
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

NICOLAS PRIVAULT
Quantum stochastic calculus for the uniform
measure and Boolean convolution
Séminaire de probabilités (Strasbourg), tome 35 (2001), p. 28-47
<http://www.numdam.org/item?id=SPS_2001__35__28_0>

© Springer-Verlag, Berlin Heidelberg New York, 2001, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_2001__35__28_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Quantum stochastic calculus for the
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Abstract

We study a subspace of the Fock space, called Boolean Fock space, and its
associated non-commutative processes obtained by combinations of annihila-
tors and creators. These processes include the Boolean Brownian and Poisson

processes obtained by replacing the classical convolution by its Boolean counter-
part, and a family of Bernoulli processes. Using a quantum stochastic calculus
constructed by time changes, we complete the existing non-commutative re-
lations between basic probability laws. In particular the uniform distribution
has the role played by the exponential law in the classical setting of tensor
independence.
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1 Introduction

The Brownian and Poisson processes can be realized as operator processes on the

symmetric Fock space, the classical notion of independence of increments being ex-

pressed in Fock space using tensor products. In non-commutative probability, two

other definitions of independence and convolution are available, namely the free and

Boolean independence, cf. [2], [3], [13], [15], [16]. Each definition yields another no-
tion of Brownian motion and Poisson process, which can be realized on different forms

of the Fock space, namely the full Fock space in the case of free convolution, cf. [14].
The interest in the Boolean convolution is to provide a simple model to illustrate the

free case, and the Boolean analogs of Brownian motion and the Poisson processes can

be used to approximate their classical counterparts. The aim of this paper is twofold.

(i) We realize the Boolean Brownian motion and Poisson process on a subspace of the

symmetric Fock space, which will be called Boolean Fock space. Such processes have

no classical versions, however we show that the Boolean Fock space can be identified

to the LZ space of a classical Bernoulli process, obtained itself by combinations of

creation and annihilation operators.

(ii) Poisson random variables can be constructed non-commutatively by addition of
the conservation (or number) operator to Gaussian random variables. On the other
hand, it has been shown in [10] that the geometric law can be obtained in a similar
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way from the exponential law, using a construction of quantum stochastic calculus
based on time changes. We show that in the Boolean setting, the uniform density
plays the role of exponential density, i.e. the Gaussian, exponential and uniform laws
can be respectively linked to the Poisson, geometric and Bernoulli laws in a unified
non-commutative framework.

We proceed with a more detailed description of the main results. Let p be one of the

probability densities

03C1(x) = 1 203C0e-1 2x2 , 03C1(x) = -e-x1[0,~[(x), 03C1(x) = 1 21[-1,1](x),
x E R. The Gram-Schmidt orthogonalization procedure defines three families of or-

thogonal polynomials, respectively the Hermite, Laguerre and Legendre polynomials,
which satisfy the differential equation

+ -~- ~y(~) = 0, ~ EN, (1.1)

with respectively (Q(x), T(x)) = (l, -~), (~(x), T(~)) = (~,1 - ~), (~(x), T(x)) =

(1- x2, -2x), cf. ~8~.
For each choice of the probability density p, we can form a Banach space of sequences
B = Roo with a measure P denoted formally by dP = which is the completion
of a measure defined on cylinder sets. Denote by 03B8k : B ~ IR, k ~ IN, the coordinate

functionals, which are independent random variables distributed according to dp, and
by D : : L2 (B) -~ L2 (B) ® ~2 (~) the densely defined and closable gradient operator
defined as

, Bn) _ ((~kf 1e0~ ~ .. , n E ~.

For each density function p, a gradient operator D : : L2 (B) ~ L2 (B) g) L~(R+) is

defined by composition of D with a random injection z : : L2 (B) ® l2 (N) -~ L2 (B) ®
see Relation (5.2) below. This operator is closable and admits a closable

adjoint ~, cf. [10], [11]. A family {a,~ , a~, of unbounded operators on L2(B) is
defined as

= (DF, u)2, = ~(~cF), , auF = b(uDF),
~c E L~(B) (g) L2(R+; C), for F in a dense domain. These operators complement the
usual triple E L2 (1R+; C), of annihilation, creation and number (or
conservation) operators on the symmetric Fock space, cf. [7], [9]. We recall below the
interpretation of these operators in the tensor case, this paper being concerned with
the second part, cf. Sect. 3 and 4, i.e. with the Boolean case which will be shown to
correspond to p uniform on ~-1,1~.

1. Tensor independence. In this case the symmetric Fock space has at least two
probabilistic interpretations.
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- Wiener interpretation. This corresponds to the choice p(x) = ’7==~ ~ - . In

this case, aj = and and

is identified to the classical Brownian motion, and
- Poisson interpretation. The classical Poisson process is constructed as t +

+ + . Here, p is the exponential density = and

= a~ + au ,

hence the Poisson process is also given by + a ~o,t~ .
2. Boolean independence. In this case we will use a strict subspace 

of the symmetric Fock space h(L2(lR,+)). The Boolean Brownian and Poisson
processes are still given by + and t03C6 + + + where cp

is the vacuum state, but they have no classical interpretation, cf. Prop. 3.3 in

Sect. 3. However, with p the uniform density = 

+ + ~ ~ 1R,+~

can be identified to a classical Bernoulli process, cf. Prop. 4.1 of Sect. 4.

The following properties 1-4 hold for p Gaussian, and from [10] for p exponential.
Their proof in the uniform case is the other goal of this paper, cf. Sects. 4 and 5.

1. The sum + can be identified to the classical process (Brown-
ian, compensated Poisson or Bernoulli) associated to the sequence see

Cor. ~.1. In the uniform case we obtain in particular the identity

= + lR, . +

2. The sum equals the classical random variable T(B,~) of Eq. l.l, which
has respectively a Gaussian, exponential or uniform distribution, cf. Relation

(5.4).

3. Let i = . The operator + + s2~(8~), s e ~, ~ ~0~, has
a discrete probability law ~c, namely a Poisson or geometric law, respectively for

p Gaussian and exponential. If p is the uniform density, we show in Sect. 5 that
this distribution p is given as

I~ (~n(n + 1)~) = 2n 2s + 1 ~(~n+1 l I 2(s))2~ (1.2) )

,~~ being the Bessel function of the first kind, v G R+, cf. Prop. 5.2 of Sect. 5.
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4. The commutator equals (the multiplication operator by) the ran-
dom variable ~(8~) of (1.1), cf. Lemma 5.2.

In Sect. 2 we recall the definitions of Boolean independence and convolution according
to [3], [13], [15]. In Sect. 3 we construct the Boolean Brownian motion and Poisson

process. In Sect. 4 we show that a classical Bernoulli process can be also construct-

ed by combining the annihilation and creation operators. In this interpretation, the
Boolean Fock space is identified to the L~ space of a countable product of copies of
the uniform density. In Sect. 5 we introduce the operators ah, a, defined by
infinitesimal perturbations of jump times, and we link the uniform density to the
discrete distribution of Relation (1.2). In Sect. 6, we study the corresponding contin-
uous time construction of quantum stochastic calculus, in which iterated integrals of

adapted integrands turn out to be anticipating.

2 Boolean independence and convolution

In this section we recall the basic definitions of Fock space and Boolean independence.
Let L2(IR+) = L2(IR+; C), let (.,.)2 and |. |2 denote the Hermitian product and
norm on L2(R+), while ~ denote the modulus of z E C. Let f(L2(R+)) denote
the symmetric Fock space over L2 (lR,+), with its gradient and divergence operators
V- : h(L2(lR,+)) 2014~ r(L2(~+)) 0 L2(~+) and

V+ : r(LZ(~,+)) ® L2(~+) --~ r(L2(~,+))

defined by linearity and polarization and density as

k=n

o ... o (g) hk,

where denotes the omission of hk in the product, and

fl, ... , fm g E L2(~,+).

Definition 2.1 Let S denote the linear space, dense in h(L2(1R,+)), generated by
vectors of the form hl o ~ .. o hn, hl, ... hn E L2 (lR,+), n E N.

The annihilation, creation and conservation operators aj, , a~ and a, u E L2 (1R,+), on
h (L2 (lR,+) ) are defined as

a-uF = (~-F, u)2, a+uF = ® u), auF = F E S.
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Definition 2.2 Let A denote the set of closable operators X that leave S invariant,
and admit an adjoint denoted by X * on S.

Let (’, ’) denote the Hermitian product on r(L2(~i,+)), and let n denotes the unit
vector in r(Z~(R-(-)). We consider the non-commutative probability space (A, cp),
where A is the algebra of operators on r(L2(lR,+)) and /? : ,A. -~ C is the linear

functional defined as

cp(X ) _ X E A.

Self-adjoint elements of A are called non-commutative random variables. We recall
the following definition, cf. [15]. .

Definition 2.3 Two non-commutative random variables X, Y are said to be Boolean

independent if

- 
~

and

= 
~

for any ki > 1, 1~2 > 1, 1~3 > 1, 1~4 > l, ....

The distribution X of X E A is the linear functional cp(P(X )) defined on the
algebra C[X] of complex polynomials in one variable.

Definition 2.4 Let X and Y be Boolean independent, of distributions X and ,aY.

The Boolean convolution of X and Y is defined to be the distribution of X + Y, and
is denoted as X  Y.

The Boolean Gauss law with variance ~2 and the Boolean Poisson distribution with

intensity A > 0 are the probability measures

1 203B4-03C3 + 1 2 03B403C3 and 1 03BB + 1(03B40 + 03BB03B403BB+1),

cf. [15].

3 Boolean Fock space, Brownian motion and Pois-

son process

We now introduce a Boolean Fock space r~, (L2 (lR,+) ) with parameter y > 0 as a
subspace of the symmetric Fock space r(L2(lR+)). To this end we define a Boolean
symmetric tensor product. Let

Z,~ - (tl, ... , tn) E lR,+ : ~ , 2 ~,~ ,
where [x] denotes the integral part of x E R+.
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Definition 3.1 For f1, ... E LZ(R,+), let

( fl p’Y... p7 ... , tn) = 1Z03B3n (tl, ... , tn)f1 ... fn(t1, 
... , tn).

We denote by the subspace of J~(R+)~ which is the completion of the
vector space generated by

: A,...,/.e~(R+)}, 

with respect to the norm

!!’ ’ n~ (~ ’ n E N,

and denote by ry (L2 (~,+) ) the Boolean Fock space defined as

r7(L2(~+)) _ ® L2(~+)°7~’.
r~EN

For u E L2 (R+), the exponential vector ~7 (u) is defined as

03BE03B3(u) = 1 n!u03B3n.

Let S,~ = r,~ (L2 (~,+) ) ~ S, and let U denote the set of processes of the form
k=n

= ® hk , Fl, ... Fn E S, hl, ... , hk E L2(1R,+).
k=1

Let -~ r~,(LZ(~,+)) denote the orthogonal projection on T~,(L2(~,+)),
which can be viewed as a conditional expectation.

Definition 3.2 We define the operators v~’-, a~-, resp. on S, resp.
U, as

v~_ = v_ o o v+~

and

o a~+ = Jr’Y o a, , = Jr’Y o au o 

The operator v7+ : r(L2(~,+)) ® L2(lR,+) -~ r(L2(lR,+)) is closable and adjoint of
v~- : r(L2(~+)) ~ r(L2(~+)) ® L2(~+):

(~~ F~ u)r(L~(R+))®L2(R+) - (F~ ~~+(u))r(L2(R+))~ , F E S, u E Ll.

The operators and satisfy

k=n

... o’Y hn) = ~ hl o ’r ... o ’r ... o ’r hn) o 7 hk,
k=1 -
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p~~ .. p~’ fn ® g) v fl p~~ .. p7 fn 

fl, ... , f n, g E L2 (~,+), and and u E L2 (~,+) satisfy

a- F = (~y F? _ ~y+(F ® u)~ = ~’~+(u~~ F’)?

F E The next proposition shows in particular that a~- + a+ has the Boolean
Gaussian distribution 1 203B4-~u~ + 1 203B4~u~.
Proposition 3.1 Let h, u E L2(~0, ~y~) and a E ~ with

=1 and + =1.

The law of + in the state aS~ + h has support ~-l, 0, l~, with respective
probabilities

- 1 ~+ 
Proof. We determine the action of the Weyl operator exp(zi(a~+ + au-)), by showing
that

exp(zi(a+ + a~-))(aS~ + h)
= h - u(u, h)2 + + u(u, h)2) cos(z) + i + (u, h)2S~) sin(z), z E R.

For this we compute by induction:

h, n = 0,
(a03B3+u + 03B103B3-u)n h = { u(u, h)2, n = 2k > 0,~ (u, h)25~, n = 2l~ + 1 > l,

and

(a03B3+u + a03B3-u)n 03A9 = ( 03A9, n = 2k ~ 0,
u, n = 2k + 1 ~ 1, k ~ IN.

Hence the Fourier transform of a03B3+u + a03B3-u in the pure state 03B103A9 + h is given by

+ + h), aS~ + h)
- h)2 2 + + h)2I2) + 1((h, + (u, h)2C~) sin(z),

z E R. 
~ 

0

The operators a~-, acting on the two-dimensional space span (0, u) can
be respectively represented by the matrices

1 0 0 1 0 0 0 0[ 0 0 ] , [ 0 0 ] , [ 1 0 ] , [ 0 1 ] .

Hence and ~au-, give a representation of the Pauli matrices

Q’m ~y ~z ..
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Proposition 3.2 Let u E L2(~0, ~y~) be the indicator function of a Borel set of Lebesgue
measure a > 0. Then

+ a~ + a~+ 
has the Boolean Poisson distribution with parameter a, i. e. a+1 (60 + 

Proof. Let Xu = a7f’ + au- + au+ + a03B3u. We have Xu03A9 = u + 03B103A9 and Xuh =

hu + a(h, u)25~, hence = (a + + (Xu)ku = (a + + 

k ~ 1, which implies

03C6(eziXu) = (zl)k k!03C6(Xku) = 03B1(zl)k k!(03B1 + 1)k-1 = 03B1 03B1 + 1eiz(03B1+1),
which is the characteristic function of a+1 (60 + 

’

We define the processes (at-)tER+, (al+)tER+’ by

t E 1R,+. °

The following result, combined to Props. 3.1 and 3.2, shows that (at- + is

the Boolean analog of Brownian motion, and that + + + is a

realization of the Boolean Poisson process.

Proposition 3.3 let u, v E L2 ( ~0, ~~ ) .

i) If u, v are orthogonal, then + a~+ is Boolean independent of av- + 

ii ) If u, v are indicator functions with disjoint supports, then + a~- + a~+ + au°
and + av- + av+ + av°, with a = u(s)ds and ~3 = v (s)ds, are Boolean
independent.

Proof. . i) This property follows from the facts that

03A9, k, even

(a03B3-u + a03B3+u)k(a03B3-v + a03B3+v)l03A9 = u k odd, l even(u,v)2u k even, l odd

(u, v)203A9 k odd, L odd,

and
(v, h)2(u, v)2u, 

(a03B3-u + a03B3+u)k(a03B3-u + a03B3+u)lh = (v, h)2(u, v)203A9 k odd, l even

(v, h)203A9 k even, odd(v,h)2u k odd, lodd,
which imply that

03C6((a03B3-u + a03B3+u)k1(a03B3-v + a03B3+v)k2(a03B3-u + a03B3+u)k3(a03B3-u + a03B3+u)k4 ...) = { 1 k1,k2,... even,0 otherwise. even,

ii) The relation uv = 0 implies in the notation of the proof of Prop. 3.2:

~ ..) - (x((x + + 1)~2 l~(a + + 1)k4 1 .
= ~(Xv,l)~(Xv2)~(Xv,3)~(Xv4) ~ .. ~ ~1 > l, k2 > 1,...,

hence the Boolean independence of Xu and Xv.
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D

Remark 1 The sequence at + r~> 1 
converges to at + at pointwise on S,y,

hence in distribution, as n goes to ~. Similarly, the sequence

(t03C01 n + a1 n-t + a1 n+t + a1 n°t ) n>in>1

converges to tld + at + at + at, pointwise on S03B3 as n goes to ~. Hence the Brownian
motion and Poisson process are limits of their Boolean counterparts in the sense of
pointwise convergence on 5~,.

Due to the non-commutativity of the Boolean independence property, the Boolean
Brownian Poisson processes obtained in this way do not have classical realizations.

Nevertheless, we show in the next section (Prop. 4.1) that + a~+ + can be

identified to a multiplication operator by a classical random variable.

4 Probabilistic interpretation of 

In the remaining of this paper we set ~y =1 and write "o" instead of "01" . In this sec-
tion we construct a probabilistic interpretation for the Boolean subspace 
of r(L2(lR,+)). We show that in this interpretation, a classical Bernoulli process can
be constructed from au- + au+ + . Consider the space B =1R,N with the metric

d(x, y) = sup |xn - yn|,
rcEN

and the probability measure defined on cylinder sets as

: E E}) = - / dt1 ... dtd, ~1 ~ ... ~ kd, 2d En(-l,lJd

The coordinate functionals

are independent, uniformly distributed random variables on (-1,1~. Let

T*~ = k + (1 + /2, 

be the kth jump time of the point process (Y(t) )tER+ defined as

Y(t) _ ~ t E R+. (4.1)
kEN

For bounded A E B(R+), let

FA = a l(Tk) : O ~ A, O E B(R+)),
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and Ft = F[0,t], t ~ R+. We define the filtration as 0t = R+,
where [t] denotes the integral part of t E R+. The compensator (vt)tER+ of (Y(t))tER+
with respect to its natural filtration (Ft)tER+ is

1 k + 1 - t1[k,Th[(t)dt,

cf. [6], and is not a (0t)-martingale. For fn E denote by In(fn)
the iterated stochastic integral with respect to the compensated process

(Y(t) - t)tER+:

n(fn) = n! ~0[tn]0 ... ... 
- tl) ... - tn).

Let

K = {f ~ L2(R+) : f (t)dt = 0, 

let = equipped with the norm, and let be the

subspace of rl (L2 (R+)) defined as

_ ® 
n>0

For f n e we have

n(fn) - fn(Tk1,...,Tkn) = n!  fn(Tki,...,Tkn),

and 

E = 
~ fn E gm E 

Consequently, the mapping

~ : ~(7~) -~ L2(B)
fn H in(fn)

is bijective since the set of multiple stochastic integrals is total in L2(B). The expo-
nential vector 03BE1(u), u E K, is here identified to

03BE1(u) = 1 n!n(u~) = 1 + £ £ u(Tk1)...u(Tkn) _ (1 + 

Under this identification, any square-integrable (0t)-adapted process u E L2 (B) ®
L2(~,+) belongs to and

/*00

~1+(u) = u(t)d(Y(t) - t), (4.2)
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cf. Corollary 1 of [11]. Let L2(R+) -~ K denote the orthogonal projection on I~.
The following proposition shows that the process + + 

identified to the classical compensated process (Y(t) -t)tER+. . This result corresponds
to the fact that the linear combination ~~~ + yay + zaz + t can yield all Bernoulli

probability laws for t e R+, when + 1-) and d (au-, are

identified with the Pauli matrices ax, ay, az, acting on span(S~, u).

Proposition 4.1 Let u E K. The operator a~- + au+ + au° is identified to the multi-

plication operator on Sl by the single stochastic integral h (~) .

Proof. The proof follows by application of the following Lemma. D

Lemma 4.1 Let u, f E K such that u f E L2 (R,+) . The multiplication formula for
the multiple stochastic integral In and can be stated for n > 1 as

- ~ u) + ) ~ + ’)a u(’~)2~~ .

Proo f . We have

~ )

- ~ 

+n L f(~~1) ... 
~ 

kn+1

+n f(Tk1)...f(Tkn-1)kn+1knf(t)u(t)dt. o[]

5 Quantum stochastic processes in discrete time

In this section we link the uniform distribution to a discrete law (Prop. 5.2) by addition
of a number operator defined via a discrete-time quantum stochastic calculus. We start

by considering a different approach to non-commutative stochastic calculus, allowing
to write the multiplication operator fo u(t)d(Y(t) -t) as a sum of a gradient operator
and its adjoint.

Definition 5.1 Let P be the set of functionals of the form f (80, ... , , 9n_1); f polyno-
mial, n > l, and let V be the set of processes ~u of the form

k=n

k=1 
’
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The sets ~ and V are respectively dense in LZ(B) and in L2(B) ~ L2(1R,+). We now
define a gradient operator by perturbation of the jump times of (Y(t))t~R+, cf. (4.1),
i.e. by differentiation with respect to the coordinate functionals (Bk)kEN. Define

: L2(B) ~ LZ(B) ~ L2(R+)

with

n

D f (80, ... , Bn) _ ~ ((ek + (ek + akf (eo.... t E ~+~
k=1

cf. Def. 2 and Def. 3 of ~11~. The operator D is closable and admits an adjoint
b : L2 (B) ® L2 (1~+) ~ L2 (B) 

Proposition 5.1 have the identity

b(v) = v(s)d(Y(s) - s) - Dsv(s)ds, v E V. (~.l)

Proof. cf. Prop. 5 of ~11~. 0

Consequently. if v E L2(B) ® L2(1R,+) is then v E Dom(pl+)
and d(v). C~l~‘(v) both coincide with the stochastic integral of v with respect to

(Y(t))teR+, compensa.ted with dt:

a(~~) = ol+(v) = v(t)d(~~(t) - t).
We can now state the definition of the three basic operators.

Definition 5.2 For h E L2(lR,rt), define the closable operators ah, ãoh, ah on P as

The operator ã+h is adjoint of ah on P and ah is self adjoint on P. Let at = 

Corollary 5.1 The operator at +ã+t is the multiplication operator by Y(t)-t, t E lR,+,
and (at + at)tER+ is identified to the classicol process (Y(t) - t)tER+.

Proof. . This folloivs from Prop. 5.1. 0

define the mapping i : L2 (B) ~ l2 (l~i ) ~ L2 (B) ~ L2 (lR,+) as

iti;u) _ ~ 2ck ((Bk rt (8k t E lR.+. (5.2)
k=1
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With this notation we have D = i o D, where D : L2 (B) --~ L2 (B) ® L2 (N) is the

discrete-time gradient densely defined as

D f(eo, ... , en) _ (D~ f(eo, ... = (a~ f(8o, ... , > t E 

The definitions of ah , ah , ah can be extended by letting h equal the random process

2(ek) ~_ + (8~ + 

where (ek)kEN denotes the canonical basis of ~2(~V). .

Proposition 5.2 Let s E R,1 {0}. The non-commutative random variable

+ s2(1- 8~)

has a discrete distribution ~c carried by ~n(n + 1) : n E and given by

I~ + 1)}) _ ~ n + s 1/2 (~~,+y2(s))2~ n (5.3)

Here Jp, p > 0, denotes the Bessel function of the first kind, defined as

Jp(x) = - )" (-x2/4) 
k 

, 
> x E 1R,.

2 
~-o 

+ ~ + 1)

For the proof of Prop. 5.2 we will need the following Lemmas.

Lemma 5.1 The operators satisf y

(1 - -(1- 8~)a2f (8~) + 28~a f (8~)~

and

_ -(1- 8~)af (8k) + 

Proof. The relation _ (1 - follows easily from the definition of
D as D = i o D. Using the duality between D and ~, a one-dimensional integration
by parts on ~- l,1 ~ gives _ - ( 1- 8k ) a2 f (8~ + 28ka f (8~ ) . The last relation is
obtained from a(ek) = > 0. ’

Consequently, -~- is identified to a multiplication operator:

+ 28~, kEN, (5.4)

and + has a uniform distribution on ~-2, 2~. Defining the Hermitian oper-
Qh = ã+h + ã-h , Ph = P1[0,t], Qt = t E R,+, we have

= 28kf (8k)~ _ -i(-2(1- + 
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Lemma 5.2 For s E 1R,,

) = a° i(ek) - + + ~(1 - ~)~

and the following commutation relations hold:

- -2(1- > (5.5)
= 2i(1- 8~), (5.6)

~ai(e~) ° > 1~, l E N. 5.7

Proof. . We omit the index 1~ and use Lemma 5.1. We have

a° exp ( -is()) f (8) _ (-(1- 82)ae + 203B8~03B8) (f(03B8) exP(-is8))
- _(i - ~~_~~~) + /"~) 

+2(-isB f (9) + Bf’(8)) exp(-is9),

hence

exp (is()) a° exp (-is()) == (-(1- + 2eae) f (e) + is((l - 2a) f (e)

+is((1 - B2)ae)f (8) + s2(1- B2)f (9)
= a° f (B) - isa+ f (8) + f (9) + s2(1- 82) f (8).

On the other hand,

~a-, a+~ - (1 - a2)a(-(1- 92)a) + 2e(1- 82)a + (1 - e2)a((1- e2)a - 28)
= -(1 - e2)2a2 + ~~ _ ~ ~ ~~ _ ~ ~ ~ _ ~~2~2

- 2~(1 - ~)9 - 20(1 - 82)a - 2(1 - ~) = -2(1 - 0’),

hence (5.5) and (5.6). Concerning (5.7) we have

(-(1 - + 2eae)(ef(8)) - e(-(~ - + 2ea8) f(e)
- -(1 - 82)(2 f,(8) + 8 f"(e)) + 2e( f(a) + e f"(a)) + a((1- 2eae) f(e)
= -2(1- 82) f’(9) + 28 f (B) = iP f (g). . D

Proof of Prop. 5.2. Let Rn, n > 0, be the Legendre polynomial of degree n, which

satisfies the differential equation

(1 - + n(n + = 0, (5.8)

and the orthogonality relation

1-1Rn(x)Rm(x)dx/
2= 

1 2n + 1
1{n=m}, n,m ~ N.
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We have

= + ~, n e N. (5.9)
From Lemma 5.2, the law of + + ~(1 - ~) in the vacuum state
Q is the same as the law of in the state exp ~, cf. [1]. From (5.9), the
spectrum of a° is +1) : ~ e N} and the Legendre polynomial R~ is eigenvector
for a° of even eigenvalue ~(~+1) e N. In order to determine the law of a° in the state

it is sufficient to decompose exp(isx) into a series of Legendre polynomials.
From [12], p. 194, we have

1-1xmRn (x)dx 2 = 
m! (m - n)!

!(m + n + 1)!! ,
if m - n is even and m ~ n, with

p!! = ]~ (2k), p even, and p!! = ]~ (2k + 1), p odd.

For other values of m, n, the integral is equal to zero. Using Legendre’s duplication
formula (cf. [4], p. 64): :

0393(a)0393(a + 1/2) 0393(2a) = 03C0 22a-1, a ~ R

where F is the Gamma function, it follows:

1-1eisyRn(y)dy 2 = (is)n(is)2k (2k)!!(2k + 2n + 1)!! = (i2s)n(is)2k(k + n)! k!(2n + 2k + 1)!
= 03C0(i2s)n

(is)2k 22n+2k+1k!0393(n + k + 3/2)!

= 1n 03C0 2s(s 2)n+1/2(-s2/4)k k!0393(n + k + 3/2)! = (1)n 03C0 2sn+1/2(s).- ’ 1 y~~ ~!r(~+~+3/2)!’’~ V~-~~’ °
The expansion

eisx = (2n+11-1eisyRn(y)dy 2)2n+1Rn(x)
gives (5.3), since

~({~+i)})= ~/2n~T/’ a
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6 Quantum stochastic calculus by time changes

In this section, ~(~) == Kon is identified to L2(B) and we use the decomposition

at + at = + + = (Y(t) - t)tER+

of (Y(t) - in annihilation parts to construct a non-commutative Ito calculus.

For f E 12(N) with finite support, define the exponential functional

,

kEN /
and denote by :=: the vector space generated by such random variables, which is dense
in L2(B, P). Let A E B(R). Denote by ~A the set of operators in A with P c

Dom(X), that can be written as X on r(L2(A)) 0 r(L2(AC)). .

Definition 6.1 A process (X(t))tER+ of operators is said to be if X(t) E
R+ "

We start by defining quantum stochastic integrals of simple adapted processes.

Definition 6.2 If (X (t))tER+ is a simple adapted process of operators of the form

i=n

X(t) = R+, n 

i=0

where Xi E i = 0, ... , n, let

/ Xiã~1[i^t,(i+1)^t[, ~ = -, , +. (6.1)
o i=o

The following proposition extends this definition to non-adapted processes, provided
smoothness conditions are satisfied, see also [5]. .

Proposition 6.1 If (X(t))tER+ is a process of operators in A, let

~0X(s)dãs-sF = ~0X(s)sFds, ~0X(s)dã0sF = (X(.).F), (6.2)

~0 das X (s)F = 03B4(X(.)F), 
= ~0sX(s)Fds, (6.3)

provided XF = satisfies respectively XDF E L2(B) ® L2(lR+), XDF E
XF = E Dom(b), DXF E L2(B)®L2(lR,+), F E L2(B). . These

definitions coincide with Def. 6.~ on simple adapted processes.
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Proof. VVe have Di = Di ® I on r(L2(~0, i~)) ® I‘(L2(~i, oo~)), hence X(s) commutes
with D2 for s E ~i, i + 1 ~, i E 1~1, and

= = a.s., F E u, s E ~,+, (6.4)

hence XDF satisfies the conditions of Def. 6.1, and (6.1) is equivalent to (6.2) and
(6.3) on simple processes, from Def. 5.2. ’

The integral f °° X (t)dat is defined by duality from ~0 dã-tX (x)*. Conditions for the
existence of the stochastic integral of adapted operator processes as an unbounded

operator on the vector space ~ of exponential vectors can be obtained from the next

proposition:

Proposition 6.2 Let be a simple adapted process in ,,4. We have

0 0

, «9) u, C. - -, o, ~, t,~14

h+=i(9)~ > h_=i(f)~ > h~=i(f9)~ ° (6.5)

This shows that if is an (.Ft)-adapted process of operators such that

E ® LZ(I~,+), d ~ E ~,

then f o X (s)das is uniquely densely defined. We have

(~(g)~ / _ ( / ~(f ))~ )~ ~(g) E u~
0 0

if and its adjoint are simple adapted processes that satisfy the
above conditions, with *~ _ +, o, - respectively if ~ _ -, o, +.

Proof. . The proof is an application of Relation (6.4) and the fact that D~( f ) _

i ( f ) ~ ( f ) . The last relation is a consequence of the duality relations between a,~ and
au , and of the self-adjointness of a°, cf. ~1~, ~10~ for the analog statements for p
respectively Gaussian and exponential. ’

Proposition 6.3 Let X, Z be simple (t)-adapted processes in ,A. such that 0396 C

Dom(X(s)Z(s) ), s E lR,+. . We have the equality
t t t S t s

t0 X (s)das t0 Z(s)das - t0 dasX (s) (s0Z(u)dã~u) + t0 (s0Xudã~u) Z9s)dã~s
+ ~ X (s)Z(s)das ~ das, (fi.6)

where the composition of operators holds in the weak sense the product das . das
is given by the multiplication table
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Proof. The statement of (6.6) in the weak sense means the following identities, which
will be proved using the duality between b and D:

t t

( % Z(s)das G, ~ X (s)*das F)
t s t s

- ( ( s0Z(u)dã+uG,X(s)*sF~ds + DS s0X(u)*dã-uF~ds,
( ~ Z(s)das G, ~ X (s)*das F)

t s t s

- s0Z(u)*dã+uX(s)*F~ds + s0 Xudã-u Z(s)G, F)ds,

( ~ Z(s)das G, ~ X (s)*das F)
t s t s

- s0Z(u)dã+uG, F)ds + s0sX(u)*dã+uF~ds,
+( ( ~ X(s) Z(s)GdX (s), F), ,

t t

( / Z(s)das G, ~ X (s)*das F)
t s t s

_ ( + X (u)*dau F)ds,a o 0 0
for F, G E ~. By linearity and adaptedness of X, Z it suffices to prove these relations
for X = Z VVe have

t t

(at G, at F) - ( 0uGdu, / DsFds~
t s t u

- (b .0uGdu , F) + (G, b 0uFdu ) )
t t

- ( / das as G, F) + (G, / das as F)
t t

- (G, t0 ã+sdã-s + t0 dã+sã-sF), F, G E P,

and

t t t

at G) - (as F, + (F, t0 as Gd(Y (s) - s)) - G)ds

- (as F, sG~ds + (F, t0 das as G)
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t t

+(F, ~ das as G) - as G) ds
t t

_ + (F, ~ das as G)
t t

_ (F, 0 ã-sdã-sG~ + (F, 0 das as G), , ’ F, G E P.

Finally,
t t

(at F, dt G) - - s), G) - 

t t

+(F, 0 as Gd(Y(s) - s)) - ã+sG~ds + (Y(t)F, G)
t t t

_ ( 0 das as F, G) + ( 0 das as F, G) - 

+(F, t0 das as G) + (F, t0 das as G) - as G)ds + (Y(t)F, G)

_ ( t0 dã-sã+sF, G) + (F, t0 dã-sã+sG~ + (Y(t)F, G)
t t

- ( t0 dã-sã+sF, G) + ( t0 ã-sdã+sF, G) + (Y(t)F. G) . ’ F, G E P. D
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