
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

MICHEL ÉMERY

WALTER SCHACHERMAYER
On Vershik’s standardness criterion and Tsirelson’s
notion of cosiness
Séminaire de probabilités (Strasbourg), tome 35 (2001), p. 265-305
<http://www.numdam.org/item?id=SPS_2001__35__265_0>

© Springer-Verlag, Berlin Heidelberg New York, 2001, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_2001__35__265_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


ON VERSHIK’S STANDARDNESS CRITERION

AND TSIRELSON’S NOTION OF COSINESS

M. Émery and W. Schachermayer

Abstract. - Building on work done by A. Vershik some thirty years ago, the insight
into different types of filtrations has recently seen important progress, due in particular to
B. Tsirelson, and L. Dubins, J. Feldman, M. Smorodinsky, B. Tsirelson. Key concepts are
the notions of a standard filtration (due to A. Vershik) and of a cosy filtration (due to
B. Tsirelson). We investigate the relation between these two concepts and try to provide a
comprehensive and self-contained presentation of the topic.

Part of this work is expository, and consists in translating into a probabilist’s language
Vershik’s necessary and sufficient condition for standardness, and his theorem on lacunary
isomorphism. There are also original results: Theorem 2 proves that standardness is in fact

equivalent to a certain variant of the notion of cosiness, which we call I-cosiness; an example
borrowed from Vershik and Smorodinsky then shows that I-cosiness is strictly stronger than
another variant, D-cosiness, used in earlier works. Another new result is a (negative) answer
to a question of H. von Weizsacker: the last section gives an example of a filtration 
and a a-field *B such that 3=’0 and 13 are "almost independent", but nevertheless
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Many thanks to A. M. Vershik for enjoyable and fruitful conversations about his

theory of filtrations. We are also grateful to the Schrodinger Institut in Vienna,
where part of this work was done during the Mini-Symposium on the Classification
of Filtrations held in December 1998, and to C. Leuridan for his remarks.

Introduction

The objects of this study are filtrations. We shall not be interested in their
set-theoretical properties, but in their probabilistic ones: we shall only consider
filtrations on a probability space (S~, A, P), and the notions relevant for our analysis,
e.g., that of independence, are not invariant under changes of the measure P. (In full
rigor, we should speak of filtered probability spaces rather than filtrations.) We refer
to the next section for a precise definition of an isomorphism between two filtrations
in the present context.

In the late sixties and early seventies, A. Vershik [17] initiated a classification
of filtrations. Consider filtrations where time is a negative integer, such
that nn is degenerate and each is generated by and a random variable

independent of ~’n_1, uniformly distributed on [0, l~. A typical example of this
situation is, of course, the filtration generated by an i.i.d. sequence of

random variables with uniform law on [O,lJ; a natural (and innocent-looking)
question is whether this example already covers all cases of filtrations verifying the
above properties. One of Vershik’s results is the following, highly non-trivial, fact:
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these filtrations are not all isomorphic to each other. More precisely, calling standard
a filtration generated by an independent sequence of uniformly distributed random
variables, he exhibited non standard filtrations satisfying the above conditions,
and obtained his standardness criterion, a necessary and sufficient condition for
a filtration to be standard.

Written in the language of ergodic theory, these ideas did not find their way into
the probabilistic culture until 25 years later, when they were used by L. Dubins,
J. Feldman, M. Smorodinsky and B. Tsirelson [5] to show that standard filtrations
are not stable under equivalent changes of probability. They deduced therefrom that
Brownian filtrations are not stable either under equivalent changes of probability.
A further step in the search of filtration invariants was made by B. Tsirelson, who

showed in [15] that a Walsh process is not immersible into a Brownian filtration,
that is, into a filtration generated by some (finite- or infinite-dimensional) Brownian
motion. The strategy of his proof involves introducing a new property, cosiness,
possessed by all Brownian filtrations (but more general than mere "Brownianness" );
he then shows that a Walsh process is not immersible into a cosy filtration.

This strategy, establishing non-cosiness to deduce non-Brownianness, has been
adapted to other situations: J. Warren proves in [18] that the filtration generated
by sticky Brownian motion is not cosy; the non-Brownian change of probability
constructed on Wiener space by Dubins, Feldman, Smorodinsky and Tsirelson in [5]
is shown in [3] to be non-cosy; a non-cosy change of time on Wiener space is
constructed in’ [7]. In the latter two articles, [3] and [7], Tsirelson’s definition of
cosiness is slightly modified (weakened, and adapted to discrete time); what is used
there is the variant of cosiness which we call D-cosiness below.

These two tools, the standardness criterion on the one hand, and cosiness and its
variants on the other hand, are very efficient means of establishing that some given
filtration is not standard (or not Brownian). The present article aims at bridging the
gap between them, by establishing that standardness is equivalent to yet another
variant of cosiness (we call it I cosiness). 

’

We shall first copy the proof of Vershik’s criterion in the language of stochastic
processes, and graft thereupon the equivalence between standardness and I-cosiness
(Theorem 2 and Corollary 5).
Then we shall test the efficiency of this new criterion on one of Vershik’s non

standard, hence also non I-cosy, examples; somewhat unexpectedly, this particular
non I-cosy example turns out to be D-cosy (Proposition 9).

Last, we shall show in Proposition 10 that the same example answers negatively
a question raised by H. von Weizsacker: if a filtration and a 03C3-field B are
almost independent (this will be explained), does the germ a-field n always
equal ’~

n

Notation and definitions

All probability spaces (S~, A, P) will be P-complete; by a sub-a-field of A, we
always mean an (A, P)-complete sub-a-field of A. For instance, a(X) ) denotes the
a-field generated by the r.v. X and the null events; and when we consider a product
(0’ x 0" , A’ 0A" , P’ x P") of probability spaces, A’ 0A" is completed for P’ x P". Also,
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all filtered probability spaces (S~, A, ~’) will satisfy the usual hypotheses of the
general theory of processes: each Ft is (A, P)-complete and, if the time-parameter is
continuous, the filtration is right-continuous.

Recall that the a-field A is essentially separable (resp. essentially finite) if it

is generated by countably (resp. finitely) many events (and the null events; this
is implicit). Equivalently, A is generated by some random variable (resp. simple
random variable). This is tantamount to saying that l~) is a separable
Banach space (resp. is finite-dimensional), and entails that every sub-a-field of A is
also essentially separable (resp. essentially finite).
DEFINITION. - An embedding of a probability space (S~,,A., I~) into another one

(S~, ,A.,1~) is a mapping W from A, I~) to L° (S~, ~A., I~) that commutes with Borel
operations on r.v.’s:

W ( f o (Xi,..., Xn)) = f o (~(Xl), ... , for every Borel f : --~ I~

and preserves probability laws:

E El = E E~ for every Borel E c I~.

An embedding is always injective and transfers not only random variables, but
also sub-a-fields, filtrations, processes, etc. It is called an isomorphism if it is

surjective; it then has an inverse. An embedding W of (S~,,A., I~) into (S~, J~, I~) is

always an isomorphism between (S~,,A., I~) and (~, See for instance ~2~ for
more details.

DEFINITION. - Given two filtered probability spaces (S~, .A., and (S~, ,A., I~, ,

the filtrations F and F are isomorphic if there exists an isomorphism W from
(S~, ~’~, I~) to such that ~(~) _ ~’.

It would be more rigorous to say that the filtered probability spaces (and not
only the filtrations) are isomorphic; this precision is necessary when there may be
an ambiguity on the probabilities P and P. In the sequel we shall never change
probabilities, so we shall allow ourselves this abuse of language.
DEFINITIONS. - Let y and S be two filtrations on a probability space (S~,,A, .

The filtration ~’ is included in ~ if ~’t c ~t for each time t.

The filtration * is immersed in S if every 9-" -martingale is a 9 -martingale (this
is stronger than mere inclusion). .

The filtrations ~’ and ~ are jointly immersed 1 if each of them is immersed in
(the smallest filtration where * and S are included; it can be defined by

(~’V 9)t = f) (~’t+~ V for each time t) .
~>o

As with the previous definition, the role played by P should be stressed: The fact
that ~ is immersed in S is in general not stable under a change of probability.

Note also that, by a density argument, ~’ is immersed in S if and only if every
bounded *-martingale is a (bounded) S-martingale; and, by stopping, if and only if
every local martingale for * is a local martingale for S.

1. Or, more precisely, jointly immersed in ~ V 9. But we shall see in Lemma 4 b) that this holds
as soon as there exists a filtration ~K such that both ~ and 3 are immersed in ~K.
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The notion of an immersion is fundamental in many aspects of stochastic calculus;
for instance, it is hidden inside the definition of a Brownian motion for a filtration,
or of the Markov property with respect to a filtration. It has been used by many
authors, sometimes implicitly, without giving it a name, sometimes explicitly, under
various names; see [3] for more details and for some references. (The works [1]
by D. Aldous and M. Barlow and [10] by D. Hoover should be added to those
references. )
LEMMA 1. - Let 3’ and 3 be two independent filtrations (that is, ~’t and ~t are
independent for each t). . Then ~ and ~ are jointly immersed in .

PROOF. - An independent enlarging of a filtration preserves its martingales. t

LEMMA 2. - Let ~’, ~, ~-C and X be four filtrations on the same sample space,
such that ~’ is immersed in H and ~ in X. If ~-C and X are independent, is

immersed in 

PROOF. - It suffices to show that the product FG of a bounded ~-martingale F
and a bounded S-martingale G is an HK-martingale. This is obtained by taking
any bounded, %t-measurable (respectively Xt-measurable) random variable Ht
(respectively Kt ) and writing

IE[F~G~HtKt] = E[F~Ht] E[G~Kt] = E[FtHt] E[GtKt] = E[FtGtHtKt] ..

REMARK. - If F and S are immersed in 1-C, it is not always true that is

immersed in ~-C, even when ~ and S are independent. A very simple counter-example
can be built from two independent random variables U and V with uniform law on

{-1,1}. Put Mt = U and Nt = V The filtrations F and G respectively
generated by M and N are independent and immersed (by Lemma 1) in the filtration
~C given by = a(UV) if t  1 and = a(U, V) if t > 1; but the process
MN = UV is not an H-martingale, though it is of course an FG-martingale.

In other words, if ~’ and S are two independent filtrations, the product of an
y-martingale and a S-martingale is always an FG-martingale; but if M and N are
two independent martingales for a filtration 1-C, the product MN is not necessarily
an H-martingale. (Note, however, that the product of two independent continuous
H-martingales is always an H-martingale, for in this case (M, N) = 0.)
A sufficient condition for the product of two martingales to be a local martingale

is that their covariation process is constant; this suggests the following statement:
Let two filtrations ~’ and ~ be immersed in ~-C. Suppose there exists an ~-optional
subset A of such that, for all F-martingales M and 9-martingales N, the
processes f llA d [M, M] and f 1Ac d [N, N] are constant. Then the filtration 
is immersed in ~-C. The simple proof of this statement is left to the reader; we shall
only need the particular instance when A is the deterministic interval [0, t~ : :

LEMMA 3. - Let two filtrations ~’ and ~ be immersed in some filtration Suppose
that for some time t, ~~ is included in and ~t is degenerate. The filtration 
is immersed in ~-C.

PROOF. - It suffices to show that the product FG of a bounded F-martingale F
and a bounded S-martingale G is an H-martingale. The martingale equality may be
checked separately on the intervals [0, t] and [t, oo), since they have t in common.
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On [t,~), this equality holds because F = Ft is constant and Ht-measurable; on

~0, it holds because G = is constant and deterministic..

LEMMA 4. - Let ~’, ~ and ~-C be three filtrations on some sample space (S2,,A., l~).

a) If ~’ is included in ~ and ~ in and if ~’ is immersed in then 3’ is

immersed in ~. .

b) if ~’ and ~ are immersed in ~-C, they are jointly immersed (in ~’V ~~.

REMARK. - Lemma 4 b) can be rewritten as follows: two filtrations ~’ and ~ on

the same sample space are jointly immersed if and only if there exists on that space
a filtration ~-C such that ~’ and ~ are immersed in This equivalence explains a

posteriori the choice of the name for this property.

PROOF. - a) Any F-martingale is an H-martingale adapted to G, whence a

G-martingale.

b) If both 3’ and G are immersed in H, applying a) to F, FG and H shows that

~’ is immersed in ~’V~; similarly for ~. 1

If a filtration ~’ is included in a filtration ~, each of the following three statements

is a necessary and sufficient condition for ~’ to be immersed in ~:
for each t, the a-fields ~’~ and ~t are conditionally independent given ~’t ;
for each t, the operators of conditional expectation verify IE’t = 

for each t, the operators of conditional expectation verify = 

These three characterizations of immersion can be found in Exercise V.4.16.1° of

Revuz-Yor ~12~ . We shall not use them directly, but in a disguised form: Lemma 5
will rephrase them in terms of *-saturation.

DEFINITION. - Let (5~,,~1., I~, ~’) be a filtered probability space. A sub-a-field B ofA
is *-saturated if B c ~’~ and if ~ (= E ~ ~’t ~ ) is B -measurable for each

B E B and each time t.

LEMMA 5. - Let (S~,.A.,1~, ~’) be a filtered probability space. The map E H ~~ is

a bijection between all filtrations immersed in F and all F-saturated sub-a-fields

of A. Its inverse is the map B H ~ defined by ~t = .

Consequently, the filtrations ~ immersed in ~ are characterized by their end

a-fields E~, and verify £t = for every t.

PROOF. - Let £ be immersed in F and set B = ~~. Pick any B E B and consider

the £-martingale Mt it is also an F-martingale, and is equal to

whence B-measurable; so B is *-saturated. This equality also shows that

if B E = =11B, whence B E £t, and ~t = B~~’t.
Conversely, starting with any *-saturated sub-a--field B of A, define a filtration

£ included in ~’ by . Clearly, ~~ C B. For each X E L°°(B), the

F-martingale Mt = E[X|Ft] is adapted to the smaller filtration £, so it is an

£-martingale. Consequently, noticing that = M~ = X

(because B C ~~), one sees that B is included in E~, whence B = ~~. So M
is the most general bounded £-martingale, and £ is immersed in ~. 1

It is obvious that the intersection of two *-saturated 03C3-fields is *-saturated too;

Lemma 5 translates this into a statement on immersed filtrations:
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LEMMA 6. - If two filtrations ~’ and 9 are jointly immersed in ~’V ~, their

intersection (the filtration consisting of the intersections ~ ) is immersed

in each of them.

PROOF. - Put ~-C = ~ V ~; by hypothesis, both :f and 9 are immersed in ~C. It

suffices to show that F~G is immersed in H, and the result will follow by applying
Lemma 4 a) to and By Lemma 5, the a-fields and Soo are %-saturated;
consequently, so is also Still by Lemma 5, the filtration J defined by
Jt = 1’oon ~~o~ Jet is immersed in ~C. Applying Lemma 5 again gives Jet = ~t
and ~t = 9t, wherefrom Jt 9t..

LEMMA 7. - Let be a filtered probability space and B an ~’-saturated
sub-a-field of A. For a given t, B is independent of Ft if and only if B~Ft is

degenerate.
If this holds, and if C is any ~’-saturated a-field included in ~’t , then BV C is

~’-saturated.

PROOF. - Supposing is degenerate, take B E B. The random variable

is measurable with respect to B (by saturation) and to ~’t , hence a.s.

constant. Consequently, B is independent of Ft; so B and Ft are independent.
Conversely, if B and Ft are independent, is independent of itself, that is,
degenerate.

The second part of the lemma is a corollary of Lemmas 3 and 5..

From now on, the discussion will be restricted to filtrations indexed by the time-
axis -N = {..., -2, -1, 0}: the instants of time are negative integers. (In fact,
only a neighbourhood of -oo is interesting; at the cost of a few minor changes,
everything extends to the case when the time-axis is Z.) All statements seen so far
on immersion and saturation are still valid, with naturally being replaced by ~o.
In this situation (and more generally whenever time is discrete), there is a very

simple and useful instance of immersion:

LEMMA 8. - Let (S~,,A., be a filtered probability space and, for each n x 0,
let Cn be a sub-a-field of independent of . The filtration ~ defined by
~n = m  n) is immersed in F, and the a - field n  0) is F-saturated.

PROOF. - Every bounded, So-measurable r.v. E has the form ~(... , C_1, Co)
where each Cn is a en-measurable r.v. For fixed n x 0, the r.v.’s ... , Cn_l, C~
are Fn-measurable and (Cn+1, ... , Co) is independent of hence equals
f ~(... , Cn_1, Cn, cn+l, ... , co) where ~ym is the law of Cm.
As this is ~n-measurable, E[E|Fn] equals showing immersion of ~ in F
and *-saturation of 

DEFINITION. - Two filtrations F = and 9 == defined on the
same sample space (S2,,A., are I-separate if there exists an n such that the

a-fields ~’n and ~n are independent.

The letter I in this name stands for Independence. Later on, we shall meet other
separation conditions (D-separation, H-separation, ... ).
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DEFINITION. - A filtered probability space (S~,,A., I~, ~’), where ~ _ is

I-cosy if for every F0-measurable r.v. R and every b > 0, there exists a probability
space A, with two filtrations ~’’ and ~’" such that

(i) each of 3’’ and ~’" is isomorphic to ~’;

(ii) ~’’ and ~’" are jointly immersed;

(iii) ~’ and ~’" are I-separate;

(iv) the copies R’ E and R" E of R by the isomorphisms
in (i) are 03B4-close in probability: > 03B4]  b.

When there is no ambiguity on the underlying space (S~, A, we shall simply

say that the filtration * is I-cosy.

If the filtration * were indexed by Z instead of -N, the a-fields ~’°, ~’o and ~’o’ in
the above definition should be replaced with 3’~ and ~~.

The definition of I-cosiness is inspired from two sources. The first one is Tsirelson’s

definition of cosiness in ~1 ~~ ; it is the same as I-cosiness, save the separation
condition (iii) (Tsirelson works in continuous time and assumes that all martingales
are continuous; in this framework, his separation condition is the existence of a

constant p  1 such that, for each *’-martingale M’ and each *"-martingale M",

[M’, M"]t x p [M’, M’]1/2t [M", M"]1/2t) . The other source is a proof of non-
standardness by Smorodinsky [14], who implicitly uses I-cosiness, without giving it
an explicit name.

Observe that I-cosiness is invariant by isomorphisms: two isomorphic filtrations

are either both I-cosy, or both non I-cosy.

PROPOSITION 1. - A filtration immersed in an I-cosy filtration is itself I-cosy.

PROOF. - If is endowed with two filtrations F and 9, if F is immersed

in G and if W is an embedding of into some probability space, then the

filtration ~ (~’) is immersed in ~ ( ~ ) . The proposition follows immediately from this

remark, the definition of I-cosiness and the transitivity of immersions..

DEFINITION. - Let ~ and ~ be two filtrations, not necessarily on the same

probability space. The filtration F is immersible into G if there exists a filtration
immersed in ~ and isomorphic to *.

Using the invariance of I-cosiness under isomorphisms, Proposition 1 immediately

bootstraps into a stronger result:

COROLLARY l. - A filtration immersible into an I-cosy filtration is itself I-cosy.

PROPOSITION 2. - I-cosiness is stable by taking subsequences: Let ~’ _ 

be an I-cosy filtration and a : -N -~ -N a strictly increasing map. The filtration

~ _ defined by ~n = ~~(n) is I-cosy too.

PROOF. - Let R be a G0-measurable r.v.; it is also F0-measurable, so for b > 0
we have two isomorphic copies iF’ and ~’" of iF, jointly immersed, I-separate, and

verifying condition (iv). Put ~n = ~~(n), ~~ _ ~~~n) and ~C = ~’ V ~". Plainly, the
filtrations ~’ and ~" are isomorphic immersed in and I-separate..
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LEMMA 9. - Let (E, p) be a separable metric space, and ~’ an I-cosy filtration.
The property defining I-cosiness still holds when the random variables R are taken
E-valued (with p(R’, R") replacing 
PROOF. - Approximating in probability R by a simple r.v., we may suppose that
R takes only finitely many values xl, ... , xp in E. It then suffices to apply the
definition of I-cosiness to the {I,... , p~-valued r.v. S defined by R and to

8’ = b ̂  2 inf p(xi, xj). []

DEFINITION. - A filtration 3 = is of product type if there exists an
independent sequence of sub-a-fields of A such that Fn = , m  n)
for each n x 0.

This definition is borrowed from Feldman [8] and Feldman-Smorodinsky [9],
who define a filtered probability space (S~, A, I~, ~) to be of product type when it
satisfies the above property, thus stressing the role of the measure P. But, as we

already do for isomorphisms and immersions, we shall simply speak of filtrations
of product type, keeping in mind that this notion is not invariant under changes of
measure.

Notice that if ~ is of product type, the a-fields ~~, in the preceding definition are
in general not uniquely determined. Consider for instance the natural filtration of a

process made ofi.i.d. r.v. ’s uniform on {20141,1}. This filtration is of product
type, with en = replacing Co by yields another family of a-fields
with the same property.

Of course, if is an independent sequence of random variables, the
filtration generated by the process Y is of product type. Conversely, every filtration
~ of product type and such that ~o is essentially separable, is the natural filtration
of such an independent process.

PROPOSITION 3. - Every filtration of product type is I-cosy.

PROOF. - Let * be of product type: there exists an independent sequence 
of sub-a-fields of A such that ~’~ = a(... , en-I’ en), Fix R E and b > 0.

Remark that the a-fields Bn = ~n+2, ... , form a monotone sequence
of sub-a-fields of A, with limit Un B~, _ ~’o when n - -oo. By Doob’s

direct martingale convergence theorem, there exist an n  0 and a r.v. S E LO(13n)
such that S is 8-close to R in probability. Fix these n and S.

On a suitable sample space (S~, ,A,, for instance the product (Q x Q, ,A,®,A,, 
there exist two independent sub-a-fields Aland ,A2 of .A such that both (S~,,R.1, ~)
and are isomorphic to call ~1 and ~2 the isomorphisms:
Ai = for i E ~l, 2~, and put Define three filtrations

y and S on I~) as follows:

for every m ~ 0, ~‘m = a( ... , ~m_l, ~m) ; ;
for every 0, 9m = ~(... , Cm_1, Cm_1, ~m, C~) ; ~

for n, ~’~’ = a(... , Cm_1, ~m)
and for n  77~ ~ 0, ~’m’ _ ~(... , ~~, ~~+1, ... , ~m_1, ~~) ~ °
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To show that * is I-cosy, we shall check that 3’’ and ~’" verify the four conditions
in the definition of I-cosiness.

(i) The restriction w’ of WI to ~o is an isomorphism from * to ~’. An isomorphism
W" between ~’ and ~" is given by the following algorithm: If Cm are Cm-measurable
r.v.’s and if $ is a Borel function, put

~" (~(... , Cn_1, Cn, Cn+1, ... Co))
_ ~(... , ~1(Cn+1)~ ... , .

(ii) ~’’ and ~’" are immersed in 9 by Lemma 1, because 9 is an independent
enlargement of each of them.

(iii) The a-fields ~’n and ~n are independent because they are respectively
included in A1 and A 2.

(iv) Put R’ = ~’(R), R" = ~"(R), ,S’ = ~(’5’) and S" = W"(S). By isomorphic
transfer, R’ and S’ (respectively R" and S") are 6-close in probability. Owing to
the definitions of W’ and ~", these isomorphisms have the same restriction to 
so S’ = ~’(S’) = ~"(s) = S". Consequently, R’ and R" are 28-close in probability..
COROLLARY 2. - Any filtration immersible into a filtration of product type is I-cosy.
PROOF. - Immediate from Proposition 3 and Corollary 1..

As we shall now see, the converse is also true. We shall get it as a straightforward
consequence of Vershik’s criterion, more precisely of condition 3 in Theorem 3.2 of
Vershik [17] (it becomes condition (vii) in our Theorem 2 below). The next three
sections are devoted to this topic; the reader already familiar with Vershik’s theory
can skip these sections and jump directly to the (short and easy) Proposition 5.

Vershik’s standardness criterion: Preliminary notions

Vershik’s work on filtrations is written in Rohlin’s language [13], where the idea of
conditioning with respect to a sub-a-field is expressed by quotienting the probability
space. Sticking to a vocabulary more familiar to probabilists (at least, to us), the
next proposition recalls what happens when the factor space is diffuse (that is, all
equivalence classes in the quotient are isomorphic to the Lebesgue space [0,1]).
PROPOSITION 4 AND DEFINITION. - Given a sample space (~,,A., let B be an

essentially separable sub-a-field of A and ~ a sub-a-field of B. The following four
conditions are equivalent:

(i) there exists a P>-measurable random variable Y such that, for every C-measurable
random variable Z, I~ ~Y = Z~ = 0;
(ii) there exists a B-measurable random variable, independent of ~ and having a
diffuse law;

(iii) there exists a B -measurable random variable X independent of C, with uniform
law on [0, I~, , and such that ~ V a~(X = B;
(iv) every random variable V that verifies ~ V a(V) = B, has a diffuse law.

When these hypotheses and conditions are met, we shall say that B is condi-

tionally non-atomic given C, and every X satisfying condition (iii) will be called a
complement to C in "B.
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PROOF. - Trivially, (iii) =~ (ii).

(ii) =~ (i). Let Y be B-measurable, independent of C, and with diffuse law rl. For
any C-measurable Z, calling ( the law of Z and using the fact that rl is diffuse, one
has = Z] = JJ ~(dz) = J ~(dz) = ~.

(i) =~ (iii). Let Y be a B-measurable random variable such that IiD[Y = Z] = 0
for every C-measurable Z. The essentially separable a-field B is generated by some
random variable B; its sub-a-field C is essentially separable too and is generated by
some C. Call ’Y the law of C, and a regular version of the law of B given C:
!3c is a probability well-defined for ’Y-almost every c, depending measurably on c,
and the joint law of (C, B) is 

Remark that Y has the form yoB for some measurable function y; consequently,
for any C-measurable Z, = 0 by the choice of Y. This
implies that almost all probabilities ,Q~ are diffuse; indeed, for é > 0, call a(c) the
smallest (i.e., leftmost) atom of ~~ with mass at least c, or +00 if there is no such
atom; as = 0, for almost every has no atom weighing at least 6’.

For each c, call Fc the distribution function of !3c, given by = ,~~ ((-oo, x));
as 03B2c has no atoms, for every t E [0,1] , 03B2c gives mass t to the interval F-1c ( [0, t] ) .
Define a B-measurable, [0,1]-valued random variable X by X = FCoB.

For every bounded, measurable function $ and every t E [0,1], one has

= ~(c) 
= t ;

thus X is independent of C (of C) and uniformly distributed on [0,1] . Calling Gc the
right-continuous inverse of Fc, defined on [0,1], one almost surely has B = GcoX,
so B is eVa(X)-measurable and B = C Va(X).

(i) =~> (iv). Suppose Y verifies (i) and C generates C; let V be such that

e = B. For some Borel f, , one has Y = f(C, V), and for each v E l~,
one can write v]  = f (C, v)] = 0.

(iv) ~ (i). Assuming (iv), let B be a r.v. generating B and such that B ~ 0 a.s.
If Z is any C-measurable r.v., V = B is B-measurable and one has

~v = 0~ = ~B = Z}, whence B = V + so C V Q(Y) = B. By (iv), V must
be diffuse, wherefrom I~ [B = Z] = I~ [V = 0] = 0, and B fulfills (i). 1

COROLLARY 3. - Let B, C and D be three sub-a-fields in an essentially separable
sample space (S~, A, I~); assume ~ is included in B .

a) If BVD is conditionally non-atomic given CVD, then B is conditionally non-
atomic given C.

b) If B and D are independent, and if B is conditionally non-atomic given ~,
then BVD is conditionally non-atomic given CVD; moreover, every complement of
e in B is also a complement of CVD in BVD.

PROOF. - a) If BVD is conditionally non-atomic given CVD, for any V such that
= B, one also has CVDVa(V) = BVD, so V is diffuse by condition (iv),

and "B is conditionally non-atomic given G by the same condition.
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b) If "B and D are independent and if "B is conditionally non-atomic given e, every
complement X to e in "B is independent of CVD (because X is independent of C,
and D is independent of eVa(X)); as = BD, X is also a complement
to CVD in BVD..

REMARK. - At this stage, it may be useful to warn the reader against two pitfalls:

a) If "B is conditionally non-atomic given C and if Y is B-measurable, with
diffuse law, and independent of e, there may exist no complement X to e in B
such that a(X) D a(Y) . Consider for instance three independent random variables
C, Y and Z with uniform law on ~0,1~ . Call r the event ~C  2 ?, define e as
the a-field a(C) and "B as the a-field a(C, Y, Zllr). Since Y satisfies condition (ii) of
Proposition 4, "B is conditionally non-atomic given e. Let X be any B-measurable r.v.
independent of C and such that a(X) D a(Y). We shall show a(X) = a(Y), thus
preventing eVa(X) to equal ’B (for clearly, Zllr is not C03C3(Y)-measurable). There
are two Borel functions f and g such that Y = f (X ) and X = g(C, Y, Zllr) a.s.
Putting h(c, y) = g(c, y, 0), one has X = h(C, f (X )) a.s. on r~. Consequently, for
almost every c > 2, one has x = h(c, f (x)) for almost all x. Fix such a c and put
k(y) = h(c, y); equality x = kof(x) holds for almost all x, whence X = ko f (X) a.s.,
giving X = koY a.s., and a(X) = a (Y) .

b) If B is conditionally non-atomic given ~ and if D is such that CVD = B, there
may exist no D-measurable complement to e in B. Take for instance S~ equal to the
union of the three rectangles ~0, 2 ~ x ~0,1~ , ~ 2 , I~ x ~0, 2 ~ and ~l, 2 ~ x ~ 2 , l~ , endowed
with the restriction of the Lebesgue measure. Call C the first coordinate (it is

[0, ) ] -valued) and D the second one (it is [0, 1] -valued) ; define e as ~(C), D as a(D)
and B as a(C, D). Since D-2 ] is independent of C, B is conditionally non-atomic
given e. Let X be any D-measurable random variable such that eVa(X) = B. We
shall show a(X) = D, thus preventing X to be independent of C. There are two
Borel functions f and g such that X = f(D) and D = g(C, X ) a.s. Consequently,
D = g (C, f (D)) a.s. and for almost every c  2 , one has d = g (c, f (d)) for almost
all d in [0,1]. Fix such a c and put h(x) = g(c,x); equality d = ho f (d) holds for
almost all d e [0,1], whence D = ho f (D) a.s., giving D = hoX a.s., and a(X) = D.

In counter-example a) above, Y had a diffuse law. If, on the opposite, Y is discrete,
a complement X always exists, as can easily be seen:

COROLLARY 4. - Let 3 and 6 be two sub-a-fields of A, with ~ c B and
B conditionally non-atomic given ~.

If Y is a B-measurable random variable taking finitely or countably many values,
B is conditionally non-atomic given .

If furthermore Y is independent of C, there exists a complement X to ~ in B
such that a(X) D a(Y) .
PROOF. - For every random variable V such that = B, the pair
(Y, V) has a diffuse law by Proposition 4 (iv). Since Y is discrete, this implies

v~ = ~y v, Y= y~ = 0, so V is diffuse, and B is conditionally non-atomic
given by the same condition (iv).

If Y is independent of C, let X’ denote any complement to eVa(Y) in B, and
X a random variable generating a(Y, X’); notice that a(X) ~ a(Y) and that X is



276

diffuse because X’ is. So we may choose X uniform on ~0,1~ . Since ~, Y and X’ are
independent and = B, X is a complement to C in 

Vershik’s standardness criterion: First level

Vershik’s theory of standard filtrations is a two-storied building. The first floor,
which we now shall enter, gives a necessary and sufficient condition for a filtration
to be standard, in terms of 3=saturation. Theorem 1 below translates into our

language the equivalence between 1 and 2 in Vershik’s Theorem 3.2 of ~17~ . (His
condition 3 uses a more sophisticated tool; this is postponed to the next section.)
Besides changing the language, another difference is that, in this section, we deal
with the non-atomic case only, whereas his statement covers the atomic case as
well. Indeed, for the sake of simplification, in ~17~ some statements are given in
the atomic case only; the general case has recently been written in full details by
J. Feldman ~8~ ; see also J. Feldman and M. Smorodinsky ~9~ .
DEFINITIONS. - A filtration (~’~)~~o is non-atomic if ~’o is essentially separable
and if, for each n  0, ~’n is conditionally non-atomic given 
A filtration (~’~)n~o is standard non-atomic if it is generated by a process

where Xn are independent random variables with uniform law on C0,1~.
These definitions are compatible: A standard non-atomic filtration is non-atomic.
The important point in the latter definition is that the r.v.’s Xn are independent,

with diffuse laws; that these laws can be chosen uniform on [0, 1] is irrelevant, but
shows that all standard non-atomic filtrations are isomorphic to each other. Clearly,
a filtration isomorphic to a standard non-atomic filtration is standard non-atomic
too.

THEOREM 1 (Vershik ~17~ ). - Let ~’ = be a non-atomic filtration on some
probability space (S~, A, . The following f our statements are equivalent:
(i) ~’ is standard non-atomic;

(ii) ~ is of product type;
(iii) the tail a-field is degenerate; and, for every F0-measurable random
variable R and every b > 0, there exist an essentially finite, F-saturated a-field B
and a B-measurable random variable S, such that b~  b;

(iv) For every b > 0, n  0 and every simple, Fn-measurable r.v. R, there

exist 7n  n, an F-saturated B independent of verifying FmB = and

a B~Fn-measurable r.v. S such that ~ R]  b.

The gist of the equivalence (i) ~ (iv) in this theorem can be better understood
with the help of the following lemma:
LEMMA. - Assume ~’ is non-atomic and fcx 0. If an ~’-saturated a-field B is
independent of and if FmB = there exist Xm+1, ... , Xo such that each Xg
is a complement to Fl-1 in Fl and ... , Xo) = B.
We mention this lemma only for the light it sheds on the theorem; we shall neither

use it nor prove it. In the second paragraph of (iv) ~ (iv’) in the proof of the theorem,
we shall need and establish a slightly stronger property. (That paragraph contains
a parameter n; when n = 0 it reduces to a proof of the lemma.)
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PROOF OF THEOREM 1. - (i) =~ (ii) is trivial: calling ~~, the a-field generated
by Xn, one has ~~, = a(... , 

(ii) ~ (iii). Hypothesis (ii) says that ~n = a(... , where the ~n are
independent; the degeneracy of follows by Kolmogorov’s zero-one law. As 3o is
essentially separable, so is also each Cn; hence there exists for each n an increasing
sequence of essentially finite sub-a-fields such that Cn = v For each

j > 0, put j >0

this is an ~=saturated a-field by Lemmas 8 and 5. The a-fields 83 form an increasing
sequence whose limit ~(Bj, j > 0) contains every en ; consequently ~(Bj, j > 0) = 
and U is dense in L° (~’o ) .

j>0

The proof of (iii) =~ (iv) will be made clearer by breaking it into two smaller steps.
We shall introduce a new condition (iii’), and establish (iii) =~ (iii’) =~ (iv). Here is
this intermediate statement (the letters SC stand for ’saturated complement’) :

(iii’) Call the set of all F-saturated sub-03C3-fields B of 9o that are

independent of and verify Fm V B = F0. For every F0-measurable R and every
n x 0, there exist an m  n, a B E and a B-measurable S such that
~ > b~  b.

(iii) =~ (iii’). This is a straightforward consequence of the following fact: If 
non-atomic and if ~ ~ is degenerate, for every n  0 and every essentially finite,
F-saturated B, there exist an m  n and a e E CS(m, F) such that e ~ B. To
establish this claim, remark first that if B is an event such that 0   1, the
degeneracy hypothesis implies B / 9=’m for m small enough. Since B contains only
finitely many events (modulo negligibility), there is an m (fixed in the sequel) smaller
than n, such that ~m for every B e B verifying 0   1. So is

degenerate, and, by Lemma 7, B is independent of ~’m .
By Lemma 5, the filtration defined by is immersed in ~; Dg is

degenerate for ~  m. Noticing that each De is essentially finite, Corollary 4
asserts that % is conditionally non-atomic given call Z~ a complement
to in ~’~, and define a filtration E by taking ££ degenerate if .~  m and
E~ = Ze) if £ > m. The claim will be shown with e = So .

First, ~ ~’e for each £ ) m: This inclusion is trivial for £ = m, and if it
holds for .~, then ~~+1. ,

SO = = 

Second, e = Go is *-saturated. By Lemma 5, it suffices to show that 8 is immersed
in y. For every .~  0 and every bounded, ££-measurable U, we have to show that

is ~~_1-measurable. When ~  m, U is deterministic; so we may suppose
~ > m. Without loss of generality, we may also suppose that U is a product 
where W E E and De E Taking
W out of the conditional expectation, it remains to show that is

~,~_1-measurable. We may replace Vi by but Vi is independent of
VD~ by definition of so is a constant, and we are left with

This is Dl-1-measurable because D is immersed in 3".
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Last, by Lemma 5, = = Gm is degenerate, and C is independent of
1’m by Lemma 7.

So C is in SC(m, ~); as C = 80 D Do = B, the proof of (iii) =~ (iii’) is complete.
(iii’) =~ (iv). Assuming (iii’), fix n fi 0, b > 0 and R measurable for 1’n and

F-valued, where F is a finite subset of JR; without loss of generality, we shall take
F = ~1, ... , p~. Put b’ = ~~p. Hypothesis (iii’) provides us with an m  n, a
B E SC(m,1’) and a B-measurable r.v. T such that R~ > b’]  b’; by
replacing if necessary T with 1 V T I1 p, we may further suppose (T - R~  p-1.
This implies IE [ T - R~]  s’ + (p-1) I~ [~T - R~ > b’]  s’ + (p-1)s’ == 8. By
L1-contractivity of conditional expectations, T’ = is also 8-close to R in Ll.
Since T is B-measurable and B is 1’-saturated, T’ is B~Fn-measurable.

For x E R, call the point in F closest to x (take the smallest such point if
there are two of them). Among all F-valued r.v.’s, S = ~oT’ is closest to T’ in Ll,
whence 8, and 28. Since R and S are
F-valued, P [R~S] = P[|R-S| > E [|R-S|]  2b; as S is B~Fn-measurable,
(iv) is established.
The proof of (iv) =~ (i) will also be sliced into two smaller steps, by introducing

a new statement (iv’) and establishing (iv) ~ (iv’) =~ (i). This intermediate step is:
(iv’) Suppose given n  0 and Xn+1, ... Xo such that each XQ is a complement
to %-i in Fl. For every R E and 8 > 0, there exist some m  n, some

Xm+1, ... Xn with the same property (each XQ is a complement to ~’~_1 in and
some r.v. S E ... , Xo)) verifying > b]  b.

(iv) =~ (iv’). Take R, 5, n and Xn+1, ... , Xo as in (iv’); by the assumption on
the Xf, ~° is equal to 1’n V ... , Xo). Writing ~’n as the limit of an increasing
sequence of essentially finite sub-a-fields, one can 03B4-approximate R by a r.v. of
the form 03C6(T, Xn+1, ... Xo), where $ is Borel and T is Fn-measurable and simple.
Applying (iv) to T, we obtain an m  n, a B E and a B~Fn-measurable S
verifying ~ T~  b. This gives I~ [~(S, Xn+1, ... Xo) ~ ~(T, Xn+1, ... , Xo )]  6,
and R is 28-close in probability to (~(6’, Xn+1, ... Xo).

The filtration E,~ = associated to 53 by Lemma 5 has the following
properties: G is immersed in 1’, S is ~n-measurable, and moreover,
by definition of B, G is independent of the a-field ~’~,. According to Lemma 3,
the filtration ~’’ = VE, equal to ~’ up to time m and to from m on,
is immersed in ~’. Its end a-field is so Lemma 5 gives ~’’ = ~’
and one has for all f E For m  ~  0, E~ is condition-

ally non-atomic given for this property is inherited from % and %-i by
Corollary 3 a). For m  .~  n, choose a complement Xf to in E~. By
Corollary 3 b), Xf is also a complement to %-i in %. As E~ is degenerate,
~(Xm+1, ... , Xn) = En, and S is ... , Xn)-measurable; consequently, R is
28-close to some ~(Xm+1, ... , Xn, Xn+l, ... Xo).

(iv’) =~ (i). Choose any r.v. R generating and a sequence tending
to 0. Starting for instance with n = -1 and an arbitrary complement Xo to ~ 1
in and using repeatedly (iv’) for each 8j in turn, construct a sequence 
a strictly decreasing sequence in -N, and random variables Sj, respectively

,Xo)-measurable and 03B4j-close to R in probability. Being the limit in
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probability of 5j, R is  o)-measurable, whence Q(XQ, .~  0) = ~’o. The

filtration generated by the process X is immersed in 3=’ by Lemma 8, and its value

at time 0 is ~’o, so it is equal to 3=’ by Lemma 5..

Vershik’s standardness criterion: Second level

Given a filtration (with ~o essentially separable) and an 3=’o-measurable
r.v. R, all the information on R available at time -1 is contained in the conditional
law 03C0-1R = [R|F-1] of R given F-1. Similarly, all the information available at
time -2 on the values of R is carried by the conditional law ,G ~R~~ 2~ . But this
does not encapture everything that can be said about R at time -2: it may miss

some possible prediction at time -2 of how the values of R will progressively be

revealed in the future. Specifically, the conditional law = ,~ ~~r_1R~~ 2~ may
contain more information than £ ~R~~ 2~. For an example, take a triple (N, X_1, Xo)
of independent and non-degenerate r.v.’s, such that N takes values -1 and 0,
and X-i and Xo have the same law; take ~ 2 = a(N), ~ 1 = a(N, X_1) and

3Io = and choose R = XN. The only tells you that R

is independent of ~ 2, with the same law as X-i and Xo; whereas the r.v. 

generates a bigger a-field: it further tells you that if N = -1, R will actually be

known at time -1, and if N = 0, R will still be completely unknown at time -1.

A key idea in Vershik’s theory is to repeat this operation by putting 
=

,G~~r_ZR~~ 3~, and so on; he uses the full sequence of such iterated

conditional laws. These 03C0nR will be rigorously defined before Lemma 13, that

characterizes the information they contain. They play the central role in the second

part of Vershik’s criterion, which says that * is standard non-atomic if and only if for

each R the iterated prediction becomes closer and closer to being deterministic

when n tends to -oo. This should be compared to the well-known, much easier fact,
that is degenerate if and only if for each R the conditional law of R given ~’n
becomes closer and closer to being deterministic when n tends to -oo.

As the successive 03C0nR do not live in the same space, Vershik introduces for

each n a distance pn on the corresponding space, these distances being related to

each other in a precise way; only then can the asymptotic condition be rigorously
stated (condition (vii) in Theorem 2 below). It is also possible to give an equivalent
statement that does not involve the distances pn, namely I-cosiness; as we shall

see, equivalence between I-cosiness and Vershik’s second-level condition is easily
established. We feel that I-cosiness may prove handier in some instances, because the

pn no longer appear; but it is essentially the same thing. (Vershik also gives another
restatement, condition 4 in his theorem 3.2, in terms of his "tower of measures" .

This is a space where all the 1f nR can be made to live together; but the pn are still

implicitly there, in the very definition of the tower. We shall not elaborate further
on this topic. )

Instead of working with real random variables, we shall take them K-valued,
where (K, p) is a non-empty compact metric space; this will make some iterations
easier, because the space K’ of all probability measures on K is also compact
and metrizable (for the topology of weak convergence). The set of all a.s. defined,
K-valued random variables will be called L(K) (or L(A, K) to specify the a-field) ,
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and endowed with the distance Given an essentially separable sub-a-field
C in a sample space the conditional of an R E L(K) given
e is a random variable belonging to L(C, K’); it is almost surely well defined, for
instance by disintegrating the joint law of (C, R) where C is any r.v. generating C.

On the set K’ of all probabilities on K, the Kantorovich-Rubinshtein distance p’
is defined as

= inf ( p(r, s) a(dr, ds) ,
~ has margins 

~, and v 

where the infimum is taken over all probabilities A on the product K x K with
margins ~c and v. References on this definition are given by Vershik [17] and Dubins,
Feldman, Smorodinsky and Tsirelson [5]; see also the survey by Belili [4], or the
recent book [11] by Rachev and Ruschendorf. All we need to know about p’ is

recalled in the next lemma.

LEMMA 10. - With these notations, p’ is indeed a distance on K’. Moreover, the
topology generated by p’ is the topology of weak convergence; in particular, (K’, p’)
is compact.

Let g : K -~ R be a c-Lipschitz function, that is,  c p(r, s).
The function g’ defined on K’ by g’(~c) = fK g(r) is c-Lipschitz too:

(9’(~) - 9’(v)I ~ cP’(~~ v)~
PROOF. - First, to establish the triangle inequality, assume  a

and 03C1’( 2, 3)  ,Q. There exist a probability 03BB’ with marginals 1 and 2,

such that f p(r, s) ds)  a, and a ~" with marginals ~c2 and ~c3, such

that f p(s, t)  ~3. Disintegrating a’ and ~" gives probabilities vs
and defined for p2-almost all s, such that ds) = and

.1"(ds, dt) = Putting a(dr, dt) = s~Kv’s(dr)v"s(dt) 2(ds), it is a

child’s play to verify that A is a probability with marginals ,~1 and ~3 such that

f p(r, t) a(dr, dt)  cx + ~3.
We now verify that a sequence in K’ converges weakly to a limit v E K’

if and only if , v) tends to 0; taking a constant sequence _ ~ will by the same
token give the separation condition and show that p is a distance.

If ~~ converges weakly to v, there exist, on a suitable sample space, random
variables Rj and S with these laws and such that p(Rj, S) tends in probability
to 0. As p(Rj, S) is bounded by the diameter of K, convergence also holds

in Ll and S)~ -~ 0. But, calling ~~ the joint law of Rj and S, one has
p’(~c~, v)  f p(r, s) ~~ (dr, ds) = S)~, wherefrom v) -~ 0.

Conversely, supposing v) --~ 0, we have to verify that ( f ) --~ v( f ) for
every continuous function f on K. By compactness, f is uniformly continuous, and

given any ~ > 0 there exists 03B4 > 0 such that

~ if 03C1(r,s)03B4|f(r) - f(s)|  {
2 sup |f | if 03C1(r,s)  03B4}  ~ + 2 sup |f| 03B4 03C1(r,s).

Now choose a probability 03BBj with marginals j and v, such that

~ s) a~ ds)  p’(,~~, v) + 2 ] f ]
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and write

| f d j-fdv| =|f(r)03BBj(dr,ds)-f(s)03BBj(dr,ds)|
|f(r) - f(s)|03BBj(dr, ds)

 ~ + 2 sup |f| 03B4 03C1’( j , v) +~.

This implies lim sup| f d j- f dv|  2~, and  f d j tends to  f dv.
j

Last, if g is a real, c-Lipschitz function on K, given  and v in K’ a similar

computation yields for every A with marginals p and v

(g’(~C) - g’(v) ~  / -~)! c ;

taking the infimum over all such A yields ~g’ (~c) - g’ (v) ~  c p’ (p, v) ..

The next two lemmas show how the definition of p’ is taylor-made to transfer
distance estimates all the way down or up a filtration. Going down the ladder is
immediate:

LEMMA 11. - Let Rand S be two K-valued random variables. If ~ is an essentially
separable sub-a - field, one has p’ (,~ [R~ C~ , ,G  E [p(R, S) a. s.

PROOF. - For almost all c~, the conditional S) (cv) is a probability on
K x K with marginals and . Calling it and inserting it
into the definition of p’ yields the almost sure inequality

~[~C](~[~C](~)) ~ ..

Climbing up the ladder is a little more arduous; this is done in the next lemma. To
make things technically easier, we shall deal with simple random variables, that is,
random variables that take only finitely many values.

LEMMA 12. - On some let B and C be sub-a-fields such that ~ c B
and B is conditionally non-atomic given C; suppose R E L(B, K) and L E L(C, K’)
are simple and the values (in K’~ taken by the random variable L are probability
measures on K with finite support. There exists a r.v. S E L(B, K) verifying

= Land 

PROOF. - There exists a finite set F c K such that the values of R are points
of F and the (finitely many) values taken by L are probabilities with supports in F.
By weak compactness of the set of all probabilities on K x K, the infimum in the
definition of p’ is reached for some A; writing this for p = ,G [R~C~ (cv) and v = 
shows for almost every cv the existence of a probability on F x F, verifying

~ a(c~, . , s) _ ,G [R C~ (cv) ~ a(c~, r, . ) = L(~)
sEF TEF

and L ~(r,~)A(~r,~)=~(~[R!e](~),L~)) ; ;
(r,5)eFxF
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moreover, can be taken C-measurable, for instance by the measurable section
theorem.

Put E(~) = ~ A(w, R(w), s) = ~ and deduce from
~F r6F

and 0

that = 0] = 0 and E > 0 a.s. Call s1,..., sp the points of F and for 0  j  p set

Q j(03C9) = 03BB(03C9,R(03C9),s1)+..+03BB(03C9,R(03C9),sj) 03A3(03C9)
;

these r.v.’s are C03C3(R)-measurable and verify 0 = Q0  Q1  ...  Qp = 1. Now
R is simple, so, by Corollary 4, B is conditionally non-atomic given eVcr(R), and
by Proposition 4 there exists a complement X to CVo-(R) in "B. The F-valued r.v.
S defined by

~(~) = ~. 4=~  X(~) ~ 
verifies

;

;

P[R=7. and ~~=A(~,r,.)
(everything vanishes if the denominator is null). This shows that the conditional law
of (R, S) given e is A. It implies on the one hand -C = L and on the other hand

~ p(7-,s)A(7-,s)=~(~[~e],L), ,
(r,s)eFxF

whence =E[~(~[~~C],L)]. t
Fixing a filtered space (f~, A, P, (~)~o) such that % is essentially separable, the

(a.s. well defined) conditional law of an R e L(K) given 3~i is a random
variable belonging to L(?Li, J~). As mentioned at the beginning of this section, this
will be iterated by considering the conditional law of this r.v. given ~2? and so on.
To do so, we shall use the following notation: = (~p), 7roR = R; and for
each n 0, = and 03C0n-1R is the conditional law of 03C0nR
given 3~-i. Notice that each is a compact metric space, and the random
variable 03C0nR belongs to 

What information is conveyed by the r.v. 03C0nR? It contains the conditional law
of R given ~, but also (see the example at the beginning of this section) predictions
about how these conditional laws may evolve from the present time n to the future
time 0 (call this second-order information). And it also contains predictions about
how this second-order information itself may evolve in the future (this is third order),
and so on, up to order |n| (no more information is added to 03C0nR by iterating beyond
order ~). This procedure is an informal description from inside; the next lemma
gives a (simpler) characterization from outside.
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LEMMA 13. - Assume essentially separable and fLx R E K). The
filtration generated by the process is the smallest filtration ~ immersed
in y such that R is ~0-measurable. The a-field is the smallest

~-saturated a-field making R measurable.

PARTIAL PROOF. - We shall only show the immersion and saturation properties.
Minimality will not be used in the sequel; its proof is left to the reader.

To see that the filtration generated by the process is immersed in ~’, it
suffices to verify that is n)-measurable for each
n x 0. Writing E[03C6(...,03C0-1R,03C00R)|F-1] as 03C6(...,03C0-1R,r)d(03C0-1R)(r) shows it

for n = -1; the general case follows by iteration.
Consequently, by Lemma 5, the a-field 0) is *-saturated..

LEMMA 14. - Suppose 9o to be essentially separable. If Rand S are two K-valued,
*o-measurable random variables, the process is a submartingale. In
particular,

.

PROOF. - Immediate by Lemma 11. /

LEMMA 15. - Let y be non-atomic and R be an F0-measurable r.v. with values in
a finite set F c K. For every b > 0, there exists an F0-measurable, F-valued r.v.
S such that is simple and S)]  b.

PROOF. - Call F’ the set of all probabilities on F; it is compact, so there exist a
finite G c F’ and a Borel f : F’ -~ G such that p-i (/~,  b for every ~ E F’.

Lemma 12 with L = gives a K-valued S such that = L (hence S is F-
valued) and that = = ]  b. /

DEFINITION. - The filtration (~~)m~o and n  0 being fixed, a r.v. R E K)
is n-simple if the r.v.’s 7rnR, ... , 03C00R = R are simple.

The next lemma says that n-simplicity of R is in fact a property of 7rnR.

NOTATION. - Set Kg = K and for n  0 call K~ the set of all probabilities carried
by finitely many points of Kn+1. Observe that Kn is included in Kn, but K,~ is not
compact (unless 

LEMMA 16. - Assume F0 is essentially separable. For n  0, a random variable
R E L(F0, K) is n-simple if and only if 03C0nR is simple and takes its values in KSn.
PROOF. - For n = 0, this is just the definition of a simple r.v. Assuming the lemma
holds for some n, we shall prove it for n -1.

If R is (7T,2014l)-simple, it is also n-simple, and, by induction hypothesis, 1r nR is
simple and takes its values in K,~; these values belong to some finite F c The

set F’ of all probabilities on F is included in has values in F’ and

a fortiori in Kn _ 1. It is also simple, by definition of (n-1 )-simplicity.
Conversely, if 03C0n-1R is simple and takes its values in KSn-1, these values

are finitely many probabilities finitely supported in K~, so 1rnR is simple and

K$/-valued, and, by induction hypothesis, R is n-simple. As is simple too, R
is 
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LEMMA 17. - Suppose ~’ to be non-atomic; for some n  0, let R E K)
and L be a simple, ~n -measurable r. v. with values in K~ . There exists an n-simple
S E L(F0, K) such that 03C0nS = Land E[p(R, S)] = E[03C1n(03C0nR, L)].

PROOF. - If n = 0, take S = L. If n  0, writing Ln instead of Land
working by induction, it suffices to show that our hypothesis implies the existence
of a simple, KSn+1-valued Ln+1 E verifying = Ln and

= But this is just Lemma 12 with Kn+1
instead of K, B = and C = .

LEMMA 18. - Assume F is non-atomic. For fixed n  0, the set of all n-simple
r. v. ’s is dense in K).
PROOF. - For n = 0, this just recalls that simple r.v.’s are dense. To prove the
lemma, it suffices to show that the set of all (n-1 )-simple r.v.’s is dense in the set of
all n-simple ones. So let R be n-simple; 7rnR is simple and KSn-valued (Lemma 16),
its values belong to a finite subset F of Applying Lemma 15 to xnR yields an
F-valued Ln such that is simple and arbitrarily small;
then Lemma 17 gives an-simple S such that 7rnS = Ln and E [p(R, is small; as

= ~G is simple, S is (n-1 )-simple. /

With Lemmas 17 and 18 at our disposal, the equivalence between standardness
and Vershik’s second-level criterion is within hand reach.

DEFINITION. - Let (K, p) denote the unit interval ~0,1~ with the usual distance. A
filtration ~’ satisfies Vershik’s criterion if ~’o is essentially separable and, for every
8 > 0 and every F0-measurable, [0, 1] -valued R, there exist an n  0 and a ,a E Kn
such that  8, where (Kn and 03C0nR are inductively defined as
above, starting with (K, p).

REMARK. - This definition is not changed if the interval [O,lJ is replaced with
an arbitrary infinite compact metric space (K, p). To see it, observe first that the
property holds with (K, p) if and only if it holds for every (F, p), where F ranges
over all finite subsets of K (approximate R E K) by simple random variables
and use Lemma 14). Then notice that if it holds for (F, p), it also holds for any
other metric space (F1, with the same cardinality as F (since, after identifying
F and jF~ by an arbitrary bijection, the ratio pl/p is bounded above and below). .

PROPOSITION 5. - If a filtration ~’ = is I-cosy and if ~o is essentially
separable, ~’ satisfies Vershik’s criterion. 

’

PROOF. - Given an F0-measurable, [0,1]-valued R and a 8 > 0, the cosiness
hypothesis provides us with an n, an (S~, A, P) and two isomorphic copies ~’ and ~’"
of F on n, jointly immersed (in F = F’ V F"), independent at time n, and

such that > b~  b. As  l, IE~~R’-R"~~  2b, whence
 2b by Lemma 14. In this formula, the Kn-valued r.v. 03C0nR’ is

defined in the filtration ff; by immersion, it remains the same when computed in ~’.
By isomorphic transfer, 03C0nR’ and 03C0nR" have the same law as 7rnR; call q this law.
As 7rnR’ and 7rnR" are independent, the measurable function $ defined on Kn by
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~(~) = f P~(~’~~ a) = a)~ verifies

= ~(a") ~(da") = q(da")
_  2b ;

hence 303B4]  3 2, and there exists an 03C90~03A9 such that 
Taking ,u = (7rnR)(wo), one has =  38..

THEOREM 2 (Vershik [17]). - Let F = non-atomic filtration on some

probability space (S~, ,A., The following three statements are equivalent to each

other and to statements (i), (it) , (iii) and (iv) of Theorem 1: :

(v) l’ is immersible into a filtration of product type;

(vi) y is I-cosy ;
(vii) y satisfies Vershik’s criterion.
PROOF. - (ii) =~ (v) is trivial, (v) =~ (vi) has already been seen in Corollary 2, and

(vi) =~> (vii) repeats Proposition 5.

(vii) =~> (iii). Define a sequence of functions : Kn -~ [0,1] by go = Id and
= f~n Given any ~’°-measurable, [0, 1] -valued r.v. R, equality
= holds for n = 0, and if it holds for some n, the definition of

7rn-lR implies

E[R|Fn-1]= E[gn(03C0nR)|Fn-1] = Kn gn(03BB)(03C0n-1R)(d03BB) =gn-1(03C0n-1R);

so E[R|Fn] = gn(03C0nR) for all n. Now, by Lemma 10, each gn is 1-Lipschitz.
Consequently, for any ~c E Kn. Combining this

estimate with hypothesis (vii), we obtain for every 8 > 0 an n and a constant c
such that is 6-close to c in L1. As this holds for some n, it also holds for all

n small enough, so there are constants cn such that E[RI1’nJ - cn tends to 0 in Ll
when n - -oo. This implies that -~ E[R], which in turn shows that ~-oo
is degenerate.

It remains to show that every R E can be approximated to any given
accuracy by a r.v. belonging to some essentially finite, *-saturated a-field. By
truncation, we may suppose that R is bounded, and by an affine transformation,
that 0 ~ R  1. Take K = [O,lJ and fix 8 > 0. Hypothesis (vii) gives an n

(fixed in the sequel) and a p E Kn such that  b. According to

Lemma 18, there exists an n-simple r.v. S such that E[p(R, S)J  8. Lemma 14 gives
 b, whence  2b, and > 3bJ  3 . .

This estimate, and the fact that 7rnS is a.s. KSn-valued (apply Lemma 16 to S),
imply that for some ~o one has and K~. .
Putting v = one gets v)  36 and v)~  56. Taking
now L deterministic and equal to v in Lemma 17, we get an n-simple T such that

 5b and 03C0nT = v.
The a-field ’B = 0) is *-saturated by Lemma 13. For each m ~ n,

7r m T is deterministic (easy induction, starting from = v); and for n,

7rmT is simple because T is n-simple; so B is essentially finite. Since E[p(R,  6b

and T is B-measurable, (iii) is established..
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Another proof of (v) =~ (i) is given by Feldman and Smorodinsky [9]; see also
part 1 of Tsirelson’s preprint ~16~ .

LEMMA 19. - If two filtered sample spaces (5~~,,A,1, ~1, ~l) and (~2~,A,2~ ~2? ~)
satisfy Vershik ’s criterion, their product (S~ 1 x ,A,1 ®~A.2, ~1 ®~ ) satisfies
it too.

PROOF. - The proof is elementary and involves no new idea; but it is made tedious
and lengthy by the need of verifying inequalities in such spaces as (K x K) n’ For more
clarity, we shall denote by * the push-forward of a measure by a function: if a is a

probability on E and if f : E --~ F is measurable, f*a is the probability on F.

Starting from a compact metric space (K, p), we have defined a sequence
(Kn of such spaces; a product (K, p) can also be defined by K = K x K and

x2)~ y2)) = P(~1~ +P(~2, y2)~ Then, (Kn~ Pn) is defined by Kn = (k)n
and pn = (p),~, and by = (= KnxKn) and pn = (pn) as above.

There is for each n x 0 a natural map in : Kn ~ Kn , defined by induction: io is
the identity on K, and, for n  0, an arbitrary element u = tc2 ) of Kn = Kn x Kn
is mapped to inu = ~2) = * (~1®~2); this is meaningful because and

are probabilities on 
This map in is useful in our setting because if R1 (respectively R2) is K-valued,

F10-measurable (respectively *§-measurable), R = (R1, R2) is K-valued and F0-
measurable (we denote by (0, A , P, F) the product space), and one has, with obvious
notations, 7rnR = Indeed, if this holds at level n, then

-’~’ 

=z~~[(7r~,~~) ~ I ~’n-1, ] = 2n * ~’C’[(?fnRl)I~’n-l,®’C’[(7~~R2)I~’n_1])
= in * (03C01n-1R1~03C02n-1R2) = in-1(03C01n-1R1,03C02n-1R2).

Now, it is a fact that the distances pn on Kn and pn on are related by

for all u and v in pn (inu, inv)  pn (u, v) .

[This formula is trivial for n = 0, so to prove it by induction, we may suppose it
to hold for n and check it for n - 1. We are given u = (/~, /~) and v = ~~) in

= 1, 2,v1, and v2 are elements that is, probabilities
on Kn ; we want to majorize If is any probability
on KnxKn with marginals and vl, and any probability on Kn x Kn
with marginals 2 and v2, then).. s2), d(t1, t2)) = al 03BB2(ds2,dt2) is

a probability on Kn  Kn with marginals and and, calling jn the

map from to Kn x Kn defined by jn (s, t) = (ins,int), the image jn * a is a
probability on Kn xKn, with marginals in * and in * (vl®v2), that is, with
marginals in-1 u and in-iv. As a consequence, (2n_12G, 2n_lv) is majorized by
the infimum, over all such choices and)" 2, of the integral

/- - ~(d~~ dT) _ _ ~ (~n*a)(d~, dT)

=n n n(ins, int) 03BB(ds, dt) .
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By induction hypothesis, and by the definition of pn as a sum, this is majorized by

n n 
03C1n(s,t)03BB(ds,dt)=

K4n(03C1n(s1,t1)+03C1n(s2, t2))03BB1(ds1,dt1)03BB2(ds2,dt2) ;

taking now the infimum over all with marginals 1 and vl, and all 03BB2 with

marginals and v2, we get + v2), that is, 03C1n-1 (u, v). The
inequality is established.]

To prove the lemma, we have to show that if R is F0-measurable and [0,1]-
valued, 1TnR is well approximated by some constant p for some n. But R itself is
approximated by a finite sum + ... + where R~ (respectively Rk) are
*I-measurable (respectively */§-measurable) and bounded. By Lemma 14, it suffices
to verify the property when R is such a sum, that is, a scalar product R1 ~R2, where
R1 and R2 have their values in some compact K = [-M, Endow K with the

Euclidean distance p. As 9=’1 and F2 satisfy Vershik’s criterion, the remark following
the definition of the criterion gives E~  b and IE2  b

for some n, and ~c2. The inequality seen above yields

R2)~ 2n(~1 ~2)) ~ ~1) + pn(~n~2~ ~2) ~

Now if f : : (K, p) - (K, p) is a c-Lipschitz map between two compact metric
spaces, : (Kn, pn) -~ (Kn, pn) can be inductively defined by f ° = f and

= fn+1 * ~ for n  0; it is elementary to check that = 

and that is c-Lipschitz too. Applying this to the scalar product f : : KxK  K
where K = ~-pM2, gives

where c is a Lipschitz constant for f (this constant depends on p and M, but these
parameters are fixed). So the left-hand side has expectation less than 2c6, and the
lemma is proved. ,

To lift the assumptions on ~’ in Theorems 1 and 2, we need a definition of
standardness suitable for the general case (atomic or not).

DEFINITION - A filtration F is standard2 if it is immersible into a standard non-
atomic filtration.

This name is not misleading, because a non-atomic filtration is standard if and
only if it is standard non-atomic. Indeed, a standard non-atomic filtration is standard
because it is immersed in itself; conversely, if a non-atomic filtration is standard, it
is standard non-atomic by (v) =? (i) in Theorem 2. In other words, a filtration is
standard non-atomic if and only if it is both standard and non-atomic.

2. We follow Vershik’s terminology. Feldman [8] and Feldman-Smorodinsky [9] say substandard;
and they call prestandard a filtration satisfying condition (iii) of Corollary 5.
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COROLLARY 5. - Let (S~, ~1., ~’) be a filtered probability space. The following five
conditions are equivalent:

(i) ~’ is standard;

(ii) ~’ is immersible into a standard filtration;

(iii) if (S~,,A., P, Y) is a standard non-atomic filtered sample space, the independent
product of ~’ and ~’ is standard non-atomic too;

(iv) ~’o is essentially separable and ~’ is I-cosy ;

(v) ~’ satisfies Vershik’s criterion.

The independent product in condition (iii) just means a filtration of the form
~’’ V y, where ~’ and tf, are defined on the same sample space, independent and
respectively isomorphic to 9=’ and ~’. The product of l’ with a standard non-atomic
filtration is well-defined, up to isomorphism; so if (iii) holds for some standard
non-atomic (S~,,A., ~’, ~’), it holds for every standard non-atomic (5~,,~, I~, ~’).
PROOF OF COROLLARY 5. - (i) =~ (iv). A standard non-atomic filtration satisfies
(iv) by Theorem 2; and a filtration immersible into a filtration satisfying (iv) also
satisfies (iv) by Corollary 1.

(iv) =~ (v) has already been seen in Proposition 5.

(v) =~> (iii). As y is standard non-atomic, it satisfies Vershik’s criterion by
Theorem 2. By Lemma 19, its product with ~’ satisfies Vershik’s criterion too. But
this product is non-atomic; consequently, by Theorem 2 again, it is standard non-
atomic.

(iii) =~ (ii). By Lemma 1, a filtration is always immersible into its independent
product with any other filtration.

(ii) =~ (i). If ~’ is immersible into a filtration 9 which is in turn immersible into a
standard non-atomic filtration ~-C, then ~’ is immersible into whence standard..

Among the reasons that make standardness an interesting notion stands the
following fact. Let (~n)n0 be a filtration, and be a sequence of sets, each

of which is either a finite set or the interval [0, l~. Suppose there exists for each n
an Fn-measurable r.v. Xn, uniformly distributed on En, independent of , and

such that ~’~,. The filtration ~’ is standard (if and) only if it is of
product type.
We shall not prove this statement. When each Xn has a diffuse law, it just repeats

equivalence (i) (v) in Theorems 1 and 2. In the general case, it is an immediate
corollary of Theorem 3.2 of Vershik [17]. Vershik gives a complete proof only in the
case when each En is finite, but the indices n such that En is infinite are easy to
deal with, in the same way as above: approximate random variables by simple ones
and use Corollary 4. Another proof is provided by Feldman [8]; a key step in his
method consists in showing that, for some special K, p, ~c and v, it is possible to find
a probability A on K x K, carried by a graph, and arbitrarily close to being optimal
in the definition of the Kantorovich-Rubinshtein distance //(/~, v). Still another proof
is given by Feldman and Smorodinsky [9]; instead of using the distances pn on Kn,
they use (non-separating) distances on the quotients (S~, ~’, 
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The restriction that each Xn is uniformly distributed is essential. A very simple
counter-example is attributed to Vinokurov by Vershik ([17] page 756; see also
Feldman [8]): the natural filtration * of the stationary Markov chain 

with two states and transition matrix ( B 1 2014p ’ p / ), where 0  p  1 and p ~ 1 2.
The following coupling argument shows that 3" is I-cosy: Consider two independent
copies M1 and M~ of M, put T m = inf {n > m Mn = and define another

copy M3 of the process M by M3n = M1n if n x Tm and M3n = M2n if n  Tm.
The filtrations generated by Ml and M3 are isomorphic to that of M and jointly
immersed in that of (M1, M2); by taking m small enough, the processes M1 and
M3 have a large probability of being equal on a given interval {n, ... , 0}. So F
is I-cosy, hence standard (Corollary 5). On the other hand, every Fn-event A has
the form A = with Band C in so

= p1B + (l-p)lc, and, as p ~ 1-p, there are (modulo negligibility)
only two non-degenerate Fn-events independent of namely { Mn = and

Consequently, if ~’ were of product type, it would be generated by
the process Yn = but this process determines M only up to one bit of
information (interchange both states), a contradiction.

Vershik’s theorem on lacunary isomorphism

The same tools that were needed to establish Vershik’s criterion will now be used

to prove his theorem on lacunary isomorphism, a phemenon that we find still much
more mind-boggling than the existence of non standard filtrations. It says that

a non standard filtration can always be made standard by a deterministic time-
change, that is, by replacing -N with one of its subsequences. We keep following
closely Vershik [17].

THEOREM 3 (lacunary isomorphism). - Let ~’ be a filtration such that ~’o is

essentially separable and ~ ~ is degenerate. There exists a strictly increasing map
a : -N - -N such that the filtration 9 defined by 9n = is standard.

The argument will be split into several statements.

LEMMA 20. - Let "B and C be two sub-a-fields of A, with ~ included in B and
"B conditionally non-atomic given C. If R is a B-measurable r.v. taking values in
some finite set F, there exists a B-measurable, F -valued r.v. S independent of C
and such that I~ ~S ~ R~ = 2 ~ E ~~ .

rEF

PROOF. - Remark first that if K is a finite set endowed with the distance

p(r, s) = then the Kantorovich-Rubinshtein distance p’ on the compact K’
is explicitly given by the formula p’ (tc, v) = 2 ~ ~ To see this, define

tEK

p(r) = ~C(r) - (~(r)-~(r))~ , ,
q(s) = v(s) - _ (~(s)-v(s)) ,

C =1- ~ ~(t)w(t) _ = ~ q(s) = 2 ~ I
t r s t
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and observe that A(r, s) = + p(r)q(s) /C is a probability on .KxK
with marginals p and v, and verifying t) = tc(t)w(t), thus achieving the infimum
in the definition of p’(~c, v).
Now apply Lemma 12 to K = F endowed with this p, to R, and to the constant

r.v. L = .~ where f is the law of R. This gives an S with values in F such that
,~ ~S~C~ _ ~ (so S is independent of C) and I~~S ~ R] = 2 ~ E ~~,G ~R~C~ 

rEF

LEMMA 21. - Let 3i be a non-atomic filtration such that is degenerate. For
every 8 > 0 and every F0-measurable, simple r.v. R, there exist an m  0 and an

F0-measurable r. v. S, independent of Fm and verifying P[S#R]  b.

PROOF. - Call F a finite set where R takes its values. For each r E F, the degeneracy
of implies that --~ P[ R=r] in Ll when m -~ - oo. So there is an
m  0 such that L  b; and Lemma 20 gives the S
sought for. rEF .

LEMMA 22. - Let 3" be a filtration verifying the same hypotheses as in the previous
lemma. Suppose given an n  0 and ~n random variables X~+1, ... , Xo such that
each Xi is a complement to Fl-1 in Fl. For every b > 0 and every F0-measurable
r. v. R, there exist an m  n, a complement X’ to in and a r. v. S,
a(X’, Xn+1,..., Xo)-measurable and 03B4-close to R in probability.
PROOF. - Writing ~ = Xo) and approximating by essentially
finite a-fields, we may suppose R to be of the form ~(T, Xn+1, ... , Xo) where § is
Borel and T is Fn-measurable and simple. Lemma 21 applied to T and to the shifted
filtration (... , gives an m  n and a simple, Fn-measurable S, independent
of and such that I~~S ~ T~  8; a fortiori, I~~~(S, Xn+1, ... , Xo) # R]  b.

According to Corollary 4, there exists a complement X’ to in ~’n such that

a(X’) D cr(9); so S = ~(X’) and ~(2U(X’), X~,+1, ... Xo) is 6-close to R in

probability..

PROPOSITION 6. - Let ~’ be a non-atomic filtration such that is degenerate.
There exists a strictly increasing map a : -N ~ -N such that the filtration 9
defined by 9n = is standard non-atomic.

PROOF. - Choose a r.v. R generating and a sequence (b~~)~~o such that
80 = 1, 03B4l > 0 and 03B4l --> 0 when f ~ -oo. We shall first show the existence

of a strictly increasing mapping a : -l~ --~ -N, a sequence (X~)~~o such that
each X~ is a complement to in and and a sequence of

r.v.’s such that Si is 03C3(X’l,...,X’0)-measurable and 8£-close to R in probability.
Indeed, supposing ~(~), ... , 0~(0), X~+1, ... , Xi and ... , So have already been
constructed, ~ (.~-1 ), X~ and S~ are obtained simply by applying Lemma 22 to
the filtration (... , ~’~(e+1)_2, ~’~(~+1), ~o(Q+2), ... , ~’~(-1), ~’~(o)); this gives
a, X’ and S by induction (the first step just starts with cr(0) = 0, no X’ and no S;
applying Lemma 22 then yields Xb and So, and so on).

Now, Lemma 8 says that the (standard non-atomic) filtration 9’ generated by the
process X’ is immersed in the filtration 9 defined by 9n = ~’~(n). But R is the limit
in probability of S~, so it is 9o-measurable, whence 9b = ~ by the choice of R. As 90
is sandwiched between 9b and one also has 9b = 90 ; consequently, by Lemma 5,
9’ = 9 (both these filtrations are immersed in ~), and 9 is standard non-atomic..
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PROOF OF THEOREM 3. - Let F be any filtration such that F0 is essentially
separable and ?-oo is degenerate. By enlarging the sample space if necessary, we
may suppose the existence of a standard non-atomic filtration ~-C independent of
y. The filtration satisfies the sames hypotheses as ~’ and is non-atomic. So
Proposition 6 can be applied to this filtration, giving a sub-sequence a such that
the filtration = is standard non-atomic. Set ~n = Being
immersed in X by Lemma 1, the filtration S is standard..

Study of an example

To illustrate the notion of I-cosiness and how it can be used, we now turn to
Vershik’s Example 3 ([17], page 744). This will be done in two steps: we start with
a modified, easier version of the example, due to Smorodinsky [14]; there the state
spaces are finite. Then we come back to Vershik’s version, which is slightly less
simple (the state space is [0, I~ ), but stationary.

DEFINITIONS. - Given a filtered probability space (~,,A., (~’n)n0~ ~ , a process
is an F-coin-tossing if, for each n  0, en is Fn-measurable, independent

of , and uniformly distributed on {-1, l~. .

A filtration ~’ has the predictable representation property with respect to an
F-coin-tossing ~ if F-~ is degenerate and, for each n, Fn is generated by

and ~n.

The definition of an *-coin-tossing is equivalent to demanding that the law of
the process 6; is that of a fair coin-tossing, and that the filtration it generates is
immersed in ~’.

The predictable representation property with respect to e amounts to saying
that every Y-martingale M has the form Mn = E[Mo] + ~ Hmem for some
1’-predictable process H. 

THEOREM 4 (Vershik [17], Smorodinsky [14]). - There exists a filtered probability
space (03A9,A,P) with a filtration F = (Fn)n0 and an F-coin-tossing ~ = 
such that ~’ has the predictable representation property with respect to ~, but 
not standard.

In particular, this is not of product type (this would imply I-cosiness by
Proposition 3), so it is not generated by any coin-tossing whatsoever; according to
Corollary 2, is it not even immersible into a filtration of product type (for instance
the filtration generated by some coin-tossing process).

We now describe Smorodinsky’s construction of this paradoxical filtration.

Let A be a finite set, called the alphabet, with k elements, called letters (k > 2).
An ordered sequence of m letters is called an m-word; the set of all m-words is Am,
its cardinality is An m-word wand an m’-word w’ can be concatenated to form
the (m+m’)-word w.w’. For n x 0, put Bn = .
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Consider a Markov process (Xn with the following law: for each n  0,
(Xn is uniformly distributed on Bn  {-1, 1} (that is, the random 2|n|-word Xn
and the random sign ~~ are uniform and independent); the transition from n-1 to n
is obtained by taking en independent of and choosing Xn as the first
half of the word if en = 1, and as the second half of X n _ 1 if en = -1.

Clearly, this transition probability, when applied to a uniformly distributed
(Xn-l, yields a uniformly distributed (Xn, this compatibility implies
existence and uniqueness in law of the process (X, e). From now on, we suppose
(X, c) is realized on a sample space (S~,,A,, I~), and we call * the filtration it generates.
The Markov property and the independence of en and imply that

en is independent of in other words, the process 6 is an y-coin-tossing.

THEOREM 4’ (Smorodinsky ~14~ ). - With the above definitions, the filtration ~’

has the predictable representation property with respect to ~, but it is not standard.

The proof is copied from Smorodinsky; the only difference is that we use the
language of I-cosiness, but the mathematics are exactly the same.

PROOF OF THE PREDICTABLE REPRESENTATION PROPERTY. - As Xn is the first
or second half of according to the value of en, Xn is a function of and

and is generated by and To establish the predictable representation
property, it remains to verify that is degenerate, or, equivalently, that for
each Z E the conditional expectation tends to E[Z] when n tends
to -~.

We know that Xn is one half of the word call Wn the other half

(which may happen to be equal to Xn ) . Knowing Xo, the sequence and

the sequence ( Wn ), it is easy to recover all the Xn by backward induction;
so Yo is generated by Xo, the c and the W. Consequently, we may suppose
that Z is a function of Xo, and (W~+1, W.~+2, ... , Wo) for

some f  0. The vector W~+2, ... Wo, Xo) is itself a function of X~ and

~~2+1, ~~+Z, ... , ~o); so Z = , ~’0). Now, for n x .~, to compute the
conditional expectation we may replace Z by the latter is but

with g(x) = ~e+1, ... for (~~+1, ... , is independent So

it suffices to check that the conditional law of Xi given 1’n tends to the uniform
law on This conditional law can easily be described: the random 2~’~~-WOrd Xn
can be sliced into 2~’~~-~~~ smaller words, each with length 2~~~; conditionally on 1’n,
Xe is uniformly chosen among those words. As they are independent and
uniformly distributed on they constitute a 2~’~~-~~~-sample of the uniform law
on A2~e~, and the conditional law of XQ given 1’n is the empirical measure associated
to this sample. When n - -oo, the size of the sample tends to infinity (it doubles
at each step), and the empirical measure converges almost surely to the uniform law
on by the law of large numbers. (

Before we turn to non-standardness, some definitions and estimates will be useful.
In the next lemma, the symmetric group 6m is identified with the group of all
permutations of the set Im = {l, 2,..., m}.
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LEMMA 23. - There exists a sequence such that

(i) for each n x 0, Gn is a sub-group of the symmetric group C~2i~.~, having 22~’~~-1
elements;

(ii) the permutation of defined as the translation by modulo 2~n~+1 is in

Gn-1 (it globally exchanges both halves of the interval without modifying the
order inside them);
(iii) if gi and g2 are in Gn, then the permutation g of acting as gl on the
first half I2|n| of and as g2 on its second half (identified with I2|n| by a
translation) is in Gn_1. .

The Gn are unique; this is easy to check but we shall not need it. They are the
groups of automorphisms of the dyadic tree; Vershik calls them D~,.
PROOF OF LEMMA 23. - By induction: define Go as {Id} and Gn-1 as the set of
all permutations g of I2ini+1 such that

either both halves of the interval are globally stable by g, and the
restriction of g to each half is in Gn;

or both halves of the interval are globally exchanged by g, and g is the product
of the translation defined in condition (ii) by an element of the previous type.

It is easy to see that this set is indeed a group, whose order ] verifies
= 2 (Gn~2; this gives (i). t

A word w E Bn can be written as wi w2 ... The group Gn acts on Bn in the
obvious way, by permuting the 2~’~~ letters: ... 

= 
.

Notice the following property: if gi and g2 are in Gn, there exists g E Gn-i such
that, for all words u and v in Bn, g(u.v) = and there exists h E Gn_1
such that, for all words u and v in Bn, h(v~u) = gl (u) ~g~ (v).

Endow the set Bn with the distance

03B4n(03C9’,03C9") =1 2|n| 03A3 1{03C9’i~03C9"i} .

Remark that the distance 03B4n is invariant under the action of Gn (more generally, of
the whole symmetric group) and define on Bn x Bn the symmetric function

dn(w’, w") = inf bn(w’,g(w")) .
LEMMA 24. - 7f u’, v’, u" and v" are four words in Bn,

~ ~d (u~ u")+d (v’ v")) n (d (u’ vn)+d (y un)~~ ~ d (u’.v’ uyv y .
(Actually, Smorodinsky establishes equality; only this inequality will be needed.)

PROOF OF LEMMA 24. - We first show 2 (dn(u’, u")+dn(v’, v")) > 
with w’ = u’.v’ and w" = u".v". The left side is 1 2 [03B4n (u’, gl (u"))+03B4n (v’, g2(v"))],
where gi and g2 are in G~; this is also bn_1(u’~v’,g~(u")~gZ(v")). But 
is equal to g(u".v") , where g is the element of acting as gl on the first half of
the word and as g2 on the second half. So we have on the left ~n_ ~ (w’ g(w")~, and
this majorizes by definition of dn-lo .

The other minoration is similar, with an h E Gn-1 such that g~ (u") . ~g2 (v" ) equals
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LEMMA 25. - Let ~’’ and ~" be two isomorphic copies of ~, both immersed in
some filtered probability space (S~,,A., I~, call X’ and X" the copies of X
in 3’’ and F". The process is an F-submartingale.
PROOF OF LEMMA 25. - Fix n fi 0 and write = UJ. V’ and Xn-1= U" . Y",
where U’ is the first half of the random word and similarly for X". By
immersion, the copies ~’ and e" of e in ~’’ and ~" verify

1 ~n_1’ -- I~~En-l~~n-1~ - ~l~n-i~ - 2 .
This implies

i

= ~L~n= - l~ = 2 
By construction of X,

X, ^ U’ if~~=1 X"_ U" ’~ V’ if ~~ _ -1 ~ V" if e~ _ -I; ,
so

dn (U’, U") 
+ dn(U’, V") ~L~~=l, ~.~_ - 
+ dn(V’, U") ~~~~_ - I, 
+ dn(V’, ~~£~=e~= - tl~~_1’

~ jdn(Uy U")+dn(V’, V")] 
+ 2 

and

L~dn(~’, U")+dn(V’, V")) ~ (dn(U’, V")+dn(V’, U,~)~~ ~

It now suffices to appeal to Lemma 24 to get

..

LEMMA 26. - Recall that k denotes the cardinality of A. ~’~ n  0 and r~t = 2~n1. .
If W’ and W" are two independent mndom m-words with uniform law on Bn,

If~ (W’, W")  ~  ~ ( ~ 
m 

.

In particular, if k > 16, E[dn(W’, > 4.
PROOF oF LEMMA 26. - We start with the distance ~n instead of dn:

l~ ~b,~ (W’, W")  2 ~ = and W" have at least m/2 matching letters)
_ ~ ~~~ C {1, ... , m} _ ~ ~ Vj E ~ W’(3) = W~~(3)~ ]
 ~ E J W’(.~) - 

= 03A3 (1 k)m 2 03A3 (1 k) m 2 = (2 k)m .
I,JI- m
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Now, since for any g in Gn (or, for that matter, in C~~), gW" is uniformly distributed
and independent of W’,

I~~dn(W’,W")  2~ s~(W’,gW~r) ~ 2~ ~ ~ x ~J
~,

=2’~-1~ C b~ ( W’,W") 1 ZJ  ~ (2014) . .
When k ) 16, the m-th power is at most 1, one has W" )  2 ~  ~ , whence

- ~ ~~~~(W’~W r’> > 2> > ~ ~
END OF THE PROOF OF THEOREM 4’a To establish that 3" is not standard, we shall
show it is not I-cosy.
First case : ~ > 16. - On some sample space ~~,.A, I~), let ~’’ and ~’" be any two
filtrations isomorphic to ~’, jointly immersed and I-separated. By triviality of Go
and by Lemma 25, one has for every n  0

By I-separation, there is an n  0 such that Xn and X~ are independent. For
this n, Lemma 26 gives > 4, wherefrom > 4 . This
minoration shows that condition (iv) in the definition of I-cosiness cannot be satisfied
for R = Xo , and ~’ is not 1-cosy.
Second case : k  16. - The new alphabet A = A4 has at least 16 letters; it consists
of ‘‘new letters", which are blocks of 4 old letters. Calling Bn - - the space there

is a natural identification between Bn-2 and Bn, obtained by considering a word
of ~ ~’~ ~ +~ _ ~ x 2 ~’~ ~ old letters as a word of new letters. Putting Xn = Xn-2
and n = Cn-2 0, the natural filtration  of the process (X, ) is given by
~ = ~~-2. The first case applies to the new, hatted, process and shows that ~ is
not I-cosy; according to Proposition 2, neither is 

Other forms of cosiness

As recalled in the introduction, two other definitions of cosiness can be found in
the literature; all three definitions are identical but for the separation condition (iii).
The genuine one, hereafter called H-cosiness, was introduced by Tsirelson [15] in a
framework where all martingales are continuous; the separation condition it uses is a
reinforcement of the Kunita-Watanabe inequality: Two jointly immersed filtrations
~’ and S (such that all martingales are continuous) are U-separate if for some r  1

and for all 3=’-martingales M and G-martingales N started at 0, one has

[M,N]2  r [M, M] [N,N] .

When rewritten in discrete time, this is equivalent to a conditional correlation
inequality: For 3" and S jointly immersed in fK and for all F E L2.(~n) and G E L2(~~),

Cov [F, G ~ r Var [F ( Var [G t ;

with this separation condition, we do not know if the non I-cosy filtration of the
above example is U-cosy or not.
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The separation condition used in [2], [3] and [7] is slightly different: it does
not involve time, but only the end a-fields and Soo of the filtrations (or ~ and
90 when time is -N); this makes it in some sense a coarse tool when compared
to 11-separation or I-separation. We shall call it D-separation (D for diffuse). Its
definition is quite simple: Two filtrations ~ and 9 are D-separate if for all random
variables F E and G E with diffuse laws, one has P[F = G~ = o.
And D-cosiness is defined exactly as I-cosiness, but with D-separation instead of
I-separation in condition (iii).

At the risk of adding a little more confusion to this admittedly already rather
messy situation, we shall introduce yet another variant of cosiness. Not only by sheer
pleasure of losing the reader in a maze of definitions, but for a logical reason too:
we shall establish that the non I-cosy filtration of the previous section is cosy in this
new sense, so it is worth stating this result with a definition of cosiness as strong
as possible. (By contradistinction, D-cosiness was used in [2], [3] and [7] to show
that some filtrations are not D-cosy, that is why its definition was made as weak as
possible. )

This new definition formalizes an idea introduced and brilliantly used, whithout
giving it a name, by Tsirelson in ~15~; it consists in "rotating" a Gaussian processes
and all associated filtrations. If G = centered Gaussian process and
G’ an independent copy of G, define a new centered Gaussian process 
by GÀ = (7~ cos sin a. Notice that for any fixed cx, the process Ga = 

has the same law as G; so the a-fields a(G) and are isomorphic, with an
isomorphism wet such that = 

.

DEFINITION. - A filtration ~ (not necessarily indexed by -N) is G-cosy if there
exist two independent centered Gaussian processes G and G’ with the same law,
defined on some sample space (S2,,A~, and an embedding ~ of (S~, P) into

a(G) , I~), such that, with the above notation, for each a the filtrations and
are jointly immersed.

This simply means the existence (possibly on an extension of 0) of a Gaussian
process G verifying ~oo C a(G) and such that ~ and any copy of ~ obtained by
rotating G are jointly immersed.

The simplest example of a G-cosy filtration is any filtration generated by a
Gaussian process, for instance a Brownian filtration. This is the case Tsirelson
considered when introducing cosiness; his proof in [15] that such filtrations are

cosy is copied below, in Proposition 8 and in the remark following it. But we

cannot restrict ourselves to this case: in the proof of Proposition 9, we shall need
the definition of G-cosiness in its full extent.

LEMMA 27. - A filtration immersible into a G-cosy filtration is itself G-cosy.
PROOF. - Suppose that :f satisfies the above definition and £ is immersed in 3".
One has ~(~~) C C a(G); and ~(E) is immersed in By hypothesis,
the filtrations and ~(3") on H are immersed in their supremum so

~ ( E ) are also immersed in 9-C, and jointly immersed by Lemma 4 b).
This shows that a filtration immersed in a G-cosy filtration is itself G-cosy, and

the lemma follows by isomorphism..
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PROPOSITION 7. - Every standard filtration (~’n),~~° is G-cosy.
PROOF. - A standard filtration is immersible into a standard, non-atomic filtration;
so by the preceding lemma it suffices to verify that a (or "the" ) standard non-atomic
filtration is G-cosy. Now a standard non-atomic filtration is generated by an i.i.d.
sequence of standard Gaussian random variables; it suffices to enlarge S~
to accomodate both G and an independent copy G’ of G, and the definition of
G-cosiness is readily verified..

PROPOSITION 8. - Every G-cosy filtration is D-cosy.
PROOF. - Suppose a filtration ~’ is G-cosy. By replacing 9=’ with the isomorphic
filtration we may suppose that Q = S~ and ~ = Id in the definition of
G-cosiness.

Fix 8 > 0 and R in notice that R E By Slutsky’s lemma

(see Theoreme 1 of [2~ ), the map a H is continuous for the topology of
convergence in probability; so, for a close enough to 0, the distance between 
and is less than 8. For any a, the isomorphic copies F03B1 = and F of

the nitration ~ are jointly immersed by hypothesis. Last, for a ~ 0 (mod 7r), the
filtrations and 9=’ are D-separate; see for instance Proposition 2 of [3].

Consequently, for a close enough to 0 but not null, the filtrations ~’a and ~°
fulfill all four conditions in the definition of D-cosiness.

REMARK. - Define two a-fields "B and C to be H-separate if, for some p E [l, 2),
VB E VC E ~B~Lp ~C~Lp

(the letter H stands for Hypercontractivity, or for Hypo-independence). Define two
filtrations F and 9 to be H-separate if their end a-fields and Soo are, and

a filtration to be H-cosy if it satisfies the definition of D-cosiness (or I-cosiness,
or U-cosiness) with H-separation instead of D-separation (or I-separation, or

H-separation). It is not difficult to see that H-separation implies D-separation
(see [2], or Proposition 1 of [3]); therefore H-cosiness implies D-cosiness. And the
proof of Proposition 8 (or the proof of Proposition 2 of [3]) shows in fact a stronger
result: G-cosiness » H-cosiness =~> D-cosiness.

PROPOSITION 9. - The (non standard, hence also non I-cosy) filtration ~’ of
Theorem 4’ is G-cosy (hence also H-cosy and D-cosy).
The proof of this proposition will use some properties of a very small, abelian

subgroup of the group Gn described in Lemma 23. Tsirelson calls it the group of
cube automorphisms (as opposed to the whole group Gn of tree automorphisms). .

LEMMA 28. - For n ~ 0 and (r~l, ... ) E {-l, define an operation
on all as follows : ~y°~ is the identity on A1, and for n  -1,

writing every 2|n|-word of as the concatenation u.v of two 2|n|-1-words,

03B3n~1,...,~|n| (u.v) = {03B3n+1~2,...,~|n| (u) 
. 03B3n+1~2,...,~|n|(v) if ~1 = 1,

03B3n+1~2,...,~|n| ( ) . 03B3n+1~2,...,~|n| ( u) if ~1 = -1.

These operations form a commutative group, called Hn, with elements. The

map (~1, ... , ~ a group isomorphism between ~-1,1~~~‘~ and Hn.
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For 7 E Hn B {Id}, there is a partition of ~1, ... , 2~’~~~ into pairs such that

~y (considered as an element of 6n) acts by swapping both elements of each pair.
PROOF OF LEMMA 28. - Both properties

03B3nn1,..,~|n| = Id ~ (~1,...,~|n|) = (l, ... , 1)

03B3n~’1~"1,...,~’|n|~"|n| = 03B3n~’1,...,~’|n| 03B3n~"1,...,~"|n|
are readily verified by induction on n.

For divide the interval ~1, ... , into 2k blocks (i.e., subintervals)
of length 2|n|-k. If ~1 = ... = = 1 and ~k = -l, then 03B3n~1,...,~|n| 

sends every
element of the (2j+1)st block into the (2j+2)nd block and conversely (induction
on n and k, with n ~ - k fixed, starting from k = 1 and 1). Consequently, if
(~i,..., ~ (1, ... ,1), the permutation has no fixed point; and as its

square is Id (isomorphism with its orbits form a partition of ~l, ... , 
into 2~n~-I classes of 2 elements each..

PROOF OF PROPOSITION 9. - Consider a quadruply infinite supply 
(~’p)p>1 of independent standard normal random variables; let

f be a Borel function from ? to A transforming the standard normal law into the
uniform law on the alphabet A. For n x 0, define random variables ~~ in ~ - l,1 ~
and Xn in Bn = A2 by

en = sgnEn ; Xn = (f (CI ) ... 
where is the same as in Lemma 28.

The first step of the proof consists in justifying this notation by showing that the
process (X, e) has the same law as in the example studied in Theorem 4’. It is easy
to see that for each n the law of (Xn, En) is uniform on Bn x ~-1,1~: just notice that
the random word W = f (C1) ... is uniform on Bn and that Xn is obtained
from W by a random permutation independent of W. It is also straigtforward to
get as the first or second half of Xn according to the value 1 or -1 of 
just replace ~y ~+1,...,~o by its definition. To complete the first step, it only remains
to verify that the r.v. en is independent of This will be done later;
meanwhile, the first step is left uncompleted.

Call G (respectively G’) the centered Gaussian process (E, C) (respectively
(E’, C’)); notice that G’ is an independent copy of G and that (X, e) can be
written as ~(G) for some Borel functional Define Ga = G cos a + G’sin a, put

(Xa, ea ) _ call ~’a the filtration generated by (Xa, and ~-C the filtration

generated by all processes (X~, e~) when ,~ takes all possible values. With the
notation used in the definition of G-cosiness, ~’~ is but ~a (~’). The second step
is to establish that each ~’a is immersed in 9i; when both steps are done, the

proposition will be proved. Trivially, is included in ~-C. As has the predictable
representation property with respect to ea, immersion amounts to saying that e~
is independent of Showing it will a fortiori establish independence of eg and

and, taking a = 0, of en and a( (Xk, so by the same token step 1 will
also be completed.

Fixing n from now on, it only remains to prove independence of eg and 
this is equivalent to = o, or to

... , ] = ~
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for all q > 0, ,Ql, ... , R and for all bounded, Borel h. 
, ~ ~ ~,

The random variable inside the expectation is measurable for a(E, E’, C, C’);
therefore it is a functional

E’, C, C’) - (Ek)k0~ 
of infinitely many independent N(0,1) random variables. To prove the claim, 

we

shall exhibit another Gaussian family (E, E’, C, C’) of random variables, with the

same law as (E, E’, G’, C’), but such that _ -~(E, E’, C, C’); this
will imply = whence

E’, C, C’)J = 0.
Define E and E’ by

Ek if k  n E, _ E’k if k  n
Ek = { -Ek 

k {-E’k ifk>n

and put Cp = Cs(p) and Cp = Cs(~), where s is the deterministic permutation 
of

{1,2,...} which globally preserves each interval {i 21y+1+.l~ . , , ~ (2+1) 
but

completely reverses the order inside this interval. For instance, if 
n = -2, s is the

permutation

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...)8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 24 23 ... 
°

Observe the effect of replacing (E, E’, C, C’) by (E, E’, C, C’) in the argument
of 03A6. For k  n, ~03B1k = sgn(Ek cos03B1+E’k sin03B1) does not change, whereas for k > n,
~03B2k = is replaced by sgn(Ek cos sin 03B2) = -~03B2k. And for
k  n,

X03B2k=03B3k~03B2k+1,...,~03B2n-1,~03B2n,...,~03B20(f(C1cos03B2+C’1sin03B2)...f(C2|k|cos03B2+C’2|h|sin03B2)
is replaced by

the claim will be established and the proposition proved if we show that the latter

is equal to Xe itself. This is a particular instance of the general identity

~,...~-i,-~...,-.c(~(I) ’ - - = ~...~-~...~1 - ’ ’ ~i~.) ~
valid for all k  n  0. To show this identity, notice first that, since

~+1,...~-1,-~...,-~0 ~~+i,...,T~-i,~,...,?7o~l,...~-~.-~-l
as a consequence of the group homomorphism (Lemma 28), the identity reduces to

’Yi,...,1,-1,...,-nws(i) ... = Wl ... W21kl .

For k = n - 1, this is just the formula

~~’1~1..~-I(~.UZp+i ... = wl ... 

which can be verified by induction on n, using the definition of ~’~-1; for fixed n
and general k  n, it is proved by induction on n-k using the definition of ~y~ and

the definition of s. The proof is now complete..
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REMARK. - Proposition 9 and its proof remain true if the finite alphabet. A is
replaced with any separable probability space (A, A, it suflices to replace f by
a Borel function transforming the normal law into the probability 7r. This remark
is not interesting per se (the simpler the model, the better), but will be technically
useful in the next section.

Vershik’s Example 3

When showing that his example is not immersible into a standard filtration,
Smorodinsky’s aim was to explain the same property for Vershik’s example; indeed,
this property carries over immediately from the former to the latter. As we shall
see, G-cosiness also transfers easily.

Vershik’s example is a Markov process indexed by the signed integers Z, with
state space the set AN made of all infinite words v = v0v1v2 ... and endowed with
the product measure p (the letters are independent and uniform). The transition
probability is

... 

... with probability 2

... with probability 2;
plainly,  is invariant, so we have a stationary process V = with this

probability transition and with stationary law Associated to it is the coin-tossing
such that Vn is the "even half" of Vn-i if Cn = 1 and the "odd half" if

Cn = -l. The process (V,c) has the same natural filtration 9 as V, since both
halves of Vn-l are almost surely different.

For n ~ 0, consider the word Wn = ... obtained from the infinite

word Vn by keeping only the first letters. The process (W, 6;) is very similar to

Smorodinsky’s (X, ~)-process: at each step, one half of the word is lost and one half
is retained, but these halves are not the left half and right half; they are the halves
consisting of letters in even or odd position. There exists for each n a (deterministic)
permutation an of ~0, 1 , ... , 2~n~-1} such that the words Xn = Wn o an form a
process with the same law as in Smorodinsky’s example. The existence of those

is obvious by induction; an explicit description is also possible: an(i) and i,
when written as binary numbers with ~n~ digits, are mirror-image from each other.
For instance, X-3 = W~3W43W23W63W~3W53W33W73. In this way, the process
X is immersed in the process V. This really is an immersion, in the sense that
the filtration 3" generated by (X, ~) becomes a sub-filtration of 9, immersed in 9;
consequently, non-standardness of 9 is a corollary of non-standardness of ~.

It is almost as easy to get G-cosiness of 9 from Proposition 9. Given V, define
for n ~ 0 and  a random infinite word Zn E AN by

Zk == ...

and put Yn = Z° ... This Yn can be considered as a with letters

Zn in the new alphabet AN. This defines a process with two properties.
First, as the finite word Yn is just a rewriting of the infinite word Vn , the processes

and generate the same filtration. Second, by the choice of an,
Yn is the first or second half of according to the value ~ 1 of ~n; in other
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terms, Y is an instance of Smorodinsky’s process, but with the infinite alphabet AN
instead of A. Consequently, by the remark following the proof of Proposition 9, the
filtration is G-cosy. And so is also the whole filtration as can be

seen by inserting another Gaussian sequence in the proof of Proposition 9,
and putting En = sgn En for n > 1 as well.

On a question by von Weizsacker

The proof of Proposition 9 rests on a construction of the process X via certain
random permutations of a sequence of random letters. The same construction will
now be used to answer a question raised by H. von Weizsacker during the Mini-

Symposium on the Classification of Filtrations at the ESI, Vienna, December 1998.

It is well known that if ~ _ a filtration and "B a a-field, the equality
V B does not always hold true, but it sometimes does, for instance

when "B and ~’o are independent; see von Weizsacker [19] for a necessary and

sufficient condition and for references. The question is, is equality always obtained
when ~’o and "B are "almost independent" ? The hope for an affirmative answer relied
on the fact that all previously known examples of situations where the above formula

goes wrong, had a big intersection between the a-fields 3o and 13, which therefore
were far from independent.

By almost independence of 3o and 13, we mean either a hypercontractivity
inequality:

~p ~ (1, 2) dB E Lp(B) IE[BF] ~B~Lp ~F~Lp

with p close to 1, or a correlation inequality:

~r E (0,1 ) VB E L2 (B ) VF E L2 (~o ) ICov [B,  r Var ~B~ Var ~F~

with r close to 0. These inequalities are always satisfied with p = 2 and r = 1; they
become stronger when p and r decrease, and for p = 1 and r = 0 each of them is

equivalent to independence. The former was called H-separation in the remark after

Proposition 8; the latter could be called C-separation, and C-cosiness could then be
defined-but enough is enough!

Rotating a Gaussian process is an efficient way to generate a-fields satisfying such

inequalities. (We also find it efficient in providing some intuition about "almost

independence".) If G = centered Gaussian process and if G’ is an

independent copy of G, recall that the rotated process is Ga = G cos a+G’ sin a. The
a-fields a(G) and Q(Ga) satisfy the above inequalities with exponent p =1 + cos a~ ]
and correlation constant r = |cos03B1|; so G a,nd Ga are almost independent when
a is close to 2 . (On hypercontractivity, see for instance the references in and after
the proof of Proposition 2 of [3]. On the correlation inequality, called Gebelein’s
inequality in this case, see Exercise V.3.13 of Revuz-Yor ~ 12~ ; or Dym-McKean [6]
page 66.)
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The answer to von Weizsacker’s question is negative:

PROPOSITION 10. - For all 6 E (0,1), there exist a filtration (Fn)n0 and
a 03C3-field B such that the a-fields F0 and B satisfy the hypercontractivity and
correlation inequalities recalled above with p = 1 ~-~ and r = b, and such that
the germ 03C3-field ~(FnB) contains a non-constant r. v. independent of .

n

PROOF. - It is inspired from that of Proposition 9. As in that proof, start with
a a quadruply infinite supply (E~)n~e, of independent
standard normal random variables; our alphabet will have two letters: A = ~-l, l~.
For n x 0, define random variables ~~, and Xn in Bn = by

En ] ,

where ~E~+=,...,EO is the (random) cube automorphism associated to the (random)
signs ~~,+z, ... , ~Q by Lemma 28. As was seen in the proof of Proposition 9, the
process (X, ~) is a realization of the example studied in Theorem 4’ ; call 3" = 
its natural filtration. Now rotate the Gaussian process (E, C) by putting 

’

= En cos a + E~ sin a and C~ = C~ cos a + C~ sin a
and fix a E (0, ~ ) such that cos a = D. The properties of rotated Gaussian processes
recalled earlier imply that, for a close to 03C0 2, the 03C3-fields 03C3(E, C) and are

almost independent (hyercontractivity inequality with p and correlation

inequality with r = cos a). This property is immediately inherited by the sub-03C3-field
~B = ff (sgn( C), q > 1) of tT (Ea, Ca) and the sub-~-field ~’~ of C).

From now on, the parameter 03B1 is fixed in (0, 03C0 2). It should be considered as close
to 03C0 2 (to make p close to 1 and r close to 0), but the sequel does not depend on that.
We have seen in Theorem 4’ that is degenerate; to prove the proposition, it

remains to exhibit in the germ c-field a non degenerate r.v. independent
of B. We shall show that the process is measurable with respect to the germ
a-field; this will prove the proposition, for this process is independent of (C, C’),
and a fortiori of ’B. (Notice that E’ plays no role : all these ff-fields are included in

C, C’ ) . The sequence E’ was introduced only as a phantom, to lubricate the
proof of hypercontractivity and correlation.)

So the rest of the proof will consist in showing that the knowledge of the sequence
sgn(Cl j, sgn(C2 ), ... and of the remote past of (X, ~) is sufficient to recover the
whole process e.

Set sgn(Cq) and vq = The joint law of the random words
Ln = Ul ... and Vn = vl ... is easily described: ttg and vq are positively
correlated bits, with _ ~  ~, and all pairs are independent of
each other. Observe that the word X~, is obtained from Un by a random permutation
~ ~+1,...,~o independent of (Un, Vn). The idea of the proof is that it is possible to
recover this permutation ~y n+1,...,~~ from the observation of the words Xn and
Vn with a probability of error that tends to 0 when ~ -~ -oo. The recipe to
get ~y n+1,..,,~o is as follows: construct all the words where ~ ranges in Hn,
match these words against Xn, and retain the 03B3 giving the best fit, that is, the
largest number of matching letters. This works well for large because, with high
probability, Un and Vn have more than half their letters in common, and the group
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Hn is not too large. The main quantitative estimate is the following lemma, that
uses the distance 6n defined above Lemma 24. (But all what follows remains valid
if the factor 2’~ in the definition of ~~, is dropped, that is, if b,~ (w’, w") is defined as
the number of non-matching letters in the words w’ and w". )
LEMMA 29. - Given a E (0, 2 ), , there exists a constant ca E (0, 1) such that, for
all n  0 and ~Id~, one has

JT ["?’L(Un,7  V?1)’ x 
PROOF OF LEMMA 29. - Put ni = 2~’~~. The event to be evaluated is ~S > 0~,
where 

~ m. yn-

S == ~ ~ ’

2=~ 2=2

Now, since 1 is in Hn B {Id}, Lemma 28 gives a partition of {1,..., ?7z} into ~ pairs
~i,,~~ such that = j and ~{~) = i. For such a pair ~i,,~~, set 

~

+ - 

°

The sum S is also the sum of the m/2 r.v.’s Dij when ~i, j~ ranges over all these
pairs. These r.v.’s are independent and identically distributed, their law depends on
a only. This law could easily be computed; we shall not need it, we only retain
that IE ID~~ ~ _ ~ + ~ - 2 - 2  o. The rest of the proof is Chernoff’s classical
argument of large deviations: Since the derivative at t = 0 of the Laplace transform

= is  0, there exists to: > 0 such that 0   t,
and it suflices to write

= l~  == ..

END OF THE PROOF OF PROPOSITION 10. - If x and v are two 2~’~~-words,
define as the element (r~l, ... E ~-l, that minimizes the dis-

tance ~~(x, ~y~l,...,~m V) if the minimum is uniquely achieved, and put for instance
v) _ {1, ... , I) if the minimum is not unique.

Consider the event Vn) = {~~,+i, ... , that the recipe described
before Lemma 29 gives the correct answer. On there exists a (random) r G Hn
such that I’ ~ ~y ~+1,....EO and  ~y ~+1,...,~~Un)~ As the distance
between two words is not modified when the same permutation is applied to both
of them, we may act on all four words in this inequality; the word Xn
becomes = Un , the word becomes Vn, and becomes

r’vn with a (random) T’ _ ~y n+1,...,~oP ~ Id. Consequently,
~n C {31 E Hn B {Id} .

So, remembering that Hn has elements and using Lemma 29,

 ]  

hence the series ~n is convergent, and equality (~~,+i, ... , ~c) U~n)
holds for all n less than some N(c~). Consequently, for each fixed n  0, the whole

process E is a function of the sequence ~  n); it is therefore measurable
with respect to 
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REMARKS. - a) The filtration 3" in this proof can be replaced, with exactly the same
proof, by the smaller filtration X generated by X. The 03C3-field ~-~ is degenerate
because it is included in ?-oo; and since (~n+1, ... , eo ) = kn(Xn, Vn) for all but
finitely many n, the process £ is measurable for each of the u-fields ~nB.

b) Since FnB contains Xn and the whole process e, it also contains F0, so
FnB = F0B for each n and the germ 03C3-field n too is equal to 

n

c) The nitration 3" in the proof of Proposition 10 is not standard (Theorem 4’) ; in
fact, it can be considered as an arch-example of a non standard filtration. One might
ask whether the situation changes when one imposes the restriction that ~ must
be standard. By Vershik’s lacunary isomorphism theorem (Theorem 3), the above
construction easily carries over to this case, simply by taking a subsequence. And
once this has been done, one can also get an example where ~’ is standard non-atomic,
simply by replacing ~ by its product with a standard non-atomic filtration.

d) The construction in the proof of Proposition 10 is a small modification of that
of Proposition 9, which features a whole family of processes (Xa, ea isomorphic to
(X, c), each of them immersed in the filtration ~-C generated by all of them. To be in a
situation similar to Proposition 10, consider the setting of Proposition 9, but only in
the case when the alphabet has two letters -1 and 1, and f(x) = sgn x. Call ~’a the
natural filtation of (Xa, ea) and put = ~n and = If a - (~ is not
a multiple of ~, the same argument as above yields (e~~ 1, ... , = , X ~)
with overwhelming probability when n is small, so for each n, the whole process ~a~
is measurable with respect to the 03C3-field F03B103B2n; in other words, this process 
measurable with respect to the germ a~ field of the filtration ~’~~ . Consequently,
still for a - /3 not a multiple of ~, the filtration ~’a~ is dyadic:

~’~~ _ ~’~lVa’(~~) ~
and one has for all 0 the identity = = But ~~R
does not have the predictable representation property with respect to ~a, nor to 
nor to any other coin-tossing, simply because F03B103B2-~ is not degenerate: we just saw
that it contains 

Thus, for a ~ /3 mod ~, we have an example of two filtrations ~’a and ~’~
immersed in arbitrarily close to independence as in Proposition 10, such
that the three filtrations ~’a, ~’p and are dyadic, and are trivial,
and is not trivial.

n

/~~ = ~, the filtrations ~~ and ~’a are independent, is degenerate,
and = this is just the product situation. )

Last, observe that the filtration ~C generated by all the ea ) is dyadic too,
because = for any a. Indeed, X-oo contains the products for

all a, ,~ and n (if a -,Q = l~ 2 write = the reason why ~-C can be dyadic
and at the same time contain two independent coin-tossing processes ~0 and ~03C0/2,
is simply that their product ~0~03C0/2 is H-~-measurable.

Conversely, it looks likely that and, for a - ~3 ~ ~ 2 ,
~(F03B1nF03B2n) = 03C3(~03B103B2); we have not investigated this question.
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