
converging in to some X, and that ~ ,~’; then, using again the

p

Doob inequality for martingales we have the convergence: 
under the J1 topology.

3) Let us consider a pair (X, X’) of integrable random variables; then Fn ~ ,~’

implies the convergence Actually, by
linearity of conditioning, we have the convergence for Jl:

E[X|Fn] + E[X’|Fn]  E[X|F] + E[X’|F ]

which, as above, implies convergence of pairs of processes under Jl.

4) Let F, and let Q be a probability on (03A9, G), absolutely continuous

with respect to P. Writing = , Q a.s., where Z denotes the
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Radon-Nikodym derivative dQ and noticing that Q a.s. E Z F is not vanishing
we immediately deduce the following interesting result:

the weak convergence Fn ~ ,~’ also holds on the probability space (S~, Q).

Remark 2. It is important to note that the weak convergence of a sequence of
filtrations involves more than pointwise convergence of the corresponding u-algebras,
as the following example shows; it is taken from [7] (where all necessary details are
given).

Choose T greater than (say) 1. Let B be a standard Brownian motion on [0, T],
and let X be a random variable independent of B and such that P(X = 1) = P(X =
1 ) 2 = 2’ 1 Put

yt = 
0 for t  1 2

for t > 2.
Let then F be the filtration generated by Y, and be the sequence of filtrations

generated by discrete-time approximations of Y along a sequence of subdivisions of
[0, T] with mesh going to 0. Then X is 7t-measurable for every t > ~, and moreover

for every t except t = 1/2. But does not converge to 
under the Ji topology, hence the sequence of filtrations does not converge
weakly to 7.

However in Proposition 4, we shall see examples where the pointwise conver-
gence of filtrations implies the weak convergence when all martingales with respect
to the limiting filtration are continuous.

Remark 3. Convergence in probability of a sequence of random variables (Xn) to
X implies convergence of the a-algebras to (see [12]). But, we have no
general analogous result for processes and the weak convergence of filtrations. The
same example as above shows that if is a sequence of processes converging
in probability to a process X under Ji (or uniform) topology, then, in general
convergence : ~ does not hold.

We can find, however, some examples where convergence in probability of pro-
cesses Xn to X implies the weak convergence of their associated natural filtrations
(see Propositions 2-6 ).

Considering such convergence of filtrations was suggested by the paper of An-
tonelli and Kohatsu-Higa [4], where a general problem of convergence for solutions
of backward SDE’s was considered. Under suitable conditions, they introduced the
backward SDE 

, (*)

and the 7".-adapted solutions vn of the "perturbed" equations

~=E[~ ( ~ )
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and they proved convergence of Vn to V in law under the Meyer-Zheng topology,
when the filtration is taken by discretization of a process Y generating F as
in our example above, or in probability, when Fn is taken from ,~’ by a particular
change of time.

In paper [7], corrected in [8], convergence in probability of Vn to V, in the
discretized situation, was proved under the assumption that the process Y is Markov.

Below in section IV, we shall see (Theorem 4) that this convergence holds when,
more generally, weak convergence of filtrations Fn is in force.

Another general problem is the following. Suppose that X is an 7-adapted
cadlag process, and let xn be the cadlag version of the processes i.e.

X’~ is the ,~’’~-optional projection of X (see [9], VI-43 and VI-47). Under which

assumption shall we get the convergence of xn to X in probability under the Ji
topology ? This problem will be studied in section III; Theorems 1 and 2 will give
a partial answer in the quasi-left-continuous case.

Let us consider now for this situation, the problem of pointwise convergence.
Under the weak convergence of filtrations Fn ~ ,~’, we cannot obtain the con-

vergence in probability of J to for every t  T, but we have the

following:

Remark 4. Let X be a cadlag 7t-adapted process, such that supt~T |Xt| ] 
Let us assume that s is a continuity point of X (i.e. 0] = 0) and that

Fn  7. Then:

E[Xs|Fns]  Xs.

Proof. Let us fix s; by the convergence Fn  F we have

E[Xs|Fn]  E[Xs|F].

p

Take t  s, we have = Xt + E[Xs - then for t T s, Xt and

E[Xs - ~ 0; we deduce that s is a continuity point of the process 
p

hence the convergence: ] -> X9. ..

In the following section II, we shall give some examples of situations where the
weak convergence of filtrations is in force.

For general notions or notation concerning general theory of processes and their
limit theorems, we refer to [9] and [13].
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II. Examples of weak convergences of filtrations

We begin with results on stability of weak convergence of filtrations under
time changes: then we describe some examples, where convergence in probability of
processes under the J~ topology implies convergence of associated filtrations.

The following lemma is key for our stability results.

Lemma 2. Assume that Fn ~ ,~’. If7n, n E N, and T are time changes ( i.e. for
all t E IR +, Tt , Tt are stopping times with respect to the filtrations n E N, and
7, respectively and Tn (respectively T ) are increasing càdlàg processes). Suppose
that T is continuous and Tn T uniformly. o Tn  F o T.

Proof. The result easily follows from the following simple remark, (which can be
seen for example, as an immediate consequence of Proposition 3-6-5 of Ethier-Kurtz
[11]):

xn --~ x, and an - a, under Ji =~ xn o an --i ~ o a under Jl, provided that
a is continuous and an, a are nondecreasing and non negative.

As a corollary, we immediately get

Proposition 1. Assume that Fnt = where denotes a sequence of non-
decreasing càdlàg functions such that ~ t. Then Fn F.

Lemma 3. Let X be a càdlàg process, and let denote its natural filtration.

The following three conditions are equivalent:
(i) Fn  FX ,

..., Xtk )|Fn]  E[f(Xt1, ...,Xtk)|FX ] under JI, for all bounded
and continuous f : IRk --~ 1R, and all t1, ...tk points of continuity of X, ke N,

exp {2  E[03A3mj=1 cj exp 12 03A3kl=1 03BBljXtl}|FX. ]
under Ji for all (c1, ., cm) E and all (~i, ...a~) E every t1, ...tk from

the set of continuity points of X, k E IN.
Proof. For every A E s > 0 one can find k E N, and t1, ...t~ points of

continuity of X and f such that

E[ IA - f (Xtl, ..., Xtk )~J  ~

as well as one can find m E 1N, (ci ...cm) ~ IRm, (03BBl1, ...03BBlm) E IRm such that

E[|f(Xt1,...,Xtk) - cjexp{i03BBljXtl}|] s. .

j=1 1=1

Now the result follows from Doob’s inequality for martingales, a
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Proposition 2. Let be a sequence of càdlàg processes with independent
p

increments (initial values are considered as increments~. If Xn -~ X under Jl, ,
then ~ 

Proof. We will check condition (iii) of Lemma 3. First observe that, for a~ _
Lru=l ’

m k m k

-Xt~-~)~~
j=1 I=1 j=1 d=1

Since, except for a countable set of [0, T], finite distributions of Xn converge in law
to the corresponding finite distributions of X, it is clear that X also is a process

with independent increments and, for t E tt),

m k

Ft = cj exp ~i Xt~_~ )}~.~X~
j=1 l=1

m

= 03A3cj03A0 E exp {i03BBuj(Xtu - Xtu-1)}E exp {i03BBlj(Xti - Xt)}
j=1 u>I

x exp 
- Xt~_~ )} ~ exp ~i~~ (Xtu - )}~

u1

as well as

m k

t = 
j=1 I=1

m

= 03A3cj 03A0Eexp{i03BBuj(Xntu - Xntu-1)}Eexp{i03BBlj(Xtnl - Xnt)}
j=1 u>1

x exp ~ exp )}~
ur

p

Since tl, ..., tk are points of continuity of X, from convergence X n - X it follows
p

that F’~ --~ F, which implies condition (iii)..

We recall below Theorem 1 of (’l~; a partial extension to a sequence of filtrations
generated by Feller processes is given in Proposition 4.

Proposition 3 ([7], Theorem 1). Assume that F is generated by a càdlàg Markov
process Y, and by the discretization Yn of Y along a sequence of subdivisions
of ~0, T~, with mesh going to 0 (as in the example of Remark 2). Then ~ ,~’.

Proposition 4. A~ Assume that every F-martingale is continuous, and:
- either, for every t E ~0, T~, increases (resp: decreases) with n -~ oo, to ,

- or F is generated by a càdlàg process Y, is generated by a càdlàg process Yn, ,
p

,~’n C ,~’, and Y’~ - Y .
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Then Fn ~ 7.

B) Let Yn be a cadlag Feller process and Y be a continuous Feller process. .
We suppose that every time when Yo - Yo then the convergence Yn Y

under J1 holds. Then,  FY provided that Yo .

Proof of A. In the first situation, for fixed t and B, the sequence 
defines a bounded discrete (resp: reverse) martingale, hence converges in probability
to as ?7 2014~ oo. Therefore, we have the pointwise convergence in probability
of the sequence of Fn-martingales towards the continuous martingale

It follows then from Aldous [2] that the convergence must be uniform
(hence under J1).

In the second situation, using the same argument (Aldous [2]) as in the first one,
it is sufficient to check that for every continuity point t of Y, we have convergence
in probability of the sequence to as n -~ oo. Proceeding as
in Lemma 3 above, for every e, there exist points of continuity ti, ...tk  t of Y and
a bounded continuous function ~ from IR~ in IR such that

P

Since ~(Yt~, .., converges to ..., Ytk) in Ll. Then

~(Y~n, ...Yt~)I ]

 ~E[1B|Ft] - 03A6(Ynt1, ...,Yntk~ L1

This last expression is smaller than 2~ when n is large enough, hence

and the assertion follows..

Proof of B. Since Y is a continuous Feller process, every FY-martingale is a.s.
continuous. Then we can again apply Aldous’s result and have only to prove the
pointwise convergence of our -martingales.

Using Lemma 3, it suffices to prove that, for every k E IN, t1, ...t~ in [0, T],
and every f : IRk - IR, of the form: f(xl,...,xk) = where fi are
bounded and continuous real valued functions, we have, for every t E [0, T],

E[f(Yt1,...,Ytk)|FYnt]  E[f(Yt1,...,Ytk)|FYt]

Taking into account the convergence Yn  Y and continuity of f, it is sufficient
to prove the convergence:
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But the Feller property for all Yn and the convergence in probability of Y~ to Y,
immediately yields the convergence of associated semigroups and the desired result.

(See, for example, Theorem 17.25 of ~16J.) ~

Comment. In many cases of approximation of diffusion processes by Markov chains,
the hypotheses of part B of Proposition 4 are in force.

Now, let us consider some more special cases.

Let us recall that a continuous local martingale M, such that  M oo,

is said to be pure, if where B is the Brownian motion defined by
B = Mo  M >-1. Note that M is pure if and only if = FBo  M >t,
t E 1R+ (see, e.g., Revuz and Yor [19], page 200, lrst edition).

Proposition 5. Assume that Mn and M are continuous pure local martingales
such that  M > is strictly increasing. If Mn --~ M then ~ 

Proof. Since Mn and M are pure local martingales, there exist Brownian
motions Bn and B such that

M’~ = Bno  Mn >, FMn = o  M’~ >,

M == Bo  M >, ,~M=,~BoM>.

It is clear that

(Mn,  Mn >,  Mn > 1 ) (M,  M >,  M >-1).

Hence, Bn = Mno  Mn >-1 --> B = Mo  M >-1 and, consequently, by
Proposition 2, -~ In view of Lemma 1, this completes the proof..

For the next proposition, let us recall some notions (see, for example, [10],
Chap. XXI):

A normal martingale Y is a square integrable martingale such that its pre-
dictable quadratic variation is the identity (for every t  T,  Y, Y >~== t).

Let us consider a normal martingale Y. For each integer k, we denote Sk(t) =

~{tl, ...tk) : : 0  tl  ...  tk  t}, and, for fk E and t  T,
fk is the value at t of the k-iterated stochastic integral of f k with respect to
Y. It is well known that = and that for j ~ k random
variables f j w Ij(Y)t and f k ~ [k(Y)t are orthogonal.

A martingale Y has the chaotic representation if, for every ,~’-square integrable
martingale M (denoting by ,~’ the filtration generated by Y), there exists a sequence

with fp E Sp(T) such that:

MT = ~ fp . Ip(Y)T.
p
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Then, if Y is normal, equality = holds.

Proposition 6. Let F be generated by Y, which is a F-normal martingale
having the chaotic representation property, and let be generated by Yn which
are square integrable Fn-martingales with  Yn >t= t0ansds, where as are

uniformly bounded in s, n, and 03C9. Let us assume that Yn Y. Then F.

Proof. Let B E Since Y has the chaotic representation property, we have,
for some ( f p), = ~p fr 1 Let us take an arbitrary ~ > 0, there exists
K E IN, and, for k  K, there exist gk E of the form

k

gk(t1, ...., tk) = 03A3 ai 03A0 gk,i,j(tj)
i=l...q(k) j=1

where ai are constants and are continuous functions, such that:

03A3 ~fk - 9kII L2(Sk(T)) + 03A3 ~fk~2L2(Sk(T))  ~.

kK k>K

Then
- ~ gk .  ~

kK

and, by Doob’s inequality,

E ~ ~ gk . ]  4E.
kK

Now, since gk are continuous, by continuity of stochastic integration (see [15], The-
orem 2-6, and for the iterated case), the convergence Yn -~ Y for Jl implies the

p

convergence gk . -~ gk . Ik(y) under J1, and boundedness of

the derivatives dYn,Yn>t dt 
implies the convergence in L2 of gk 2022 Ik(Yn)T

to 03A3k~Kgk2022Ik(Y)T.

Then, to get the result, it suffices to check that, for n large enough

- ~ gk .  lOs.
kK

But, by Doob’s inequality, the left-hand side is majorized by

~ §k 
kK

then by
4E[E[(lB - ~ gk . 

kK
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and, finally, by

8E[(lB - + ~, gk ~ 9k 
kK

hence, by when n is large enough. ~

In the previous Proposition 6 the conditions on boundedness of increasing pro-
cess associated to yn are used only for getting convergence in L2 of stochastic
integrals and whenever this convergence in L2 holds, we get the same result.

In the following subsection we examine the relation between the weak conver-
gence ~ ,~’ and the so-called "extended convergence" of (X n, to (X, ,~’)
when and F are natural filtrations of cadlag processes xn and X .

Weak convergence of filtrations and extended convergence

In an important unpublished paper, Aldous [1] developped notion of extended
weak convergence for a sequence of processes equipped with filtrations. Given a

cadlag process X adapted to a right continuous filtration 7, he considers the process
Z = of regular conditional distributions of X given then Z has almost

all trajectories in the space ID(P(ID)), where P(ID) denotes the space of probability
measures on ID, equipped with the topology of weak convergence. Z is called the
"prediction process" of (X, .~’).

Let us consider a sequence of cadlag processes Xn adapted to filtrations Fn and
the sequence Zn of their prediction processes. The extended weak convergence of

(X n, to (X, .~’) (denoted by -~ (X, ,~’)) means the weak convergence
of to (X, Z). in ID(IR x P(ID)). If the sequence is defined on a

unique probability space, we can consider the notion of extended convergence in
probability.

Extended convergence is also considered, for instance, in [14] and [17] where
it is related to the study of necessary conditions in functional limit theorems for
processes.

This notion is closely related to the weak convergence of filtrations through the
following result which is the Proposition (6.8) of preliminary (1978) version of [1]
or Proposition (16.15) in the version of 1981. .

Proposition A (Aldous). Let us consider cadlag processes and their

natural right continuous filtrations ,~’. Then --~ (X, ,~’) if and only if,
for every integer k, and for all bounded continuous functions ...~k from ID in IR,
we have

.

weakly on 
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Now, let us consider real valued cadlag processes X n, X given on (Q, ~, P),
p

with their natural filtrations .~’, and let us assume that X n --~ X for Jl and
that Fn ~ 7.

Remark 5. From the weak convergence of filtrations and convergence in probabil-
ity of X’~ to X, we get, for every h continuous bounded function from ID in IR, the
convergence: --~ Then, in some cases we can get conver-

gence in probability of the sequence of pairs (X", to (X, 
then, taking into account point 1) of Remark 1 and Proposition A, the extended
convergence (X,,~) will follow. The following proposition gives some
examples of such a situation.

Proposition 7. let us consider a sequence xn of cadlag processes converging in
probability under ~h to a process X. . Let us assume that the sequence jF~ of natural
filtrations of Xn converges weakly to F the natural filtration of X. Let us suppose
also that one of the following conditions is filled:

(i) X is continuous.

(ii ) Every F-martingale is continuous.

(iii ) For every n, Xn is a Fn-martingale and X is a F-martingale.
Then, we get the extended convergence (xn, ,~’’~ ) - (X, ,~’) in probability.

Comment. (i) and (ii) are immediate; in the case of (iii), we write that X’~ _
and X = and we apply points 2) and 3) of Remark 1.

We shall get another example of such a result in the following section as a
corollary of Theorem 1.
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III. Stability of processes under convergence of filtrations

Let X be a F-semimartingale, with X(0) = 0 for simplification. From [9]
(Theorem VII-59), we have that, if X is a quasimartingale and if Fn C ,~’, then

is a Fn-quasimartingale. For the following, let us recall some facts on the

spaces HP(S) of semimartingales.

Definition and Theorem HP(S). Let X be a F-semimartingale, and let p > 1;
X is said to belong to the space HP(S), if there exists a decomposition X = M + A,
where M is a HP-martingale and A is a predictable process with LP-integrable
variation (denoted V(A)). Such a decomposition is unique and will be called the
"canonical decomposition". We have the following results:

(i) A norm on HP(S) can be defined by:

IIXIIHP(S) == ~

where [M, M] denotes the quadratic variation of M.

(ii ) If X E HP(S), the quadratic variation of X is L 2 -integrable and:

~[X,X]1/2T~Lp  ~X~Hp(S).

(iii ) If X E HP(S) is a submartingale, there exist constants cP and CP depending
only on p such that:

cp~X~Hp(S) _ II sup |Xt|~Lp _ Cp~X~Hp(S).
tT

Comment. (i) and (ii) can be found in [9] chap. VII, and (iii) in [21].

Lemma 4. If X is a F-semimartingale in HP(S), for some p > 1, and if for a
filtration ~ with ~ C 7, then is a £-semimartingale in 

Proof. Let us consider X = M + A+ - A- the J’-canonical decomposition of X , ,
where M is a HP-martingale and A+, A- are predictable, LP-integrable increasing
processes; we can write:

= + 

Then,

a) Since ~t ~ Ft, we have = and it follows that the ~-martingale
is in HP.

b) We easily see that E[A+~~] is a positive ~-submartingale, and we have:

 °°,
t t

for some constant This proves that E ((iii) of Theorem HP(S)).
Of course the same result holds for A-. ~
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Here is our first limit theorem.

Theorem 1. . Let (Fn) be a sequence of filtrations and 7 be a filtration on (03A9, G, P), ,
such that ,~’’~ ~ ,~’, and ,~’~ C ,~.

Let X be a ,~’ adapted cadlag process, such that Xt = Mt + At with the following
prop erti es:

(i~ A is a continuous process with Ao = 0 and js integrable.
M is a uniformly integrable 7-martingale.

P

Then E[X, ~,~’,’~~ --~ X, under Ji topology.
Proof. From ,~n G ,~’ we have, for every t:

°

But, using the weak convergence of ,~’n to ,~’ we get:

So, we are finished for the martingale part, and the following convergence holds in
ID under Ji

Now let

t1  ...  ~ = T}, m ~ ,

be a sequence of refining partitions of the interval [0, T] such that := max |tmi -

We define a sequence of processes Am by Am = 
It is clear, by (i), that

(1) ~ ~~ n --~ oo.
tT

By the weak convergence .~’n -~ ,~’, we have that, for every m, k in N:

]

under the Ji topology.
Each tmk is a continuity point of the process - 1|F|. To see that

property, let us take s > T tmk and note that, by hypothesis (i), we have:

~ ~~s~ - A9 (~~] + E[A, - ~~~~

Atmk ~ A tmk-1.
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Hence, for every m, k E N we have

E[(Atmk - Atmk-11{.~tmk}|Fn] = 1{.~tmk}E[Atmk - Atmk-1|Fn]
(2) 

Since
km

Amt = 03A3(Atmk - Atmk-1) = 03A3(Atmk - Atmk-1){t~tmk},

from (2) we deduce:

km

= l

(3) km
03A3((Atmk - Atmk-1)1{.~tmk} = Am.
k=l

(The summands have disjoint points of discontinuity).

On the other hand, by (1) and by Doob’s maximal inequality for martingales
we get, for every e,

~ > ~]
m--?oo n tT

 limsupsupP[supE[sup IAu - J > ~~
m->oo n tT ~T

(4)~ lim sup sup E[supt~T|At - Amt|]
= lim 

Finally, by (3), (4), and (1) we get the convergences under Ji in ID:

- A and E[X |Fn] X,
which finishes the proof. ~

Comment. When X is continuous, the hypothesis C .~ is not needed. Actually
we take M = 0 and X = A.

Corollary. Let (Fn) be the sequence of natural filtrations of càdlàg processes X n
and F be the natural filtration of a càdlàg process X given on (03A9, G, P) such that
~ F and Fn C F.

Let X be such that Xt = Mt + At with the following properties

(i) A is a continuous process with Ao = 0 and supt~T |At| is integrable.
(ii) M is a uniformly integrable F-martingale.

p

We also suppose that convergence Xn ~ X holds.
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Then extended convergence -~ (X, ,~) in probability holds.

Proof. In the beginning of the proof of Theorem 1, we can replace ~ _
by E[Mt + ~ = E[MT + where h is a continuous

bounded function from D to 1R. Using the weak convergence of filtrations we deduce
the convergence under J1:

P

--~ 

Since A is continuous the rest of the proof of Theorem 1 can be unchanged and we
get the convergence under Jl:

P

----~ 

On the other hand, from J1-convergence of to X we get by Doob’s inequality for
P

martingales convergence of uniform distance: 
P

and convergence of the Skorokhod distance ds(xn, --> 0. Hence we get:

P

---~ ~~

P

we deduce --~ (X, which gives the desired result
of extended convergence..

The following theorem shows that we can extend the conclusion of Theorem 1
to quasi-left-continuous processes X.

Theorem 2. Let X be a càdlàg quasi-left-continuous process such that |Xt|
is integrable. If ~ F and c F, then convergence

P

--; X

holds in ID under J1.

Proof. For every m E N, we define a sequence of stopping times by

a~o = 0

and, for k > 0,

~k+1 = + b~ , inf {t > o’k : > b~ } },

where and for all k, (bk )m are sequences of constants such that ,~ 0,
m

 ~m  $m, E 0, T = = 0, and = 0~ =1,
forallkandm.
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Let us consider, for every m, the step process defined by

Xmt = for 03C3mk  t  

Then (see, for example, ~20~, Proposition 2), we have the convergence
P

(5) sup |Xt - Xt ( --j 0, m ~ ~.

tT

The process can be written under the form

Xm = } +XO
k=1 

~ ~ ’ 

, it is an Ft-adapted process of finite variation and suptT|Xmt | is integrable, since,
for every m, supt~T|Xmt |  supt~T |Xt | (Xm is a discretization of X ). Since, for

every m, has only a finite number of jumps greater than one can find an

increasing sequence of constants l~m T oo such that

(6) sup |Xm,mt - Xmt |  0, m ~ ~,
tT

where X~’’m = 1)1{t>Qk }~
For every m, is an Ft-adapted process with integrable variation, therefore

we have a decomposition of the form:

= ’Iw 

where is a uniformly integrable martingale, and is a predictable (hence
continuous) process of integrable variation. By the proof of Theorem 1, we get that,
for each m,

E[Mm|Fn]  Mm, n~~,(7)

as well as

8 E[Am |Fn]  Am, n ~ ~.

In view of (7) and (8) we get;

E[Xm,m|Fn]  Xm,m, n ~ ~

which, together with (5) and (6), implies the result, using the same argument as in
(4) for the proof of Theorem 1. ~

Let us return to the situation of Lemma 4, where X E for some p > 1

with the canonical decomposition X = M+A. We suppose that A is continuous. Let
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us denote Xn =E[X|Fn] and write the canonical decomposition Xn = Mn + An.
We shall sharpen the convergence statement Xn  X of Theorem 1.

Theorem 3. Suppose that C ,~ and ~ ,~’. Then, under the J1 topology,
the following convergences hold:

~) 

b) (Mn,[Mn,Mn])  (M, [M, M])

An  A.

c) 

Proof. a) Let us write X n = Nn + Bn, where Nn = and B’~ = 

~Xn~pHp(S) ~ cp(E[(supE[Mt|Fnt]p)] + E[(supE[V(A)t|Fnt]p)])

where cp is a constant which can change from line to line and V(A) denotes the
"variation-process" of A,

~ cp(E[|MT|p] + E[(V(A)T)Pl)  oo.

Then, supn  oo, and the sequence (X’~) has the U.T. property (see
[15]). Applying Theorem 1, and using ([15], corollary 2.8), we get the first assertion.

b) and c). Of course, under the weak convergence of Fn to ,~’, we have
p

Nn --~ M and the sequence also has the U.T. property, since in part a) we
incidentally proved that supn ~Nn~Hp  ~: therefore

(M~ M~)~ .

Let us denote Bn(+) = Bn(+) is Fn-submartingale in HP(S) with the
canonical decomposition Bn(+) = Mn(+) + An(+); since, by a) supn 
is finite, Bn(+) has the U.T. property and we get:

(Bn(+), [Bn(+), Bn(+)]) (A+,[A+,A+]) .

Since A+ is continuous and increasing , [A+, A+] = 0, and [Bn(+), Bn(+)] 0;
using again the HP(S) boundedness of sequence (Bn(+)), (~B~‘(+), Bn(+)~1~2) is a
sequence LP-bounded (ii of Theorem HP(S)), and (Bn(+), Bn(+)~T 2 converges to

.

Hence, using the inequality

 2
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([9] Theorem VII 95), we get: --j 0, whence finally: ~ 0

and An(+) - P-~ A+.
Denoting by Mn(-) + An(-) the canonical decomposition of we

get similarly the convergences: Mn ( ) --~ 0 and An ( ) -~ 0. Now, since Mn =
Nn + Mn(+) - Mn(-) and A’~ = ~4~(+) 2014 An(-), we are finished with assertions
b) and c)..

Remark 6. As a continuation of Theorem 3, with the same assumptions and

notation, we get stability results for stochastic differential equations under the weak

convergence of filtrations.

Precisely, let us consider f : 1R+ x IR ~ IR such that the equations

(**) it f (s, Ys)dXs

and

(**n) 
Ynt = y0 + t0 f(s,Yns)dXns

have F (resp: (Fn))- adapted solutions defined on (03A9, G, P). We also assume that

equation (**) has the property of pathwise uniqueness.
Then, under Ji we have the convergence

--3 (X, Y).

Comment. Actually, in the proof of Theorem 3, we got the U.T. property for the

sequence (X"), then, applying Theorem 1 and [18] (Theorem 3-6), we have the
desired result..
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IV Stability of backward equations under convergence of filtrations

Let us consider the situation of paper [7] with Vn and V unique solutions of
backward equations (*n) and (*) respectively and the hypotheses assumed in [4] and
[7].

> 0 : : Xn -3 X in 

(HA) All An are increasing (,~’t )-adapted processes, and A~ ~ A;
AnT ~ 03B2n; supn03B2n = 03B2~  ~;

(Hg) g, gn: S~ x [0, T] x IR. 2014~ IR. are respectively and F?-adapted, Lipschitz with
constants c, cn; g is continuous in s, gn are cadlag in s; sup~ is bounded;

supecn03B2n(1+03B4){E[T0|gns(0)|dAns]1+03B4 + E|Xn|1+03B4}  ~;

P-a.s. gn ~ g uniformly in s and x on compact sets.

(Hco) Either A is a continuous process, or all (Ft)-martingales are continuous.

The following theorem will be proved using exactly the same arguments as in
[8]. .

Theorem 4. Suppose that hypotheses (HX), (HA), (Hg), and (Hco) are satisfied.
Suppose that -~ (,~’). Then the sequence (Vn) of the solutions of equa-
tions (*n) converges to the solution V of (*) in probability under the Skorokhod J1
topology.

Proof. Our method for proving this result is considering, for each n, the iterates
given by the Picard approximation converging, as k -~ oo, to the solution V’~

of (*’~) uniformly in n and proving that, for each k, converges in probability,
as n - oo, to Uk, the k-iterated process of the Picard approximation of V, the
solution of (*).

To be precise, we put:
for equation (*n), ,

_ ~~

and, for k > 1, by induction,

= E dAg + i

for equation (*),
U° = 0,

and, for k > 1, by induction,

Ut = E gs(U9 -1 ) dA~ + .
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Step .!: : In Theorem 2-4 of [3], Antonelli proved the inequality

1 1~ ’ -u ’  ~~~t ~ ’

where = 

Therefrom we deduce:

E ~ 

L 
~ ° 

’l’

where 

Using the Doob maximal inequality, we easily get that

Ve > 0, ~] ~ P[sup cnE[T0 |Vns-Un,ks|dAns|Fnt| > e]L~o ~ -’

whence

V.>0,P[sup~-~~!~6]~ ~ ~~~M..
~ 

Finally, the assumptions of Theorem 4 give uniform (in ~) convergence:

(9) V6>0, >s1 -~0, 
n tT

Moreover, from hypothesis (Hg), we get by induction that, for every k,

(10) ]  oo

n «T

and

(11) supE[(T0|gns(Un,ks)|dAns)1+03B4 + |Xn|1+03B4
i 

oo. .

Step 2: All convergences below are under the Skorokhod Ji topology. From
(HA) and (Hg) we get:

~(0) -~ (A, /’ ~(0) 
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Then, with the weak convergence of to F, (HX), (Hco), and above in-
equalities (10) and (11), we get

(An,0gns(0)dAns,E[T0gns(0)dAns + Xn|Fn])( A, 
o 

gs(0)dAs, E / 9s(0) dA9 + X|F]).

Hence

(An, ~n’1) --> (A, U1 ). .
We can iterate the procedure: from

i

we deduce, using the continuity of g and convergence of Stieltjes integrals (see, for
example, [15]):

An,0
gns(Un,ks)dAns) 

(A, 0gs(Uks)dAs).
Using again inequalities (10), (11), and the hypotheses (HA), (HF), (Hco), (Hg) we
get

(A n, U’~’k+1 ) ~ (A, Uk+1 ). .
Finally, for every k, we have convergence for the Skorokhod topology of processes:

Un,k  Uk.

Inequality (9) of Step 1 finally gives the desired result V n V. []

Example. Let us consider the situation of Theorem 3. We would like to approxi-
mate the solution V of the backward equation (~) by some sequence of 
processes; a simple way is to consider the sequence Then, by Theorem
1, this sequence converges to V in probability for the J1 topology. But we can get
such an approximation by another way: we consider the perturbed equation (~n),
with gn = g (g not depending on W), X’~ = X, and An = Using the
canonical decomposition An = Mn + An, by the martingale property of we get

Vnt = E[Tt gs(Vns)dMns|Fnt] = p

where vn is the unique solution of the backward equation:

Vnt -- gg(V n) dA9 + °
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Thus, (*n) has a unique solution Vn; then the convergence An  A and Theorem
p

4 yield the convergence V n --~ V..
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