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Abstract We study backward stochastic differential equations where the solu-
tion process lives in a finite dimensional Lie group. The group structure makes

this problem easier to deal with than in a general manifold, but the geometry still
imposes interesting conditions. The main tools are the stochastic exponential and
logarithm of Lie groups, used to change group-valued martingales into Rd-valued
martingales. We are first interested in getting a group-valued martingale with pre-
scribed terminal value: existence and uniqueness are proved for nilpotent Lie groups
by a constructive method; also a recursive construction of the solution is given and
uniqueness is obtained for groups where a convex barycenter can be defined. We
then study more general backward stochastic equations with a drift term.

A.M.S. classification: 58G32, 60G44, 60H10.

Introduction

Our aim is to solve backward stochastic differential equations for processes living in a
finite dimensional Lie group G. More precisely, to obtain an adapted continuous G-
valued process with prescribed terminal value, prescribed drift term and prescribed
Brownian perturbation.

Those backward equations are of great interest in many applied problems (fi-
nancial markets, controlled systems, ...) and also raise many interesting theoretical
problems (representation of martingales, anticipative calculus, ...). Therefore a lot
of papers are devoted to these equations; most of them deal with vector-valued pro-
cesses and few of them with manifold-valued processes. As far as we know no one
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deals with Lie group-valued processes. Of course, Lie groups are specific manifolds,
but with a more elaborate structure, more elaborate results are to be obtained.

In the domain of backward stochastic differential equations, the Pardoux and
Peng paper [9], where processes are Revalued, is to be considered a pioneer work.
In a Lie group the non-linear structure raises new difficulties, but the main three
steps of the method in [9] can be kept: they consist in solving the backward equation
with no drift term first, then with a drift depending only on time, and last with a
general drift term.

The first step is equivalent to the problem of finding a martingale with prescribed
terminal value. This is straightforward when the martingale lives in a Euclidean
structure by using conditional expectation. In a manifold, things are much more
difficult . Different authors worked on it but positive results were obtained only under
restricted conditions for the manifold. Some authors as W.S. Kendall [8] gave an
answer for bounded manifolds such as small balls, or J. Picard [10] for manifolds with
curvature bounded from below, and in [11] -as in [3]- for compact manifolds with
convex geometry. In [4], Darling extends the previous answer to manifolds obtained
as increasing limit of compact submanifolds with convex geometry and stated a
conjecture concerning manifolds with compactly supported connection. Arnaudon
[2] also brought a solution by constraining the martingale to stay in a compact convex
subset of the manifold. Existence and uniqueness of a martingale with prescribed
terminal value is solved here for non compact Lie groups of two types: the (r)-
groups, which are more or less flat in a specific coordinate system, and the simply
connected nilpotent Lie groups.

The literature does not deal with general backward stochastic equations in a
general manifold, although Darling [3] solves the prescribed terminal value mar-
tingale problem by using backward equation. In a Lie group, the second step of
the procedure in [9] (drift depending only on time) is easy to deal with using the
stochastic exponential of Lie groups: a Girsanov type formula reduces the problem
to a martingale problem. The third and last step is solved for (r)-groups only where
Stratonovich equations become Ito equations; so, the usual method with Picard it-
er ation is available.

The paper is organized as follows. First section introduces the main tools. As
usual in a manifold, a notion of connection is needed to describe the manifold valued-
martingales. Here specific connections in subsection 1.1 and associated specific mar-
tingales in subsection 1.2 are introduced to be adapted to the left-invariant structure
of Lie groups. Subsection 1.3 deals with the stochastic exponential and logarithm of
Lie groups. First defined by Hakim-Dowek and Lepingle [6], they allow exchanges
between Lie group-valued semimartingales and Rd-valued semimartingales.

In the second section, we solve the prescribed terminal value martingale problem:
in section 2.1 for the 3-dimensional Heisenberg group; in section 2.2 for (f)-groups,
and in section 2.3 for nilpotent Lie groups.
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The backward stochastic differential equations in Lie groups are studied in the
last section: subsection 3.1 is devoted to backward equations where the drift depends
only on time, and subsection 3.2 to general drifts.

Notations

When not specified a filtered probability space (S~, ~) is given. All

processes are continuous and, if M is a semimartingale on (H, ,~’, taking
its values in R~ and H is an adapted process taking its values in the usual Ito

stochastic integral of H along M-when defined-is denoted by J H dM, whereas
the Stratonovich stochastic integral is denoted by j H o dM. The space of all local
martingales taking values in R~ is denoted by (M when d = 1).

The Einstein summation convention is used throughout.

1 Geometry of G and G-martingales

1.1 Choice of a connection

Let G be a d-dimensional Lie group with identity e. For all g in G, we denote by
L9 the left translation:

: x E G ’-~- = gx.

The tangent vector space TeG with the bracket rule [A, B] = AB - BA is an algebra,
the Lie algebra of G, denoted by g. We identify g with the algebra of the left
invariant vector fields on G through: A E g M ~4 where ~4 is the vector field on G
defined by

~g ~ G ; Ã(g) = (dLg)eA
and denoted below as A(g) = g.A.

We first introduce a connection on G such that

~(A, B) E G  G, ~Ã = (A,B) (1)

where a is a bilinear alternate mapping on g x g with values in ~. By [7] (prop.II.1.4),
equation (1) is equivalent to the determination of an affine left invariant connection
on G (i.e. for all g in G and for all vector fields X and Y on G, _

such that the geodesics starting from e are exactly the maps t ~ exp tA
where A ranges over g.



244

The choice of a left invariant connection whose geodesics are the exponential
curves seems to be natural. In the following we will deal with two "natural" con-
nections corresponding to two different mappings a. Arguments in favour of one or
the other will be developped when necessary.

Definition 1.1 We call (-)-connection the connection on G defined by ~1~ with

and (o)-connection the connection on G defined by (1) with

~(A,B) ~ G  G, 03B1(A,B) = 1 2[A,B].
Remark: The name (-) and (0)-connection can be found in [7] p.104, taken from
an earlier work of E. Cartan. It is related with the torsion: the torsion of the (-)-
connection is equal to -[, ] when computed at (A, B) whereas the (0)-connection
is torsion free. Actually both connections have the same symmetric part.

Recall that if is a local coordinate system on a domain U of the manifold
G and if V is an affine connection on G, then the Christoffel symbols 
of the connection are functions on U defined by

~Di(Dj) = 0393kij Dk
where Di denotes the derivation along the i-th coordinate: Di = a~z . The Christoffel
symbols of the (-)-connection are described in the next lemma.

Lemma 1.2 If is a local coordinate system on G, then the Christoffel
symbols of the (-)-connection are given by the following: for all x E G and for
i = 1,... ,d

ra.(~) _ - 
where and are the d x d-matrices

ri.(x) _ 

for any basis of ~.

Proof: Let us split = Di(X) and use the calculus axioms of a
connection to write that the right-hand-side of relation (1) is zero with A = H03B1 and

any a, /? ~ {!,... , ~} and ~- e G,

0 = Di (H,~~~) D.7 (~l
- + 

- + D
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and then, for all k E {1, ... , d~

(Haxi) + = 0.

Hence for ~ l, ... , d~

and introducing the matrices ri. (x) and gives the result.

a

1.2 G-valued martingales

Any affine connection V on the manifold G being fixed, a notion of G-valued mar-
tingales is available through the definition of a Hessian (see for example [5] Chapter
IV).

Definition 1.3 A G-valued semimartingale is a G-martingale if for all f inG°°(G), J

f(X) - f(X0)-1 2.0 Hess f(dX,dX ) (2)

is a local martingale, where Hess f is the bilinear form given by

Hess f(A,B) = AB f - ~AB f

for all vector fields A and B on G.

Note that the process (2) only depends of the symmetric part of the Hessian,
this leads to the usefull next lemma. More general considerations about the links
between connection and martingales on Lie groups are developped in [1].

Lemma 1.4 The (-)-connection and the (0)-connection both induce the same G-
martingales.

In the sequel "G-martingale" will undifferently refer to the (0)- or (-)-connection on
G. The notion of a G-martingale is clearly a local notion and can be written in local
coordinates With the above notations, computing for i,j, k = 1,... , d,

Hess D~) = - _ (3)

gives the following lemma.
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Lemma 1.5 Let be a local coordinate system on G and be
the associated Christoffel symbols of the connection. A semimartingale X in G with
coordinates (X1,...,Xd) is a G-martingale if and only if, for all k = 1, ..., d,

We will sometimes assume that the following hypothesis is realized.

Definition 1.6 Let G be a Lie group equipped with a connection. We say that
hypothesis realized, or that G is a (h)-group, if there exists a system of
global coordinates ~ on G such that Hess ~ vanishes.

Looking at the process (2) it is clear that if hypothesis (F) holds then the G-
martingales are exactly the G-valued semimartingales X for which the coordinate
process is a local martingale.

Let us make some comments about hypothesis (F) :
1. Using (3), hypothesis (f) is equivalent to: the Christoffel symbols of the

connection expressed in coordinates 03A6 are identically zero. By the way, in a (0393)-
group the connection is always torsion free. Therefore a (r)-group will always be a
Lie group with (0)-connection.

2. In particular, hypothesis (F) implies that the curvature tensor field vanishes
(see [7] p.45); G is then a locally flat manifold.

3. The 3-dimensional Heisenberg group with the (0)-connection satisfies hypoth-
esis (F); this example will be developped in next section.

1.3. The stochastic exponential and logarithm
We recall here part of the results obtained by M. Hakim and D. Lepingle in [6]. The
stochastic exponential of Lie groups and its converse the stochastic logarithm are the
main tools of this paper to establish a one-to-one correspondence between G-valued
semimartingales and g-valued semimartingales. These tranformations are close to
the development and the lift of a manifold semimartingale described in chapter VII
of [5], but are specific to Lie groups.

Let be a basis of g.

Proposition 1.7 ([6J Given a {I-valued semimartingale M = MiHi and an
F0-mesurable random variable X0 in G, the Stratonovich differential equation:

~f ~ C~(G) , f(X) = f(X0) + .0if(Xs) o dMis (5)

has a unique solution X = (Xt)t~0, G-valued semimartingale.
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Equation (5) is clearly independent of the basis of G and will sometimes
be written

dX = X o dM

The solution starting from Xo = e is denoted and named the stochastic

exponential of M.

Lemma 1.8 When G satisfies hypothesis (h) with the (0)-connection and coordinate
system ~, then (5) is equivalent to

03A6(X) = 03A6(X0) + dMis

where it is important to note that the Stratonovich integral has been replaced by an
It6 integral.

Proof: Firstly, suppose G satisfies hypothesis (I‘). Then for all semimartingale
M taking its values in g, the process X = is solution of the Ito stochastic

differential equation

03A6(Xt)=03A6(X0) + t0i03A6(Xs)dMis
since = 0 cancels the Stratonovich second order term in (5) with f = 03A6.

Conversely, for any regular function f, let / = f o 03A6-1 and Ito formula get:

f(Xt)=(03A6(Xt)) =f(X0) + t0~(03A6(Xs)) o d03A6(Xs).

But, f(x) is nothing but ~(03A6(x))(03A6)(x) and d03A6(Xs) = i03A6(Xs)dMis, yielding
(5). a

Conversely to proposition 1.7, a unique G-semimartingale H = MiHi starting
from 0 is associated with each G-semimartingale X such that X = (~6~
th.4). It is denoted by H = £(X) and named the stochastic logarithm of X.

When the connection on G is chosen to be the (-)- or the (0)-connection (defini-
tion 1.1), the correspondence between G-semimartingales and G-semimartingales is
respectfull towards our notion of martingale as claimed in the following proposition
(see [6] section 4 and also [1] prop.3).

Proposition 1.9 With the (-)- or the (0)-connection on G, the G-martingales are
exactly the processes Xo where 114 is a local martingale in ~ and Xo a G-
valued F0-mesurable random variable.
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One more result concerning the stochastic exponential and logarithm of Lie
groups will be usefull in the following. It gives a computation rule and can be
interpreted as a stochastic version of the Campbell-Hausdorff formula.

Let us first recall the adjoint representation of G. For all g in G, the auto-
morphism on Q Ad(g) is defined by Ad(g) _ (dIg)e where Ig denotes the inner
automorphism of G : : x f-~ I9(x) = 

Proposition 1.10 (~6~ prop.5~ If M and N are Q-valued semimartingales then

~(M + N) = ~ (.0Ad(~(N)s) o dMs)~(N).
If X and Y are G-valued semimartingales then

L(XY)=.0Ad(Y-1s) o dL(X)s + L(Y).

To conclude this section let us introduce a notion of integrability for group-valued
random variables.

Definition 1.11 Let p A global coordinate system ~ on G being fixed,
a G-valued random variable L is said to be p-integrable with respect to ~ if the
coordinate vector is made of p-integrable random variables.

We denote by G) the set of all ,~’-mesurable, G-valued random variables
which are p-integrable with respect to ~. In the same vein, a G-valued process
X == (Xt; 0  t  1) will be said p-integrable with respect to ~ if for all t E [0, 1],

is p-integrable.

2 G-martingale with prescribed terminal value

2.1 Example: the Heisenberg group

Denote by H the 3-dimensional Heisenberg group, that is to say the group of matrices

1 x1 x3
g = 0 1 x20 0 1

with ~Z, ,~3) E ~3. We call (x~)k-1,2,3 the "natural" coordinate ’system and will
refer to the (0)- or (-)-connection when speaking about H-martingales.
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The Lie algebra TeH associated to H is the algebra of upper-trigonal 3 x 3-
matrices with zero on the diagonal. A basis for it is (H1, H2, H3) with

0 1 0 0 0 0 0 0 1
H1 = 0 0 0 , H2 = 0 0 1 , H3 = 0 0 0 .

000 000 0 / 000 0 /
The normal coordinate system ~ with respect to the basis (H1, H2, H3) of TeH

is given by
1 x1 x3

is given by 

03A6 0 1 x2 = (x1, x2, x3 - 1 2x1x2).0 0 1
0 0 1 / 

"

The group H is not a compact manifold and the problem of finding a H-
mar tingale with prescribed terminal value cannot be treated with the method of
[11] or [3]. The result proposed in [4] th.5.2 for noncompact manifolds should be
used but quite heavy conditions are to be verified. At the opposite, the problem is
solved here with very little material. We give hereafter two different proofs of this
result in order to exhibit two different ways of solving the general problem.

Proposition 2.1 Let L belongs to H). . There exists a unique square inte-
grable H-martingale X = (Xt; 0  t  1) such that Xl = L. It is given at time t

(t E [0,1]~) by its coordinates:

~’t - for i = 1, 2

1 2 ~t) - 

First proof : Use the (0)-connection on H and normal coordinates ~. The

computation of proves that = 0. Hence H is a 

and the solution follows immediately by looking for a H-valued square integrable
semimartingale X such that ~(X) = (X 1, X 2, X 3 _ 2 X 1X 2) is a martingale with
terminal value (L1, L2, L3 - 2L1L2).

Second proof: Use the (-)-connection on H and the natural coordinate system.
With lemma 1.2, you get the Christoffel symbols: Vy E G,

r ~ (g) = 0 for (i, j, k) ~ (1, 2, 3) ; ri2(g) _ -1
and the solution is given by looking for a H-valued square integrable semimartin-
gale X such that (X 1, X 2, X 3 - 2 (X 1, X 2)) is a martingale with terminal value
(Ll, L2, L3 - 2(X1, X2)1). Note that this solution coincides with the first one since

~~2) is a martingale. 0

A natural question arises: why does this work? The existence of a global coordi-
nate system clearly makes things more simple, but this is not crucial. Actually two
arguments are to be considered.
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1. In the first proof the main argument relies on hypothesis (>,); H-martingales
are then well known vector martingales.

2. In the second proof, some Christoffel symbols are vanishing and (4) becomes
a triangular system; it is then easy to obtain an explicit solution for it.

The next two subsections are devoted to groups where one of these two situations
is realized: Lie groups with hypothesis (f) for situation 1, nilpotent Lie groups for
situation 2.

2.2 Existence and uniqueness; case of a (T)-group
Let G be a Lie group with (0)-connection where hypothesis (f) is satisfied with

respect to a coordinate system ~.

The following proposition is a straightforward consequence of the nature of the
G-n1artingales; uniqueness of X in the set of G-valued integrable with respect to 03A6
martingales comes from the uniqueness of ~(X) in the set of d-dimensional integrable
martingales.

Proposition 2.2 If G is a Lie group satisfying hypothesis (h) then for all inte-
grccble F1-measurable G-valued random variable L there exists a unique integrable
G-martingale X with terminal value L; for all t E [0, 1], Xt i.s given by its coordi-

= 

Moreover note that if L is square integrable then X will be a square integrable
martingale.

2.3 Existence and uniqueness; case of a nilpotent Lie group

Let G a simply connected finite-dimensional nilpotent Lie group, then G can be
considered as a subspace of CL(I~~’), and 9 denotes its Lie algebra. Using [7] page
269 the exponential map exp is a regular application from 9 to G. Moreover, Engel’s
theorem ([7] page 169) gives the existence of a basis of R" such that any X E 9
is expressed by a matrix with zeros on and below the diagonal. So, the case to be
studied is this one of G the set of matrices expressed by a matrix with zeros below
the diagonal and 1 on the diagonal. The dimension of G and 9 in the set of (n x n)
matrices is ~’ 2 1 , that is to say the cardinal of A = {( i, j), 1  i  j  it).

A basis of G is done with (H03B1, 03B1 ~ A) where

(Ha)~ _ ~a(,Q),’d~ E A, Va E A,
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and a natural global coordinate system is associated:

03A603B1(x) = x03B1, ~x ~ G, ~03B1 ~ .

The set A is ordered by

a = (i, j)  ~ _ (k, l) if and only if j  l, or, if j = l, i > ~.

With such an order, the system (4) is a triangular system which coefficients are
described in the next lemma.

Lemma 2.3 For all x E G, a E A, the matrix _ ~(h~a(x)); a, ~3 E A~ of the
(-)-connection Christo ff el symbols can be expressed as a block-diagonal matrix, with
n - 1 blocks (T ~,(x))~, j = l, ~ ~ ~ , n - 1. The (I~~,(x))~ is a j-upper trigonal matrix
with coefficients being j - 2 degree polynoms, depending only on the x-elements

(~,1  ~  I ~).

Proof: We define n - 1 "blocks" in the indices set A as following:

A, = {(~’J + 1), - - - , ~(l~j+1)~~j=1,... ~n-l.

In the set of ~(~ - 1)/2 x n(n - we define a set of matrices 1~ with

zeros except in the diagonal blocks M1, ... , the size of being j and each
block matrix is with zeros below the diagonal and 1 on the diagonal. Such a set is

clearly a subgroup.
For all x E G, we denote as the matrix defined by a E A, ~ E

A}. This matrix satisfies = 0 if a > (3 and = 1 if a = (3. Such
a matrix belongs to the subgroup D defined above. We remark that the j-th
block is the restriction of transposed matrix x to R’ denoted as so that

= x~. .

Obviously, (H(x)-1)j = (H(x)j)-1 and its elements are (j - 1)-degree polynoms
with respect to  i  k  j). Actually the degree of those polynoms is less
or equal to j - 2, except for the coefficient in the upper-right corner which is j - 1.

Now, let E D for .1 E A, the derivative of ~l(x). For a = (a, b)
with 1  c~  b  j, the j-th block of this matrix is given by:

- (6>

Then we apply lemma 1.2

ra.(x) _ -(~(x))-1 x 
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This equation lives in the set D, so we can solve it for each block, Vj = l, ~ ~ ~ , n -1:

= -(~(x)j)-1 x 

Note that the coefficients of the j-th block are polynoms, with respect to
( xik,1  i  k  j ). The degree of all of them is less or equal to j - 2, even for
the coefficients in the first line (computing them involves the ( j - 1 )-degree poly-
nom situated in the upper-right corner of (H(x)j)-1, but the last line of D03BBH(x)j

vanishes). This proves the lemma. D

Remark that we can express (FB (~))-~ more precisely. Using multiplication matrix
rules, yields:

0393(i,j+1)(a,b)(l,j+1)(x)= -(H(x)j)-1l,k03B4k,i(b,a)= -(xj)-1l,b 03B4i(a),

so these terms are usually 0 except

r(a,~+1) (x) - -(~j)b,i ,(I,b)(I,j+1) " ~ >

for all 1  z  6  /  j.

Once the Christoffel symbols of the (-)-connection has been computed, the struc-
ture of the G-martingales is known and the prescribed terminal value problem can
be solved.

Note that in our next theorem, neither is the group G a compact manifold (as
in [3] or [11]), n’or are the processes required to stay in a compact convex subset of
G (as in [2]). Moreover an effective construction of the solution is given.

Theorem 2.4 Let G be a simply connected nilpotent Lie group equipped with nat-
ural coordinate system ~ and suppose the dimension of G is n 2 1 . . For any L E

1L~-1 (~, G), there exists a unique integrable martingale X taking its values in G
such that Xi = L.

More precisely, the coordinates of X can be computed recursively by

Proof: We work with the (-)-connection and, using lemma 1.5, we have to solve the
BSDE:

Vi E ~, X~ + 1 r~r a,Q (X).(~’a, ~j~~ E N(, Xl = L.



253

For the first block, the one-dimensional equation is:

M. X1,2 == L1,2
~ 0 aQ S , S , 1 

~ 

.

But is identically 0, and so Xlt2 is uniquely defined by:

= ]

We suppose all elements of vector X are known up to (j - l)-th block and solve
the j-th block: for i = j, j - 1,..., 2,1,

+ 1 ~ r(i,~+1) (XS )S E ~ ; ~ = 

~ ~0 (i,b)(I,j+I) S ’ S ’ 1 ’

the sum running over the set of indices {(b, l); 1  i  b  l  j~. So lemma 2.3
proves that this system is solvable recursively from i = j to i = 1. D

Let us mention that the computation in the previous proof makes the martingale
solution X square integrable as soon as the terminal value L is 2(n - 1)-integrable.

3 BSDE

Let G’ be a finite dimensional Lie group, Q its associated Lie algebra and k an integer.
We denote by G) the space of all linear maps from Rk to G and by 
the canonical basis of 

The aim of this section is to solve in the two cases, nilpotent Lie group or
hypothesis (r), the BSDE:

Xi = ~; ; dXt = Xt o (F(t, Xt, Zt)dt + Zt dWt) (7)

where

~ 0  t  1 ) is a k-dimensional Brownian motion,

~ (,~’t; 0  t  I) is its natural filtration,

~ ç is a ,~’1-adapted G-valued random variable,

~ F : n x [0,1] x G x ,C(I~~, ~) -~ 6 is 0  t  1)-progressively measurable.
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By a solution of (7) we mean a pair (X, Z) of square integrable (with respect
to some global coordinate system 03A6) (Ft)t-adapted processes with values in G x
,C(I~~, ~) such that: V f E C°°(G)

f(03BE) = f(Xt) + 1t((s,Xs,Zs).f)(Xs)ds + 1t(Zs(ej).f)(Xs) o dWjs .

If 03A6 is any global coordinate mapping, solving (7) is equivalent to solving in Rd,

identifying any x E G with y = 

Y1 = 03A6(03BE) = 03A6(Yt) + 1t((s, Ys,Zs).03A6)(Ys)ds + 1t(Zs(ej).03A6)(Ys) dWjs. (8)

This equation is not a standard one; the standard assumptions are not satisfied
(see for instance Pardoux and Peng [9]) as uniform Lipschitz properties, because of
the multiplicative form of the coefficients. Nevertheless, we follow the proof scheme
of [9].

The first step consists in taking the drift term F identically zero. Via the classical
martingale representation property and proposition 1.9, equation (7) is solved by
finding a G-martingale X with terminal value ~; this has been treated in previous
section, proposition 2.2 and theorem 2.4. The following subsections are devoted to
BSDE with non-vanishing drift term.

3.1 BSDE with drift depending only on time: existence and
uniqueness.

Proposition 3.1 Let ~ a ,~’1-adapted random variable taking its values in a Lie

group CT and f an ,~’-adapted bounded process taking its values i~i the Lie algebra ~. .
Assume that ç satisfies the following property ;

the G-valued random variable L defined by L = ~ (El( f~ fsds) )-1 is such that
there exists a unique square integrable G-martingale X with terminal value L.

Then the BSDE

(9)

admits a unique solution (Y, Z).

Remark: The assumption is satisfied, for example, if G is a n 2 1} -dimensional
nilpotent simply connected Lie group with natural coordinates ~ and L belongs
to ~~ n 1} (~, ,~’1; G) ; or if G satisfies (r) hypothesis relatively to some coordinate
system ~ and L belongs to G) (see section 2).
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Proof: The hypothesis implies the existence of a pair (Y’, Z’) of square integrable
processes such that

dY’t=Y’t o (Z’t dWt); Y’1 =L

Let now Zt = (~t(0 fsds)).Zt and Yt = Y’0~t(0 fSds + fo 
The proposition 1.10 yields Y = fo Ad(ES(N)) o where N =

fo As N has finite variation, the Stratonovich integral in the stochastic expo-
nential of Yt is actually an Ito integral and Y = ~t { fo Then

~ i - ~1 ~~ ZsdWs (N) )

_ Yi y(N) = L y( ~ fsds) _ ~
and (~’, Z) is a solution to (9).

To prove uniqueness, let (Y1, Z1) and (Y2, Z2) be two solutions of (9). Then:

= Yl = 0 fsds + 0 ZudWu),2 =1,2.
Using once more proposition 1.10 and the finite variation property of N,

~ o ~1 . dWs ~ - ~~ 
- ( ~ = L.

But, according to the hypothesis, there exists a unique G-martingale X such that
A’1 = L, that is to say their stochastic logarithms are equal:

~ = ~ ~ dI~ a.s.

The operator is invertible, so Z~ = Z2 and by the way, Yl = D

3.2 BSDE with bounded drift F: case of a (r)-group

We suppose now that G satisfies hypothesis (h) and that the drift F satisfies, rela-
tively to the map 03A6 of hypothesis (I‘), the following uniform Lipschitz property:

9’ E G, dX, X’ E E ~0,1J :

~(F~~~~ 9~ X )~~~{9) - (F(s~9’~ X’).~)(9’)~  C~~{~’~)(9) - (X’~)(9~)~~ (10)
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where

!!(~)(~)-(~)(~)~= ~ I (X(e~)~~)(9) - (X’(ej)v)(9 )~2.

Notice that this hypothesis replaces [9] (3.2.ii) when solving equation (1.1) from
[9]. In the following, the mention integrable for a G-valued random variable or
semimartingale X will refer to 

Let ( E lL~(5~,,~’1; G). Define recursively the sequence of processes ( ~’n, 
taking their values in G x ~):

; ~ = 0.
= Xt +10 (F(t, Xt , Znt)dt + s Xn+11 = 03BE. (11)

With the hypothesis that F is uniformly bounded, we put for all n ~ 0:

)
and following the previous section 3.1, for all n 2: 1, Zg) exists since
Ln-1 = ~ (~1( fo fs -lds))-1 E 1L~(5~,.~’1; G) and proposition 3.1 works for a (r)-group.

Proposition 3.2 Assume the Lie group G satisfies the hypothesis (h) with coordi-
nates 03A6 and that the drift F is uniformly bounded and satisfies (10). Then, for every
ç E L203A6(03A9, F1; G), equation (7) admits one and only one solution. It is obtained a.s
the limit i7z x [0,1]) of the sequence defined by ~11~, and also as the almost
sure limit of a subsequence of ~1~~.

Remark: Actually the assumption on the uniform boundness of F can be omitted if
one only wants a uniqueness result for equation (7). This will appear in the following
proof.

Proof

Uniqueness: Assume there exist two solutions (X 2, i = 1, 2, of equation (7).
Itô formula yields, for i = 1,2:

03A6(Xit) + 1t(Zs(ej).03A6)(Xis) o dWjs = 03A6(03BE) - 1t((s,Xis,Zis).03A6)(Xis)ds.

Remember that hypothesis (0393) implies that Hess(03A6) = 0, so (lemma 1.8) the
Stratonovich stochastic integral above is only a Ito stochastic integral. Using Pardoux-
Peng’s proof principle [9], we compute the expectation of the square difference be-
tween both solutions:

+ 

- ~~ff tl (F(s~ ~’s ~ zs )~~(Xs ) - F(s? Xs ~ zs )~~( ~s ))~(~(~’s ) - ~(~’s )~~Sl. "
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A majorant of this last term (as a double product) is, using hypothesis (10):

1 x I

 + 2C211~(Xs ) - ~(Xs S) 12.

So, one ha,s:

+ 1 1 
~ 2C2 1t E[~03A6(X1s)-03A6(X2s)~2ds].

Gronwall lemma concludes that 03A6(X1t) - 03A6(X2t) = 0, dt ® dIP almost surely, that
is to say X1 = X2. Moreover, equaling the martingale part of both stochastic log-
arithms ,C(X1) and ,C(X2) gives fo Zs dWS = fo Zs dWs, dt ® dIP almost surely.
Hence Z~ = Z2 and thus the uniqueness is proved.

Existence: Ito formula yields, for any element of the sequence:

03A6(Xnt)+ 1t (Zns(ej).03A6)(Xns) dWjs = 03A6(03BE)- 1t ((s, Xn-1s, Zn-1s).03A6)(Xn-1s)ds.

Following the same arguments as for uniqueness to compute the expectation of the
square difference between two elements of the sequence, we get:

+ II(zs ~~)(Xs ) - (z~~~)(~’s 1)112dsJ
~ 2C2 1t E[~03A6(Xns)-03A6(Xn-s)~2ds]

+ 1 2 1t E[~(Zn-1s.03A6)(Xn-1s)-(Zn-2s.03A6)(Xn-2s)~2ds] .

Let un(t) = 11 E[~ 03A6(Xn2) - 03A6(Xn-1s) ~2ds] and

vn(t) ) = (I(Zs .~)(Xs ) _ (Z~.~)(Xs-1) 2dsJ. We summarize the inequality
above with:

-u’n(t) + vn(t) ~ 2C2un(t) + 1 2vn-1(t), ~t ~ [0, 1],

which is equivalent to

Vt E L~~ 1J,

Integrating this inequality between t and 1, we get:

un(t) + 1t e2C2(s-t)vn(s)ds ~ 1 2 1t e2C2(s-t)vn-1(s)ds.
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Taking t = 0, recursively get

1t e2C2(s-t)vn(s)ds ~ K(1 2)n where K = 2 10 e2C2(s)v1(s)ds.
Moreover, un(0) is less than the sum, so un(0) ~ K(1 2)n. Hence 03A3n un(0) is a
convergent series; in particular, the Cauchy difference

n

~03A6(Xn)-03A6(Xp)~L2(03A9 [0,1] ~ 03A3 ui(0)B 

goes to 0 when n and p go to infinity: so converges in IL2(~ x ~0, l~; to a

process I’, and so X n converges in x [0,1]; G) to = X. .

Similarly, the sequence of processes admits a limit in x

~~~ l~; denoted as U. So, there exists a subsequence con-

verging almost surely to (X, U). We use the fact that Vn, is a process taking
its values in (?: it is a linear combination of basis of ~: - 

and for the subsequence (nk) and almost surely on H x [0,1], -

This sequence converges almost surely to U; the matrices
are invertible and the application is continuous; thus,

1

and converges almost surely to ) denoted as Z. So, the subsequence
converges almost surely in S~ x (0, l~ to (X, Z). Finally we check that

(X, Z) is a solution to (7). 0

Acknowledgement : The authors are indebted to the anonymous referee for point-
ing out some significant errors in the first versions of the paper.
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