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GENERICITY IN DETERMINISTIC
AND STOCHASTIC DIFFERENTIAL EQUATIONS

J.J. Alibert* and K. Bahlali**

ABSTRACT. We prove that the convergence of the approximation with time delay, as
well as pathwise uniqueness, are generic properties in ordinary differential equations as
well as in stochastic differential equations. This is done in the case where the coefficients
are neither bounded nor time continuous. The approximation with time delay is used
to obtain existence of weak solutions for SDE. We also prove L2-convergence of this
approximation when only pathwise uniqueness is assumed.

KEY WORDS. Approximation with time delay, generic property, pathwise uniqness,
strong and weak solution.

Introduction.

Let (E, d) be a complete metric space and F c E. The subset F is said to be
meager (or of first category of Baire), if it is contained in a countable union of closed
nowhere dense subsets of E. The complement of a meager set is called a residual set

(or a set of second category of Baire). Let (P) be a property which is satisfied by
some elements of E. (P) is said to be generic if the set F :== {x E E : x satisfies (~)}
is residual. In this case property (P) is said to hold almost surely in the Baire sense.
For more details about the categories of sets see e.g [Ox]. In many situations it is not
possible to give a complete characterization of the subset F. Then arises the problem
to find, for instance, the category of F. Is it of first category or of second? This

question is usually studied in the theory of ordinary differential equations (ODE
in short), as well as, in stochastic differential equations (SDE in short), ergodic
theory, spectral theory of operators, fixed point theorems, points of derivability of
continuous functions, etc... (see e.g. [0, H, R, LY, VI, V2, DMl, DM2, DM3, Ku,
S2, Z, He, Si, BM01, BM02]).
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In the present paper we discuss genericity of pathwise uniqueness and strong
existence (via approximation) of the solutions of ODE and SDE, as well as the
relations between pathwise uniqueness and convergence of approximation with time

delay. The part of our results which concerns genericity is closely related to those
of [0, Ox, LY, DM1, DM2, DM3, S2, H, BMOl, BM02], and improves on them.
While the approximation part is related to those of [KN, EO, MB]. The equations
under consideration are the following:

(Ef) Xf(t) = 0 (t ~ 0) and Xf(t) = t0 f(s,Xf(s))ds (t > 0)

and

(E03C3) X03C3 (t) = 0 (t  0) and X03C3 (t) = t0 03C3(s, X03C3 (s))dB(s) (t > 0)

where f and a are measurable in t for all x E IRd, continuous in x for almost all
16IR+.

Genericity property (or prevalence) seems to be first studied in [0] for ODE.
This study has been extended in [LY] and in [DM2] to ODE assuming values in an
infinite dimensional Banach space. In SDE, the notion of genericity is used in (S2~ to
study the dependance on a parameter of solutions. The probabilistic method given
in [S2] seems not to be related to those of deterministic equations. The genericity of
strong existence and uniqueness of the solution of equation (Ea) has been discussed
in [He] by adapting an idea used in [LY], and, in [BM01] by adapting the method
used in [DM2]. In the genericity of convergence of Picard’s approximation
as well as of Euler’s approximation are studied also. In all the above papers, it is
assumed that the coefficients f and/or 03C3 are continuous with respect to their two
arguments and uniformly bounded. In [He], the continuity of the coefficients is not
assumed, in return the diffusion coefficient a must be non degenerate.

Here the continuity in the arguments as well as the uniform boundness of the
coefficients will be dropped. Only measurability with respect to the time variable
and continuity with respect to the space variable will be imposed on the coefficients.
For example, the coefficient f(t, x) = is not allowed in [LY, DM] and the
coefficient ~) = t-1~4~ is not allowed in ~52, He, BMOl, BM02]. Our result
covers this example. In our situation, the difficulties stay first in the fact that the
coefficients are neither uniformly bounded nor continuous and next in the choice of
a convenient space of coefficients in which the subset of locally Lipshitz functions is
dense.

In the first part of the paper, we prove that convergence of the approximations
with time delay as well as pathwise uniqueness are generic properties in both ODE
and SDE. In the second part, we deal with existence of (weak) solution as well as
the relation between pathwise uniqueness and L2-approximation of the solutions of
SDE. We show that pathwise uniqueness implies the L2-convergence of the time
delayed processes to the solution of (E°). This is done by using a method closely
related to that introduced in [KN], where similar result on Euler’s approximation
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is stated. Other results about approximation and stability are given in [KY, GK,
BM02].

The paper is organized as follows. In section 1, we prove that, for an appropriate
metric, the set of functions which are measurable in t and locally Lipschitz in ~
is dense in the set of functions which are measurable in t and continuous in x. In
section 2, we prove that for ODE convergence of the approximations with time delay
is generic. A similar result is stated in section 3 for SDE. In section 4, weak existence
for SDE is proved. It is also established that pathwise uniqueness of the solution
of (EQ) implies L2-convergence of the delayed processes to the unique solution of
(E~). As a consequence we give a simple proof of the Yamada-Watanabe theorem
about the relation between pathwise uniqueness and strong existence of solutions.

I. Approximation by Lipschitz functions.

For 1  q  oo, we denote by the set of functions f = f (t, x)
from IR+ x IRd into IR which are measurable in t for each x E continuous in x

for almost every t E IR+ and such that the function

sup ~
xEIRd

belongs to the Lebesgue space For M > 0 we set,

K[f,M](t) := sup{|f(t,y) - f (t,x)| |y - x| : |x| ~ M |h| ~ M x ~ y}
where [ . denotes the Euclidean norm.

Lemma 1. . Let f E with 1  q  oo. For each 6; > 0 there exists

f~ E such that K[fe,M] E for every M > 0 and

~0Nq0[f-f~](t)dt  ~.

Proof. Without loss of generality, we assume f > 0. Let (pn : n E IN*} be a locally
finite partition of unity in IRd. Given any k > 0 we set

f(n)k(t,x) := inf {03C6n(y)f(t,y) + k|y - x| } 

Since f is measurable in t, continuous in y, the function is measurable in t.

The fact that y --~ pn(y) f (t, y) is bounded continuous implies that satisfies

a Lipschitz condition in x with constant k and limkioo = cpn (x) f (t, x) for
every x and almost every t. Since is nondecreasing in k and is compactly
supported, we deduce from the inequality 0  f ~n~  pn f and the Dini theorem
that

lim N0[03C6nf - f(n)k] (t) = 0

for almost every t > 0. Let c > 0 be fixed. Since 0  fkn)]  and
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follows from the dominated convergence theorem that for each

p ~ IN* there exists k (n, p) > 0 such that

/’" 2~[~/-/~](~~~ where C,=(~2~Y ’
and Cq = 1 if q = 1. We define fe on IR+ x IRd by

ao

if 

~=1 

Let us prove that ~ for every M > 0. Since the partition is

locally finite, for each M > 0 there exists n(M) ~ IN* (not depending on p) such
that

n(M)
if >

7t=l 

where is the closed ball in IRd with radius M. Then we have
.

|f~(t,y) - f~(t,x)| ~ (k(n,p))|y-x| if (t,x,y) ~ [p-1,p) BM  BM .

This implies that  k(n,i) : 1 ~ i ~ p} for every p ~ IN*
and t ~ [0,p). Hence 6 The fact that fe ~ 
follows from the inequality 0  /c  f. Now we use the Holder inequality to get

~0 Nq0[f - f~](t)dt = p-1Nq0[(03C6nf - f(n)k(n,p))](t)dt
~ pp-1( N0 [03C6nf - f(n)k(n,p) ](t) )

q

dt

~ Cq 03A3 03A3 pp-1 2nqNq0[03C6nf - f(n)k(n,p)] (t)dt
00 00 

Lemma 1 is proved. D
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For 1  q  oo we denote by C~ the set of functions f =
f (t, x), defined on IR,+  IRd with values in which are measurable in t for each
x E continuous in x for almost every t E and such that the function

Nl t := x) 
xEIRd 1 + ~~

belongs to the Lebesgue space Endowed with the metric

03C11(f,g) = 1 2k(k0Nq1[g-f](t)dt)1/q 1 + (k0Nq1[g-f](t)dt)1/q

the space is a complete metric space. A sequence ( f n) con-
verges to some f in if and only if limn~~ f I Nq1[fn - =

0 for every bounded interval I of Our space of locally Lipschitz functions is
defined as follows.

{f E f ~ E for every M > 0}.

Corollary 2. If 1 ::; q  00 then Liploc,q is a dense subset of Lqloc (IR+; Cl (IRd; IRd)).

Proof. Let f e and g(t,x) :_ (f(t,x) - + 

By Lemma 1 there exists a sequence (gn) in such that

K[gn, M] E for every M > 0 and limn~~ IR + Nq0[gn - g](t)dt = 0. Let us
define

fn(t, x) ~= ~) + (1 + x) - 0)l’
Clearly f n E and for almost every t and every x we have

’~~~~~’ ~ 9( ~ )I ~~~ ’ ~~~

Hence - f ~ (t)  2No[gn - g](t) which implies that fn converges to f with
respect to the metric pi. For almost every t and every x, y E BM we have

(1 + y) - x) I + y) - o) I. .

Hence K~ fn, M~  (1 + which implies that fn E . m

Remark 2. The interest of Lemma 1 and Corollary 2 lies in the fact that the
approximation is uniform in IRd with respect to the space variable and not only
uniform on each compact set of IRd.
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Proposition 3. If1 ::; q  00 then Liploc,q is meager in .

Proof. For each integer p we set

~ - f E ,1~ (t)  p for a.e. t E ~0,1~ .
Clearly ,Cp is a closed subset of and Liploc,q C Up Lqp. De-

fine cp(t, x) _ (1/ ~x~)x if x ~ 0 and cp(t, o) = 0. For every f E ,C~ the func-
tion f n := f - (1/n)cp satisfies fn E , fn ~ Lqp and f n con-
verges to f with respect to the metric pi. Hence ,Cp is a nowhere dense subset of

Lqloc (IR+ ; Cl(IRd;IRd)). Proposition 3 is proved. 0

II. Some properties of approximation with delay in ODE.

Given f E we denote by the collection defined

by

(Efr) Xfr (t) = 0 (t  0) and Xfr(t) = / f(s, Xfr - r))ds (t > 0).

As easily seen, xl is an absolutely continuous function on every bounded interval of
IR,, i.e. xl belongs to the usual Sobolev space (JR; Therefore, notions such
as "compactness" and "convergence" are to be understood in the sense of the strong
topology of Recall that this topology is metrizable and a sequence
(Xn ) converges to some X in (IR; IRd) if and only if

lim sup = 0 and lim = 0,

for every bounded interval I of IR.

Lemma 4. (compactness) If f E then for every t E IR+

(1) 1 + sup ~Xr (~) ~ - exp / Jo

and {Xr : r > 0} is a relatively compact subset 

Proof. Let t ~ 0. Since

1 + ~ ~ 1 + Nl ~f ~ (s) (1 + sup 
o 

inequality (1) is obtained by using Gronwall’s lemma. We shall prove that the
collection is relatively compact with respect to the strong topology of
C ( ~0, T]; IRd) for every T > 0. Let T > 0 be fixed. Thanks to ( 1 ) and Ascoli’s
theorem, we just have to prove that the collection {Xr is equicontinuous. If
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0 ~ t1  t2 ~ T then

~Xr (t2) - ~ / t~ + r)I )ds  C 
tl tl

where the constant C = C(f,T) is given by C := exp T0 N1[f](s)ds. Since C does
not depends on tl, t2 and Nl ~ f ~ E L1 [0, T~, equicontinuity follows. We finally prove
that the collection ~Xr is relatively compact with respect to the strong topology
of (IR; Let (rn) be a sequence of positive real numbers. Using a diagonal
process, we deduce from the first part of the proof that there exists a subsequence
(r’n) and (r, X) ) E [0,~] x C (IR; IRd) such that:

lim rn = r and lim ( sup (t) - = 0
nioo nioo tEI n ’

for every bounded interval I in ffi. If r = oo then (Xr ) clearly converges in
(IR; to the function X defined by: 

n

X(t) = 0 (t  0) and X(t) = f(s, 0)ds (t > 0). 
~ 
~

If 0  r  oo then limn~~ f (t, Xr = f (t, X (t-r)) for almost every t E IR+.
Therefore inequality (1) and dominated convergence theorem imply together that
(Xr ) converges in (IR; IRd) to X and

0X(t) = 0 (t ~ 0) and X(t) = t0 f (s, X(s - r))ds (t > 0).

The proof is complete. D

Part (a) of Proposition 5 is immediately deduced from the above proof.

Proposition 5. . Let f E L1loc (IR+; . Then the following two properties
hold

- (a)- for every sequence (rn) of positive numbers converging to 0, there exists a

subsequence (r’n) and X E IRd) such that (Xr ) converges in IRd)
to some X which is a solution of (Ef ). 

’~

- (b)- If moreover the solution of (Ef ) is unique then Xr converges to this solution
in (1R; as r tends to 0.

Proof. Let (rn) ) be any sequence of positive real numbers converging to 0. By
Lemma 4, is a relatively compact subset of By (a) every
converging subsequence (Xr ) converges to the solution of (Ef ), which proves (b).
D 

"
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Some continuity property with respect to f of the set of solutions of (Ef) is

stated in Proposition 6 below. This property will be used in the proof of Theorem

7. We also give a direct proof of some continuity of the mapping f --~ Xr . For

f E we use the following notation
t

Rl ~ f J (t) := exp / Nl ~ f J (s)ds.
Recall that by Lemma 4 we have 1 + sup |Xfr (u)| ~ R1[f J (t) for every t > 0

0ut 
~ 

Lemma 6. If g E Liploc,1 then Equation (Eg) admits a unique solution Xo E

(IR; IR,d ) . . Moreover, for each t, s > 0, there exists ~ > 0 satisfying;

|X(u) - Xg0 (u)| ~ and sup ( sup |Xfr (u) - Xgr(u) |)  e

for every ( f , X ) E (1R+; Cl(IRd;IRd)) x such that X is solution of

(Ef ) and f o Nl ~ f - 9J (S)ds  b.

Proof. Existence of a solution was stated in Proposition 5 and uniqueness follows

from Gronwall’s Lemma. For f E r > 0 and t > 0, we set

t

i (t) := / I f (s, Xr (s - r)) - g (s, Xr (S - r)) I ds
and 

t

(t) := I9 (s~ Xr (s - r)) - 9~s~ X g(S - r)~ ~ ds0
Since R1 ~ f J (t)  Rl ~gJ (t)Rl ~ f - gJ (t), Lemma 4 implies that

t

(2) ~~1~ (t)  Rl [9J (t)R1 ~f - 9J (t) / Nl ~f - 9J (s) ds
Since max{ 1 + sup |Xr (u) (,1 + sup |Xg (u)|}  Rl [g] (t) Rl ( f - gJ (t) we also have

o~t 

t

(3) I(2)r (t) _ / (K[g, R[g] (t)R1 g](t)] (s) Xr (u) - X g (u) I ) ds
0 ouS

Let t, E > 0 be fixed. Since ~Xr (u) - Xg (u) ~  (t) + (t) for every u E ~0, tJ, ,
we deduce from (2), (3) and Gronwall’s Lemma that there exists bl > 0 satisfying:

sup sup ~Xr (u) - X g (~) (  e

r>0 0ut )
for every f E (j~,d; ~d)) such that f o Nl ~ f - gJ (s)ds  ~1. Replacing

Xr by a solution X of (Ef ) and X 9 by Xo in the above proof, we deduce that there
exists b2 > 0 satisfying:

sup ~X (~c) - Xo (u) (  ~

0ut

for every ( f , X ) E L1loc (IR+ ; Cl(IRd;IRd)) X (IR; IRd) such that X is a solution
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of (Ef ) and fo N1[f - g](s)ds  b2. The proof is complete. m

Remark 6. With minor modifications of the above proof, a stronger result can
be stated, i.e. if g e be such that K[g, M] E 
for every M > 0 and ( fn) be a sequence in converging to
g with respect to the metric p1 then converges (uniformly in r) to X g in

However, we only need the version stated in Lemma 6.

The main result of the present section is the following.

Theorem 7. -(a)- Let ~o be the set of functions f E 
such that the solution (Xf ) of equation (Er ) is unique. Then ~o is residual in

.

- (b)- Let ~o be the set of functions f E such that (Xr )
converges (to some X satisfying (Ef )) in as r tends to 0. Then ~o is
residual in (1R+; Cl (IRd; IRd)). 
Proof. By Lemma 6, for each integers n, k > 1 and g E there

exists ~(n, k, g) > 0 satisfying:  1~k for every (t, I, X) E

(-oo, n~ x x such that X is a solution of

(Ef) and fo N1[f - g](s)ds  03B4(n, k, g). We consider the following subset of

L1loc (IR+ ; Cl(IRd; IRd )):

I U .

Corollary 2 implies that 6 is a G03B4 dense subset of (IR+; Cl If f ~ 
and X, Y are two solutions of (Ef) then for every positive integers n, l~, there
exists gn,k E Liploc,1 such that (t)I + ly(t) - (t)]  2/k where

denotes the solution of (E9~ ~ k ) . This implies that Y (t) ~  ~ for every
integer k > 1 and t E (-oo, r~~, then X = Y. Thus G c ~o then ~o is residual. To
prove that ~o is residual, it is enough to show that ~o C which is the statement

of Proposition 5-(b). Theorem 7 is proved. D

Remark 7. The fact that ~o is residual can be proved without using the fact that
To do this, redefine the set 9 with ~(n, k, g) > 0 satisfying:

sup ( sup|Xfr(u) - Xgr(u)|)  1 kr>0 

for every f E such that fa g](s)ds  b(n, k, g).
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III. Some properties of approximation with delay in SDE.

Let (0, .~, P) be a probability space endowed with a filtration satisfying the
usual conditions and B be an IRm-valued Brownian motion defined on it. We denote

by JRdxm the space of d x m matrices. For each function a = a (t, x) from IR+ x IRd
to JRdxm we denote by

N2[03C3](t) := sup |03C3(t,x)| 1 + |x|2 and R2[03C3](t) := exp t0 N21[03C3](s)ds.
We write 03C3 E when a is measurable in t for all x E IRd,
continuous in x for almost all t E IR+ and such that N2 ~~~ E Given some

a E we denote by the family of d-dimensional

continuous processes defined by

(E03C3r) X03C3r(t) = 0 (t  0) and X03C3r(t) = t003C3(s,X03C3r(s - r))dB(s) (t ~ 0).

Thanks to the fact that N2[a] E and  NZ~o~~(t)(1 + the

family of delayed processes X~, introduced in (E~), is well defined for any t. For

instance, it may be constructed recursively on [0, r~, ~r, 2r~, [2r, 3r~...

Lemma 8. -(a)- For any p E [1, oo[ there exists a positive constant C(p) such that

(4) 1 + E / sup  / R2MM B~/ B /
for every 7 E r ~ 0 and t > 0.

- (b)- Assertion (a) remains true when X~ is replaced by any solution of equation
(E°). .

Proof. We use Ito’s formula and Fubini theorem to get

E (|X03C3r (t) | ~2p) ~ E ( t0 
p(2p 

- 
1) |X03C3r (s) |2p-2 |03C3(s, X03C3r (s - r) )|2ds)

~ p(2p -1) t0N22[03C3](s)E(|X03C3r(s)|2p-2(1 + |X03C3r(s - r)|2))ds

~ 2p(2p -1) tN22[03C3](s)E(1 + sup |X03C3r(u)|2p)ds~0 B 0us /
Since E( sup we conclude that there exists

a positive constant C(p) (which doesn’t depend on (~, r, t) ) such that

sup  / 1 + E sup / o B //

Now, Gronwall’s lemma and Fatou’s lemma give inequality (4). The proof of part
(b) is similar. Q
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Let us specify the metric spaces under consideration in the study of generic
properties. For each t > 0 let be the a-field generated by {B(s) : : 0  s 
t} completed with the P-null sets of H. We denote by ~2 the set of IRd-valued
processes X defined on IR+ x H which are FBt-adapted, continuous and such that
E ( sup  oo for every t > 0. We set

d2(X1,X2) = 1 2n {E(sup | X1(s) - X2(s) |2)}1/2 1 + {E( sup |X1(s) - X2(s)|2)}1/2
l Jn

and

p2 (~1 ~ ~2 ) - _ ~ ~ n 1 l JO ( - 1~2 1 2 ’~ 

n=12 1 + 

The space E2 (resp. (IR+; endowed with the metric d2 (resp.
p2 ) is a complete metric space. Our space of locally Lipschitz functions is defined
as follows.

{a E K[a,M] E for every M > 0~.

where M] is defined as in section 1. The following result will be used in the
proof of Theorem 11. .

Lemma 9. The following properties hold.
- (a)- Let a E and X E E2. . If there exists a sequence (rn)
converging to 0 such that (X~ ) converges to X in (~2, d2) then X is a solution of
( Ea) .
- (b)- Ifa E Liploc,2 then the mapping r --j X03C3r from (0, oo) into (~2, d2 ), is uniformly
continuous and for every sequence (rn) converging to 0 the sequence (X ~ ) converges
in (~2, d2) to the unique solution of (Ea).
Proof. Assertion (a) is proved by showing that

lim E(|t003C3(s,X03C3rn(s - rn))dB(s) - t003C3(s,X(s))dB(s)|2) =0.

By Corollary 2 there exists a sequence (ap) in Liploc,2 such that (ap) converges to
a with respect to the metric p2 . Let n, M and p be any positive integers. Let

62(t) ~= 1 + sup and 92,~,(t) ;=1 + sup (~c)~2~’ 
’ ~

e4(t) := 1 + sup and B4~n(t) :=1 + sup ’ 

0ut 
"
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We use Cauchy-Schwarz’ inequality and Chebyshev’s inequality to get,

E(|t003C3(s,Xrn(s - rn))dB(s) t0 03C3(s,X(s))dB(s)|2) ~
~ 4E t0|03C3p(s,X03C3rn(s - rn)) - 03C3p(s,X(s-rn))|2ds
+ 4E /’ X(5 - r.)) - 

4~~[~,M](~ sup 
7o B /

+ ~ ~2~M+~M~M+~M
sup 

7o B /

+ 16 M t0N22[03C3p](s)ds203B82(t) 203B84(t)
+4~~[7-~](~ sup EJ’1+~(~)~~0 B /

/0 B /

Hence, Fatou’s Lemma and Lemma 8(a) imply together that

E(|t0 03C3(s,Xrn(s - rn))dB(s) - t0 03C3(s, X(s))dB(s)|2) ~
~ 4 sup E(|X03C3rn(u) - X(u)|2) t0K2[03C3p,M](s)ds

B 
" 

/ ~0

+4 sup / 

+ 64 M (R2[03C3](t))
c(1)+c(2) 2

t0N22[03C3p](s)ds
+8 (R2[03C3](t))

c(1)

t0N22[03C3 - 03C3p](s)ds
where C(l) (resp. C(2)) is the constant of lemma 8 corresponding to p = 1 (resp.
p = 2). We now conclude by passing to the limit at oo successively on ?~, M and p.

Let us prove assertion (~). For arbitrarily positive constants r, r~ and M let
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T == T(r, r’, M) be defined by: r := inf{  ~ IR+ : 2 + |X03C3r( )|2 + |X03C3r’( )|2 > M2}.
Let us prove that 

(5) E(|X03C3r(t) - X03C3r(t ^ )|2) ~ 4 2 M(R2[03C3](t))c(1)+c(2) 2
By Cauchy-Schwarz’ inequality and Lemma 8 (a) we have

 {E(~() -~(~AT)~)}~{P(T  ~
~-{E( sup ~M~)}~{E(2+ sup !~(~+ sup ~(~)p)}~
~ 42 M(R2[03C3](t))c(1) + c(2) 2.

where C(l) (resp. C(2)) is the constant of lemma 8 corresponding to p = 1 (resp.
p=2).
We now prove that for each M > 0,

(6) ~Mh~]~):=E~sup~(~AT)-~(~AT)!~201420140 as !r’-H201420140Bo~n~ /
Let us denote 9[r~](~) := e [O~], !~ - a~  ~ - r~}. By
Doob’s inequality and lemma 8 we have

/ ~AT x

~M[r,r’](t) ~ 4E ( / K2[03C3,M](s)|X03C3r(s - r) - r’)|2ds)
8E ( t^0K2[03C3,M](s)|X03C3r(s - r) - X03C3r(s-r’)|ds)
+ 8E(

t^0 

K2 [03C3, M] (S) sup |X03C3r (U A T) - X03C3r’ (U A T) |2dS

~ 8(R2[03C3](t))C(1)03B8[r,r’](t)t0 K2[03C3,M](s)ds
~o

+8t0 K2[03C3,M](s)~M[r,r’](s)ds.

Since N22[03C3] and K2[M, 03C3] e L1loc(IR+) the proof of (6) is completed by using Gron-
wall’s lemma. We use Doob’s inequality, and (5) to get

/ B c(i)+c(2)

E( sup |X03C3r(u) - X03C3r’(u)|2) ~ 962 M (R2[03C3](t))c(1)+c(2) 2 + 12~M [r, r’] (t)

The fact that the mapping r ~ X03C3r is uniformly continuous is then a consequence
of (6). Since the space (~ ~2) is complete, there exists X~ ~ ~2 such that for each
sequence (r~) converging to 0, the sequence converges to X~ in (~2~2). We
deduce from Lemma 9 (a) that X~ is a solution of (E~). The fact that (E") admits
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at most one solution is an easy consequence of GronwalPs Lemma. D

We now state a continuity property of the mappings cr 2014~ 

Lemma 10. Let 03C3’ ~ Liploc,2 and be a sequence in L2loc(IR+;Cl(IRd;IRd m)).
Assume that (an ) converges to o-~ with respect to the metric /)2. . Then the lowing
two properties hold.

- (a)- the sequence converges to in (~2~2) uniformly in r,
- (&#x26;)- if Xn js an arbitrary solution of equation (E03C3n) and X03C3’ js the unique solution

of equation (E~’) then the sequence converges to X~ in (~2~2).

Proof. For positive numbers r, M and a function cr e we

define r = r(r, M, ~) by T := inf {~ e IR+ : 2 + + )X~~~)!’ > M’}. Using
the inequality ~[~(t)  (~[~K~~~ - ~l(~))~ and arguing as in the proof of
(5), we show that

E(!X~)-X~AT)~) ~ ~(~[~(~)R,[7-~]M)~~~.
Hence Doob’s inequality implies

E~ sup )X~(u)-X~(u)!~ ~B0ut /

~ ~2(~~](t)R,~ - /~))~+~ + 
where

SUp ~~(~AT)-X~(~AT)~). .
r>0 B0ttt /

Therefore Lemma 10(a) will be proved by showing that 2014~ 0 as

~~~~ 2014~ 0. It follows from Doob’s inequality and lemma 8 that

E( sup |X03C3r(u^) - X03C3’r(u ^ )|2) ~ /
~ 8 t0 E(|03C3(s,X03C3r(s - r)) - 03C3’(s,X03C3r(s - r)) |2)ds

+8E (t^0 |03C3’(s,X03C3r(s - r)) - 03C3’(s,X03C3’r(s - r))|2ds)
~ 8(R2[03C3’](t)R2[03C3 - 03C3’](t))2C(1)t0N22[03C3 - 03C3’](s)ds~0

+8~~[~,M](s)E~ sup 7o Bous /
The conclusion now follows from GronwalFs lemma. We omit the proof of Lemma

10(&#x26;) which is similar to the proof of Lemma 9(~). D

Remark 10. The conclusion of Lemma 10 is also true when the assumption cr~ 6
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is replaced by ~’ E and M~ E for
every M > 0. However we only need Lemma 10 as stated above.

The main result of the present section is the following.

Theorem 11. Let 92 be the set of those functions a in 
such that (X°) converges (to a solution of equation (E~)) in (~2, d2) as r tends to 0.
Let Q2 be the set of those functions a in for which (EO")
has a unique solution in (~2, d2).
- (a)- The set 92 is residual in 
- (b)- The set 92 is residual in ,

Proof. Lemma 10(a) implies that for each positive integers k and each a’ E Liploc,2,
there exists b(k, a’) > 0 satisfying: d2(X03C3r, X03C3’r)  1/k for every r > 0 and 03C3 E

such that p2 (~, a’ )  b ( k, a’). . Then by Corollary 2 the
set 9 defined by

~=D I ~ p2(~~ ~’)  b(~~ ~’) )
k 03C3’~Liploc,2

is a Ga dense subset of If a E ~ then for each positive

integer k there exists 03C3’k E Liploc,2 such that d2 (X03C3r, X03C3’kr)  for each r > 0. We
then have d2(X,X)  2/k + for every r, r’ > 0. Hence Lemma 9

implies that (X°) converges to some solution of (E~) in (~2, d2) as r 1 0. Therefore
9 C 92 which implies that ~2 is residual.

Let us prove that ~2 is residual. Lemma 10(b) implies that, for each positive integer
k and each a’ e there exists ~(l~, a’) > 0 satisfying: d2(X, Xo ~)  for

every (~, X ) E ~2 x EZ such that p2(~, a’)  ~(l~, a’) and X is a solution of 
(where X~’ denotes the unique solution of (E~ )). We consider the subset ~’ of
L2loc (IR+; Cl (IRd;IRd m)) defined by

U ~Q E ~2~ p2(Q~ ~’)  ~(~~ ~’)}
k 03B4’~Liploc,2

Clearly 9’ is residual in p2~. Let a E ~’ and Xi X2 be
two solutions of equation (E03C3). For each positive integer k there exists ak E Liploc,2
such that d2 (Xl, + d2 (X2  2/l~ where denotes the unique solution
of Hence Xi = X2.Therefore g’ C ~2 which implies that ~2 is residual. D

IV. Weak solution and L2-approximation.

Let us specify the terminology used in the present section. Let a be a function in
. We say that (E~ ) admits a weak solution if there exists

a filtered space (03A9,F,Ft, P), an Ft-Brownian motion B, a continuous Ft-adapted
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process X such that

X(t) 7(s, X(s))dB(s) P-almost surely.

for every t E IR+. In such a case, (B, X) is called a weak solution of (E~). We say
that pathwise uniqueness holds for (E~) if whenever (B, X) and (B, X) are any two
weak solutions of (EU) defined on the same filtered space then

B(t) = B(t) a.s. for every t E IR+ =~ X (t) = X (t) a.s. for every t E JR,+.

Before stating the main result of the present section, let us recall that the approx-
imation with time delay X~ depends on the filtered space (S~, ,~’, .Pt, P) and the
Ft-Brownian motion B under consideration.

Proposition 12. lfa E then (E~) admits a weak solu-
tion.

To prove Proposition 12 we need the following Lemma.

Lemma 13. Let (S~, ,~, J’t P) be a filtered space and B be an Ft-Brownian motion
defined on it. lfa E then (X~ ) is tight for every sequence
(rn) of positive numbers.

Proof of Lemma 13. Thanks to Lemma 8, it is sufficient to show that the sequence
of quadratic variations processes (X03C3rn>) is tight, that is for each T > 0 and ~ > 0

lim supp{ sup sup + b) - > s = 0.
tE(O,T] 

" " J
Let 0  h  1. We use Lemma 8 to get

E ( sup sup + ~) - (X~ ) (t) -~E (O,h] tE (O,T]
/ /-~+~ B

=E sup sup / 

~( sup t+03B4t N22[03C3](s)ds)E(1+ sup |X03C3n(u)|2)

~ (R2 [03C3] (T + 1)) C(1) sup t+03B4t N22 [03C3] (s)ds.
t

aE(O,h]

Since N2 ~~~ E the proof is completed by using Chebyshev’s inequality. ~

Proof of Proposition 12. Let (Q, .P, P) be a filtered space, B an J’t-Brownian mo-
tion defined on it and r > 0} the corresponding family of approximations with
time delay. Let (rn ) be a sequence of positive numbers such that rn J, 0. By Lemma
13 (t), X ~ (t - rn ), B(t)~ ?n is tight. Hence, Skorokhod’s representation theo-
rem ([F]) shows that there exist a probability space (H, J’, P), a sequence of stochas-
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tic processes and a stochastic process de-
fined on it such that:

(7) = (X~(~),X~(~-~),~)) in law for every ~

(8) there exists a subsequence (~) such that converges to

(X, X’ , B) uniformly on every finite time interval P-almost surely.
Let 37 (resp.J’t) be the (7-algebra s  ~ (resp. 7(X’(5),B(5); 5 ~
~)) completed with P-null sets. Hence (~(~),~) and are Brownian

motions and the processes (Xn), and (X), (X’) ) are adapted to and ~
respectively. Let us prove that (X,~) is a weak solution of (E~). We may assume
that (8) holds without extracting a subsequence of Property (7)
implies that,

(9) surely).

Since cr e Property (7), Doob’s inequality and Lemma
8 imply (~MM)~~_~)~[7](~. We use
Property (8) and Fatou’s lemma to get X~)~)  liming 

X~)~) =0. Hence
(10) X = X’ ( P-almost surely).

Taking account (9) and (10), it is sufiicient to show that

(11) lim t003C3(s,X’n(s))dBn(s) = t003C3(s,X’(s))dB(s) (in probability P).

Let (crp) be a sequence of valued functions, defined on IR+ x which
are globally Lipschitz in their two arguments and such that, for each M > 0 and

lim t0 sup |03C3p(s,x)-03C3(s,x)|2ds=0 and lim t0N22[03C3p](s)ds = t0N22[03C3](s)ds.
Let t and c be fixed positive numbers. We use triangular inequality to get,

(12) P{~ / / > ~}  ~ 0 ~
where

I1(n,p)=P{|t003C3(s,X’n(s))dBn(s)-t003C3p(s,X’n(ss))dBn(s)|>~ 3}
I2(n,p)=P{|t003C3p(s,X’n(s))dBn(s)-t003C3p(s,X’(s))dB(s)|>~ 3}

I3(n,p)=P{|t003C3p(s,X’(s))dB(s)-t003C3(2,X’(s))dB(s) |>~ 3}.
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Skorohod’s theorem ([Sl] page 32) shows that for each p,

(13) lim I2(n,p)=0

Let us prove that

(14) lim(supI1(n,p)) = 0.

Let M > 0 and set = {1 > M~} and =

Q B ~4~(~). For a given set E, let JYE denotes the indicator function of E. We suc-
cessively use Chebyshev’s inequality, Doob’s inequality, Cauchy-Schwarz ’ inequality,
again Chebyshev’s inequality, Property (7), and Lemma 8(a) to get

I1(n,p)=P{|t003C3p(s,X’n(s))dBn(s)-t003C3(s,X’n(s))dBn(s)|>~ 3}
~ 9Et |03C3p(s,X’n(s))- 03C3(s,X’n(s))|2ds2 c ~o 0 lap ( s, X n ( s)) - a ( s, X n ( S ) ) I ds

~ -~E /" )Tp(~~(.)) - r(~~~))!~~(,)~
+ 9 ~2E t0 |03C3p(s,X’n(s))- 03C3(s,X’n(s))|2~BMn(s)ds

~ 18 ~2(t0 N22[03C3](s)+N22[03C3p](s)ds)E( (1 + sup |X’n(u)|2)~AMn(s))
+9 ~2Et0 sup |03C3p(s,x)-03C3(s,x)|2~BMn(s)ds

~ 182 ~2M(R2[03C3](t)) C(1)+C(2) 2 ( t0N22[03C3](s)ds+ t0N22[03C3p](s)ds)
~ 

~ ~ (R2[a](t)) 
2 

o 
Ni [a] (s)ds o /

+ 9 ~2 t0 sup |03C3p(s,x)-03C3(s,x)|2ds.

Take the supremum over n, then pass to the limit, successively on p and M, to get
(14). The same arguments and Fatou’s lemma allow us to prove that

(15) lim (sup I3(n,p)) = 0

We now use (12), (13), (14) and (15) to get (11). Proposition 12 is proved. D
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Proposition 14. Let a E Cl(IRd; such that pathwise uniqueness
holds for equation (E03C3). Then for each filtered space (03A9,F,Ft, P) and each Ft-
Brownian motion B defined on it, there exists a continuous Ft-adapted process X
such that (B, X ) is a weak solution of (EU) and

limE~ sup X(s)~2 = 0
rio /

for every t E IR+. Moreover X is FBt-adapted.

Proof. Suppose that the conclusion of Proposition 14 is false. Then there exist
t > 0, 6 > 0 and two sequences rn 1 0 and rn 1 0 such that

(16) E sup ~ X ~ (u) - X ~ (u) ~ 2 > b" " /
for every n. By Lemma 13, (X03C3rn) and (X03C3r’n) are tight. Then Skorokhod’s rep-
resentation theorem shows that there exists a probability space (03A9,F, P), a se-
quence of stochastic processes (X n (t), X n (t), Zn (t), Zn (t), Bn (t) ~ and a process
(X (t), X’(t) , Z(t), Z’(t) , B(t)) defined on it such that

(17) = 

B(t)) in the sense of probability law,

(18) there exists a subsequence n’ such that (X n~ (t), Xn, (t), Zn~ (t), Z~, (t), Bn~ (t))
converges to (X (t), X~(t), Z(t), Z~(t), B(t)) uniformly on every finite time in-
terval P-a.s.

We argue as in the proof of proposition 12 to show that (B, X) and (B, X ) are two
weak solutions of (EU) then we use inequality (16) and property (17) to get

0  8  liminf E( sup (u) - X~ (U)12) = E( sup IX(u) - X~(u)~2). .

Since pathwise uniqueness holds, we get a contradiction. Since (X03C3r) is FBt-adapted,
so is X. . The fact that (X, B) satisfies (EU) is deduced from Lemma 9(a). D

Remark 14. The fact that pathwise uniqueness implies FBt-measurability of the
solution was first proved in [YW]. However the proof is rather complicated. A

simpler proof of this mesurability property was given in [KN]. Here, this result is
immediately deduced from the L2-convergence of the approximation with delay.

Remark 15. All the previous results remain true for stochastic differential equa-
tions with an arbitrary drift f E Cl(IRd;IRd)) and arbitrary initial data
in IRd. Only minor modifications are required in the proofs.

Acknowledgements. We are grateful to the reviewer for pointing out references.
We also wish to thank B.Mezerdi for various discussions on the subject.



239

References

[O] W. Orlicz, (1932), Zur Theorie der Differentialgleichung y’ = f(x, y), Bull.

Acad. Polon. Sci. ser. A, pp. 221-228.

[H] P. Halmos, (1944), In general a measure preserving transformation is mixing,
Ann. of Math., 45, pp. 786-792.

[R] V. Rohlin, (1948), A "general" measure preserving transformation is not mixing,
Dokl. Akad. Nauk. SSSR (N.S), 60, pp. 349-351.
[CL] E. Coddington, N. Levinson, (1955), Theory of ordinary differential equations,
McGraw-Hill, New-York.

[S1] A.V. Skorohod, (1965), Studies in the theory of random processes, Addison-
Wesley, Reading, Massachussetts.

[LL] V. Lakshmikantham and S. Leela, (1969), Differential and integral inequalities,
Academic press, New York.

[Ox] J. Oxtoby (1971), Mesure and Category, Springer, New-York.
[YW] T. Yamada, S. Watanabe, (1971). On the uniqueness of solutions of stochastic
differential equations, J. Math. Kyoto Univ. 11, 155-167.

[LY] A. Lasota, J.A. Yorke, (1973), The generic property of existence of solutions
of differential equations in Banach space, J. Diff. Eq., 13, pp.1-12.
[V1] G. Vidossich, (1974), Existence and uniqueness of fixed point of non linear
operators as a generic property, Bol. Soc. Brazil. Math. 5, pp. 17-29.

[V2] G. Vidossich, (1974), Most of the successive approximations do converge, J.

Math. Anal. Appl., Vol. 67, N2, pp. 437-451. 45, pp. 127-131.

[DM1]F.S. De Blasi, J. Myjack, (1977), Generic properties of hyperbolic partial
differential equations, J. London Math. Soc. 2, , 15, pp. 113-118.

[DM2] F.S. De Blasi, J. Myjack, (1978), Generic properties of differential equations
in Banach space, Bulletin de l’Académie polonaise des sciences, série des sciences
math., astr. et phys., Vol. XXVI, N 5, pp. 395-400.

[Ku] E. Kulbacka, (1978), Sur l’ensemble des points où existent les dérivées de tout
ordre, Bulletin de l’Académie polonaise des sciences, série des sciences math., astr.
et phys., Vol. XXVI, N 5, pp. 389-394.

[DM3] F.S. De Blasi, J. Myjack, (1979), Some generic properties of functional differ-
ential equations in Banach space, J. Math. Anal. Appl., Vol. 67, N2, pp. 437-451.
[S2] A.V. Skorohod, (1980), Stochastic differential equations dependence on a pa-
rameter, Theo. Probab. Appl., Vol. 25, N 4.

[Z] T. Zamfirescu, (1981), Most monotone functions are singular, Amer. Math.

Monthly, 88, pp. 47-49.

[IW] N. Ikeda, S. Watanabe, (1981), Stochastic differential equations and diffusion
processes, Amsterdam Oxford New York, North-Holland.

[KY] S. Kawabata, T. Yamada (1980/81), On some limits theorems for solutions of
stochastic differential equations, Séminaire de Probabilités XVI. Lect. Notes Math.,
920, Springer-Verlag, Berlin-Heidelberg.
[He] A.J. Heunis, (1986), On the prevalence of stochastic differential equations with
unique strong solutions. Ann. Probab, 14, pp. 653-662.



240

[KN] H. Kaneko, S. Nakao, (1988), A note on approximation for stochastic dif-
ferential equations, Séminaire de Probabilités XXII. Lect. Notes. Math. 1321,
pp.155-162, Berlin, Heidelberg: Springer.
[F] X. Fernique, (1988), Un modèle presque sûr pour la convergence en loi,
C.R.Acad.Sci. Paris, t. 306, Série I, p. 335-338.
[MB] E.A. Mohamed Salah, D. Bell, (1989), On the solution of stochastic ordinary
differentil equations via small delay, Stoch. Stoch. Reports, Vol. 28, 4, pp. 293-299.
[EO] M. Erraoui, Y. Ouknine, (1994), Approximation des équations différentielles
stochastiques par des équations à retard, Stoch. Stoch. Reports, Vol.46, pp.53-63.
[Si] B. Simon, (1995), Operators with singular continuous spectrum: I. General

operators, Ann. of Math., Vol 141, pp. 131-145.

[GK] I.Gyöngy, N.V. Krylov, (1996), Existence of strong solutions for Ito’s stochastic
equations via approximations, Prob. Theory Relat. Fields, 105, pp. 143-158.
[BMO1] K. Bahlali, B. Mezerdi, Y. Ouknine, (1996), Some generic properties of
stochastic differential equations, Stoch. Stoch. Reports. Vol.57, pp.235-245.
[BMO2] K. Bahlali, B. Mezerdi, Y. Ouknine, (1998), Pathwise uniqueness and ap-
proximations of stochastic differential Equations. Séminaire de Probabilités XXXII.
Lect. Notes Math.1686, pp. 166-187, Springer-Verlag, Berlin-Heidelberg.


