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Canonical Lift and Exit Law of the
Fundamental Diffusion Associated with a

Kleinian Group

N. ENRIQUEZ J. FRANCHI Y. LE JAN

Abstract

Let r be a geometrically finite Kleinian group, relative to the hy-
perbolic space H = and let 6 denote the Hausdorff dimension
of its limit set. Denote the eigenfunction of the hyperbolic
Laplacian A, associated with its first eigenvalue 2Ao == ~(b - d), and
by Z~ the associated diffusion on IH , whose generator :=

We give a simple construction of Z~ through its
canonical lift to the frame bundle that allows to determine di-
rectly its asymptotic behavior.

Keywords : diffusion process, hyperbolic space, Patterson measure.

AMS-classification 2000 : 60 J 60, 37 D 40, 58 J 65.

1 Introduction

Consider the hyperbolic space IH = endowed with some geometrically finite
Kleinian group F. The Hausdorff dimension 6 E (0, d~ of its limit set (see [P], 
or [Su2]) plays a fundamental role. When 6 is larger than d/2 , ~(~ - d) is the highest
eigenvalue of the Laplacian on a fundamental domain. The associated eigenstate ~
plays an important role in the study of the quotient F B H and of its geodesic flow.
The corresponding fundamental diffusion Z~ , which we call " 

~-diffusion", is then
also a natural object and tool in this framework : see [Sul], [E-F-LJ-I], [E-F-LJ-2].

Now 03A6 is classically represented as the mass of the celebrated Patterson measure,
and thus makes sense also when it is not square-integrable. So that the ~-diffusion

Z~ on 7?7 can naturally be considered for all values of J. It is ergodic on F B IH if
and only if b > d/2.

The aim of this article is to give a simple construction of Z~ , from which can
be immediately deduced the asymptotic behaviour of Z~ on 1H , that exhibits an
interesting dichotomy : whereas the almost sure limit point Z03A6~ E ~ IH has a singular
law when 03B4 > d/2, namely the normalized Patterson measure (which appears thus
as an harmonic measure), it happens to have an absolutely continuous (explicit) law
when b  d~2 . .
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We note however that this asymptotic behaviour of Z~ could also be deduced
from the general theory of Martin boundary, see remark 7 below.
Our method starts from the Brownian motion on H modified by a constant drift,
then uses the group action to define a diffusion on the stable leaves of the orthonormal
frame bundle whose projection onto H will be the ~-diffusion.
This method could likely work in the general case of a symmetric space of non compact
type and rank one.

2 Notations and basic data

Let H denote the hyperbolic space with boundary , unitary tan-
gent bundle orthonormal frame bundle , Riemannian area dV , and
(hyperbolic) Laplacian A .

Given (z, z’, u) in H x H x denote by log ~Bu(z, z’)] the Busemann function,
that is to say the algebraic hyperbolic distance, on any geodesic ending at u, from
the stable horocycle H(z, u) determined by z to the stable horocycle H(z’, u) .

In the Poincare half-space model, we have Bu(z, z’) = p(z’, u)/p(z, u) , p(z, u)
denoting the Poisson kernel : p(z, u) = Tm(z) oo and p(z, oo) =
Tm(z) . We have the cocycle property : Bu(z, z" ) = Bu(z, z’) x Bu(z’, z" ) .

Let r be a discrete (non-elementary) group of Mobius isometries of IH that
we suppose geometrically finite. Let A = A(r) denote its limit set, with Hausdorff
dimension say 03B4 . Recall that b is also the critical convergence exponent of the
Poincare series relative to F ; (see for example ([Su2], Theorem 1)). Obviously
sd.

Let E denote the family of Patterson (finite) measures on A
associated with F . It can be defined, up to a multiplicative constant (that we
definitively fix), as the only family of measures on A satisfying the following geometric
"conformal density" property :

= z’) for any z, z’ in H

together with the invariance property by the group F, in the sense that :

for any, in F and z in 1H ,

with the convention :_ ~C o ~y-1 .
See for example ([P], Lecture 2), [Su2], or ([Ni], Sections 3.4 and 4.7).

Set 03A6(z) := d z = = 
, and 03BB0 := b(b - d)/2 . .

This is a function on H that verifies = 2 See ([P], theorem 1 page 301).
Note that for every, in r we have ~ (~yz) = = = ~ (z) .

Moreover, when ~ > d/2 then ~ is square-integrable with respect to dV on the
fundamental domains of F B JH and it is the fundamental eigenstate on F B ~ . .
See ([P], Theorem 1 page 301), or ([P-S], page 177).
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Note that a consequence is that the volume of F B H is finite if and only if 03B4 = d . .

Let 7T denote the canonical projection from T1 JH onto JH, 03C01 denote the

canonical projection from O IH onto and 03C02 = 03C0 o 03C01 denote the canonical

projection from O IH onto J?7. .

We shall use on the unitary tangent bundle T1 JH the two following systems of
coordinates :
- firstly, (z, u) E H x 8JH the geodesic running from z to u determining the
unitary tangent vector at the base point z ; this identifies T1 IH with H x 9J!?7 ; ;
- secondly, given a reference point zo E IH the point (z, u) of Tl JH (just defined
above) can be represented by the triple (u, v, s) E a~I x a~ x R , where

_ v is the starting point of the geodesic ending at u and running through z ;
- s is the algebraic hyperbolic distance from z to the orthogonal projection zi

of zo onto the geodesic v . .

The PSO(d + 1,1) model for both OH and the Möbius isometries of IH allows
to identify T1 IH with PSO(d + l,1)/SOd and H with PSO(d + and

to use on OH the coordinates system (z, u, r) E H x 8H x SOd. .

Denote by dist((, uv) the hyperbolic distance from ( E H to the geodesic v .
The following well-known identity is valid for any ( in IH, any distinct u, v in ~IH,

and any z on the geodesic t~ running from v to u.

(~) ~((~)~((,~) . .

(Indeed, since this is an intrinsic formula, we may consider the half-space model
with u = oo and v = 0. Denoting then by (X, Y) the Euclidean coordinates

of ( in this model, and by (0, y) those of z, it is elementary that Bu(~, z) =
y /Y , , Bv(~, z) = + Y2)~(yY) and, using the classical formula for the distance
(see [P]), that ch2(dist((, (o, ~~~)) _ + Y2)2~(Y~~~)2 =
i + z) ~)

The Liouville measure ~ on can be expressed for any reference point zo , ,

by : :
v, s) = ds ,

where ~z denotes the harmonic measure at z. Recall that we have in the half-space
model : : = u) du .
Note that the above geometric property holds for harmonic measures, by changing 6
into d : = z’) for any z, z’ in IH .

This and the identity (~) show the irrelevance of the reference point zo in the expres-
sion of the Liouville measure A above. As can be verified by a direct elementary com-
putation, the expression of A in the (z, u) coordinates is : u) = dV (z) . .

A is naturally lifted to the Liouville measure A’ on O IH, by taking 03BB’ uniform

on each fibre SOd . 03BB’ is finite on a fundamental domain of F B OIH only when
6 = d .
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Observe from the two expressions above for the Liouville measure the following
formula

(1) / F dV = F o v, s) v, s)) ds ,

valid for any u E any zo and any test function F on IH .

Let 9t and 0; denote respectively the geodesic and the positive horocycle
flows on the orthonormal frame bundle (9J!Ff. . Moreover for any z = (x, y) E

lRd x , set
, 

Tz : Bx 03B8Log y .

Observe the following important classical relation :

(2) T(x,y) Tz’ = .

This means in particular that the set E lRd x constitutes a group,

isomorphic to a subgroup of the affine group of lRd. .

In the PSO(d + 1,1) model, the Liouville measure A’ is the Haar measure, and

the flows are expressed by right multiplication by some matrices of PSO(d + 1,1 ) .
Thus the Liouville measure ~’ is invariant by the horocycle and geodesic flows.

We can decompose the horocycle flow according to the canonical basis of lRd : so
for x = (x1, .., xd) E IRd we set : 9x = .

Let us introduce then the Lie derivatives : for any smooth function F on ,

any ~ in , 1  j  d we set :

( 3 ) . ~° dt F (~ 8t ) ~ ,C ~ ~ F (~) . ~° dt F (~ .

~ means and will mean the derivative at t = 0 with respect to t . .

We immediately see that : (4) ,Lj] = Lj, [Lj, Lj’ = 0 , , and

5 0F(03BE T(x,y)) = y
~ ~y F(03BE T(x,y)), LjF(03BE T(x,y)) = y 

~ ~xj 
F(03BE T(x,y) .

Note that since the flows act on the right hand side, while F acts on the left hand
side, these two operations commute.

Note that while the geodesic flow still makes sense on T1 IH, the horocycle flow makes
sense only on .

By identifying Mobius isometries of H and orthonormal frames on j!?7, we deduce
the following relations : ~(z) , and = ~(z) for any ~ E 
and z E , z E denoting the line element based at z and pointing at oo .

Let us call "~-diffusion" and denote by Z~ the diffusion on H associated to

the fundamental state 03A6, that is to say having infinitesimal generator

1 2039403A6 :=1 203A6 0394 o 03A6 - 03BB0°
This diffusion was already considered by Sullivan in [Sul] and for d == 1 in [E-F-LJ-1,2].
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3 An intrinsic measure on 

We introduce an intrinsic measure v on which was already used for d = 1 in
[E-F-LJ-1,2]. Its interest is to be smooth along the stable leaves and quasi-invariant
under the geodesic and positive horocycle flows, and to be an invariant measure for
two dual diffusions on which are both projected by ~2 onto the ~-diffusion.

Definition 1 Let v be the measure on T1 IH defined by :

dv(z, u) _ dV (z) .

Denote by v’ the unique measure on O IH which has marginal v on and
whose conditional laws on the fibres are the normalized Haar measure on SOd m

. Set also := ~2(z) dV(z) .

Remark 1 Observe that the F -invariance of .p, V and the geometric property of
imply the r-invariance of v (and then of v’ ). Observe also that by definition

of ~ we have 7f2V’ = = V~ , and then that v and v’ are finite above a
fundamental domain relating to r if and only if 6 > d/2 with mass ~ ~ ~ ~ 2 .

Remark 2 In the finite volume case, we have 6 = d , ~ constant , is

proportional to the uniform measure du , and then our measure v is proportional
to the Liouville measure A. .

Proposition 1 The measure v’ is quasi-invariant under the geodesic and positive
horocycle flows : :

d(Tz*03BD’) d03BD’(03BE) = yd-03B4  
03A6 

o 03C02(03BET-1z ) 03A6 o 03C02(03BE) 
for any 03BE ~  IH and z = ( x , y)~ IRd x IR*+ .

Note that this quasi-invariance property is what remains from the invariance of the
Liouville measure A’ under the flows, in the finite volume case. The proof was already
given for d = 1 in [E-F-LJ-2]. We write it now for any d and for selfcontainedness.

Proof Let us use the invariance of the Liouville measure and of the coordinate
u under the flows, and the expression of the Liouville measure in the coordinates
system 03BE = u, r) E O IH . We get for any 03B6 ~ IRd x Rj and any test functions
H on ~ IH and G on O IH :

. u, H(u) dV(z) dr = G(~(z, u, r)) H(u) dV(z) dr .

Thus we obtain for any u E 8H , zo E and any test function G on 

J u, z) dV (z) dr = u, r)) Bu(zo, z) dV(z) dr .

Whence using the definition 1 of X , a reference point zo E the geometric property
of ( z), and the (z, u, r)-coordinates on O IH, we get :

dv’(~) = G(~(z, u, ~(z) z) dV(z) dr =
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u, r))$o7r2(~~, u, ~(~(~ u, 

- /-G~ x ~-~~ x ~~~) ~(.)- 7~~ ~o~) ~-~,7~)) 

=  G(03BE)  03A6 o 03C02(03BET-103B6) 03A6 o 03C02(03BE)  B03B4-d03BE03B8~(03C02(03BE), 03C02(03BET-103B6))d03BD’(03BE).
The result follows, since writing ( = (z, ?/) , we clearly have by the definition of Bu :

~M)~(~)) = = ~ . o

4 Diffusions on IH and on O IH

Let us from now on identify J?:f with its Poincaré half-space model IRd x and

denote by z = (r, y) the current point. Recall that

0394 = y2  (~ ~y2 + 1 - d y  ~ ~y + ~2~x2j) °
4.1 The diffusions Zf , ~ and Z~
Let (wt, Wt) denote a Brownian motion on ~R x defined on (~, .F, . Set

yt : =exp[wt + (03B4 - d/2)t] , xt := / ) .

For all J, Z~ is the diffusion on ~f starting from e~ := (0,1), with invariant
measure and generator

1 2 039403B4 := 1 20394+03B4y ~ ~y = y2 2 (~2 ~y2 + 203B4+1-d y  ~ ~y + ~2 ~x2j).
Similarly, denote by Zbt = (xbt,ybt) the analogous process with J replaced by

b E [0, d]. In particular, Zf is the Brownian motion on i~.

Recall the classical identification between O IH and the set of Möbius isometries
of IH, and that in this identification we have for any 03BE ~ O IH and any z ~ IH :
~(~) = 7T2(~) . .

In particular, we see that = is a Brownian motion on ~f, started
from 03C02(03BE), for any 03BE e As a consequence, denoting by Pt the Brownian

semi-group on ~f, we have o = 
.

Observe then that T~o is a right Brownian motion on a subgroup of the affine
group of Indeed, for any b E [0, d], ,

" TZbs ° 

is independent of the sub-03C3-field 0t generated by the coordinates until time t .
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Definition 2 For any ç E , set .

Set ~~ :_ = 
.

Denote by Z03A6t and the diffusion on IH with generator 2 039403A6.

By the preceding observation, 03BE03B4t is a diffusion on O IH, starting from 03BE.
From (5) we get , where

d

Db : = ~ ,cj 2 + (2s - d) ,c° = D° + 2 s,c° .
j=o

Then the generator of the diffusion çf is 1 2 D03B4.

Moreover, note that the ~-diffusion is symmetrical and has invariant measure .

Note also that it happens to be the diffusion already considered in [Sul].
In the finite volume case 8 = d, this is just the Brownian motion.

Remark 3 We have for any test-function F on :

whence

D°(F o ~2) _ .

4.2 v’ as an invariant measure

We deduce now from the quasi-invariance property of v’ an adjonction property for
v’ and thus its invariance with respect to two diffusions on O IH.

Proposition 2 We have for all 8 and all test functions F , G on O IH :

F) G dv’ = F (D~ G) dv’ , where

D~ ~_ ~~=o ~~ - d ~o + 2 ~a-o (~j log ~ o ~2) ~j - (~ o ~2)-1 D° o (~ o ~2) - 2 ~° . .

Proof We deduce directly from proposition 1 the infinitesimal expression of the
quasi-invariance of v’ : we have for j E ~0, .., d} : :

,CjF dv’ = - F x log 03A6 o 03C02) dv’ + 1 fj=°l (d - d) F dv’ .

This implies immediately (writing ~ :

.Cj =-/:,- Lj(log 03A6) + (d - 6) ,

the adjoint being relating to v’ ; whence (using that D° ~ = (~~) o ~r2 = 2a° ~ ) :
d

(D03B4)* - D03A6 + (d - 03B4)03B4 - d ,C° log 03A6 + 03A3 C(,Cj log 03A6)2 + 2j log 03A6)
j=o 

= D~ + ~-1 (D°~ - = D~ . . o
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Corollary 1 For 03BE E O IH and each b we have : :

(i) under IP, , the diffusion 03BE03B4t admits the invariant measure v’ ;

under v’ ® IP, 03BE03B4t extends to a stationary diffusion defined for all real t, and 03BE03B4-t
is the stationary diff usion associated with the infinitesimal generator 2 D~, say ~~.

Remark 4 (i) We see from remark 3 and from the h-process form of D~ in

proposition 2 above that we have for any test-function F on O IH :
= (O~F) 

(ii) The h-process form of D~ shows that ~~ can be defined by the following formula,
where 0 = to  ..  tn , Fo, .., Fn are test-functions on O IH, and 03BETZ0t :

/ Fj(03BE03A6tj)d03BD’(03BE)dIP = e-03BBotn 03A6 o 03C02(03BE)  03A6 ° 03C02 (03BE0tn) x Fj(03BE0tj)d03BD(03BE) dIP .

(iii) Recall that the identification between H and the half-space IRd x respec-

tively between T1 IH and PSO(d + amounts to fixing one point of H to
be eo, respectively of T1 IH to be eo and similarly between O IH and PSO (d + l,1 ) .
Note that although the process Zt depends on this identification, the diffusions Z~ , ,
~s and ~~ do not and are intrinsic.

By means of the coordinates (z, u) , we have for each z E ~ an identification

between 8H and T1z IH . This allows to consider the Patterson measure z as a

measure on T1z IH and then to localize the measure v’ as follows : :

Definition 3 For each z E H set vz . bz . This is a probability
measure on , concentrated on T1z IH .

Denote also by vz the probability measure on concentrated on , uniform
on each fibre 03C0-11 o 03C01(03BE) , and projected on vz by 03C01 .

So that we have the disintegration : v’ = vz (z) on .

4.3 is the ~-diffusion

We obtain here the ~-diffusion by projection of the diffusion ~t .
We begin with the stationary case.

Proposition 3 Under v’ ® IP, , the projection of the stationary diffusion
03BE03B4t on O IH is the stationary 03A6-diffusion.

Proof Consider 0 = to  tl  ..  tn and test-functions f o , .., fn on ~ .

Using corollary (1, i, ii) and remark (4, ii), we have :

fi o 03C02(03BE03B4tj)d03BD’(03BE)dIP =  fj o 03C02(03BE03B4tj-tn)d03BD’(03BE) dIP
j=0 j=0

= e-03BBo tn  03A6 o 03C02(03BE0tn) 03A6 o 03C02(03BEp00)   fj o 03C02(03BE0tn-tj ) d03BD’ (03BE) dIF- e x 
iJ? 

j=p 
Ii 0 7f2(Çtn-t) dv (ç) dIP
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=  e-03BBotn  03A6(03BE(Z0tn)) 03A6 o 03C02(03BE) 
x 03A0 fj(03BE(Z0tn -tj))d03C0*203BD’(03BE) dIP

(since 7r2(çTz) = and since is a Brownian motion starting from
~(e~) == ~r2(~) , ~ being an isometry)

= II 

(since = V03A6 and by the h-process form of in definition 2)

= IEV03A6(fj(Z03A6tj))

j=0

by symmetry and invariance of Z~ with respect to v~ . o

We can localize this result as follows.

Corollary 2 Under the probability law vz ® IP , the projection on IK of
the diffusion 03BE03B4t on is the 03A6-diffusion Z03A6t starting from z .

Proof Let us apply the preceding proposition with fp(z) 
We get

{dist(z,z’)~} IE(fj o 03C02(03BE03B4tj)d03BD’z(03BE)dV03A6(z) = {dist(z,z’)~}IEz(fj(Z03A6tj))dV03A6(z).

Now the semi-group P03A6t of the 03A6-diffusion is clearly Fellerian, and then the map
z ~ IEz is continuous. Thus the result will follow from the continuity

of the map z IE( II f j o )) , for compactly supported continuous
" 

j=1 
?

functions f~ .
Now (03BE, z) ~ fj o 03C02(03BETz) is (uniformly) continuous on T1 IH  IH, and then

n

ç = (z, u, r) ~ F(03BE) := IE( 03A0 fj o is continuous and bounded on .

j=i 
?

Thus

j F l~) dv‘ z (~) - I _ If u, r)B~(z’, z) (u l ) dr I
goes to zero as z -~ z’ by dominated convergence, since B. (z’, z) is uniformly
bounded for bounded dist(z, z’) . o

This allows to deduce immediately the asymptotic behaviour of the ~-diffusion
in the case (~ > d/2 .

Corollary 3 The Z~ starting from z E H converges almost surely
as t ~ oo to a random point belonging to ~ IH, whose law is z/03A6(z) .
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Proof It is clear from the definition that ~ , and then Zt , goes almost surely
to 0o with t when 8 > d/2 . . When 8 = d/2 , setting rt := (!~!~+~) ~ we see
from the expression of the generator 1 20394d/2 that rt = Bd+2(Yt) , where Bd+2 (t) is

some (d + 2)-dimensional Bessel process = fo which both

go almost surely to 0o with t, thereby showing that ~ , and then also does.

Now corollary 2 above and the convergence of Zt to 0o imply the convergence
of to whose law under 03BD’z ~ IP is by definition of

. 0

Remark 5 It is however false that ~r2(~t ) has under IP the law of the ~-diffusion.
Indeed, as observed above for corollary 3, ~r2(~s) is conditionned to exit at 

5 Exit measure of the 03A6-diffusion if 03B4  d/2
For this whole section, we consider the only case : 8 E [0, d f 2 ~ .

Lemma 1 / uw)) does not depend on (z, u) E H x ~ IH ,

but only on d and J ( and equals x 0393(d/s - 03B4) 0393(d - 03B4).
Proof Indeed, the left hand side of this formula being clearly intrinsic, it is sufficient
to work with the model of the ball centered at z. Then the harmonic measure is

uniform, which in turn implies the independence with respect to ~c .

This independence is sufficient for our future purpose, however let us now perform
the computation of the constant, interesting for the intertwining formula in remark 6
below. Taking polar coordinates in Sd with leading angle the one between u
and w, say a , we have ch (dist(z, uw)) = 2~~u - and thus we get :

~IHch203B4(dist(z,uw)d hz(w) = S(sin03B1/2)-203B4 d hO

= |Sd-1|  03C00(sin 03B1/2)-203B4(sin 03B1)d-1d03B1 x |Sd|-1 x | h.|

= 203C0d/2 0393(d/2)  2d~0(1+r2)03B4-drd-203B4-1dr  |Sd|-1  IRdpd(z,v)dv
= 203C0d/2 0393(d/2)  2d-110sd/2-1(1 - s)d/2-03B4-1ds  |Sd|-1 IRd(1 + |w|2)-d dw

= 2d03C0d/2 X 

0393(d/2-03B4) 0393(d-03B4)  |Sd|
-1  |Sd-1|  X 0393(d/2)2 20393(d) = 03C0d/2 

x 0393(d/2 - 03B4) 0393(d - 03B4). ~
Remark 6 Another form of the formula of the preceding lemma is the following
intertwining formula between pd-b and which expresses the unextremal kernel

p03B4 as a mean of the extremal kernels : For all (z, u) E IH x IRd we have

IRdpd-03B4(z,w)|u - w|-203B4dw = 03C0d/2  0393(d/2 - 03B4) 0393(d - 03B4)  p03B4(z,u) .
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Indeed, to see this it is sufficient to apply the formula (*) , to express the harmonic
measure and the Busemann function by means of the Poisson kernel, and to observe
that for ( at the top of the geodesic w we clearly have : p((, u)p((, w) = 
A complicated proof of this intertwining formula was written in (~M~, epilogue).
M. Babillot and J.P. Otal already knew a simple proof for it. See also (~G~, p. 386). .

Definition 4 Set for w E a~I et z E H :

q(z, w ) := ~IHch25(dist(z, uw ))d z(u), > dz(w ) ._ 03C0-d/2 0393(d - 03B4) 0393(d/2 - 03B4)q(z,
w)d hz(w ),

and on T1 IH :

v (dz, du) :_ dV (z) , and vz := bz ® .

Denote by v’ (respectively the measure on projected onto v (respectively
vz ) by 03C01 and uniform on each fibre 03C0-11 10 03C01 (03BE).

Lemma 2 (i) For all y E r , , z ~ IH and w E ~ IH , we have = q(z, w) . .
(ii) = ~(z) , and then vz is a probability measure.

(iii) The family of measures satisfies the invariance property and the geomet-
rical property of exponent (d - b) :

= for all y E r , , and (u) = z’) for all z, z’ E IH .

(iv) v (dz, du) = vz(du) V~(dz) has an infinite mass on a fundamental domain, and
= V ~ .

Proof (i) follows directly from the invariance property of (~uz) ;
(ii) follows directly from Lemma 1 ;
(iii) The invariance formula follows from the invariance property of the harmonic

measure and from (i) above, and the second formula follows from the formula (*) and
from the cocycle property of the Busemann function ;

(iv) is straightforward. o

As the proof of the quasi-invariance formula for v’ (see proposition 1) uses only
the geometrical property of (~cz) , we deduce the quasi-invariance formula for v

below (using the above lemma (2, iii)) merely by changing 6 into d - b .

Proposition 4 The measure v’ is quasi-invariant under the geodesic and positive
horocycle flows :

d(T*zV’) dV’ (03BE) = y6  03A6 o 03C02(03BET-1z) 
03A6 o 03C02(03BE) 

for all 03BE E OIH and z = (x, y) E IH .

As for Proposition 2, we deduce :

Corollary 4 For all test-functions F , G we have : :

(i) LjF d’ = - F x log 03A6 o 03C02) dv + F dv’ ;

(ii) F) G dv’ = F G) dv’ .
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As for Corollary 1, we deduce immediately : :

Corollary 5 For all 8  d/2 we have : :

(i) under IP , is the diffusion on starting from ~ and with generator
! ; it admits the invariant measure v’ ;

under v’ ® IP , extends to a stationary diffusion defined for all real t , and
03BEd-03B4-t equals the stationary diffusion 03BE03A6t on O IH (with generator 2 D03A6 ).

We have also the analogue of Proposition 3, using Proposition 4 instead of
Proposition 1. Indeed it is sufficient to adapt the proof of proposition 3, changing
everywhere 8 into d - 6 and v’ into ~ , and noticing that = 

.

Proposition 5 For all 8  d/2 , under v’ ® IP , the projection ~r2 (~d-a ) of the
stationary diffusion on O IH is the stationary 03A6-diffusion.

Using this proposition 5 instead of Proposition 3, we get (by the same argument,
merely adapted by changing respectively 8 into d - (~ , , vz into vz and into

the analogue of Corollary 2.

Corollary 6 Under the probability law vz ® IP, , the projection ~r2(~d-a) on H

of the diffusion on is the ~-diffusion Z~ starting from z .

This allows to deduce the asymptotic behaviour of the ~-diffusion in the case
8  d/2 . The proof is the same as for Corollary 3 (when 8 > d/2 ). .

Corollary 7 When b  d/2 , the 03A6-diffusion Z03A6t starting from z E H converges
almost surely as t ~ oo to a random point of ~ IH , whose law is .

Remark 7 The general theory of Martin boundary for rank one symmetric spaces
can be applied to yield Corollaries 3 and 7.
Let us briefly outline the main steps of such a proof.
a) Characterization of the Martin boundary of (H, A - A7) ) as alH, , and of its
Martin kernels as Bu(z, z’)a when ~ > d/2.
This work has been done for example in Proposition 3.2 of [L-MG-T] and in [G].
b) Application of an extended version of the Fatou-Naim-Doob theorem, as the one
given in Theorem 3.1 of [A].
c) Use of the intertwining formula (see our remark 6), as we used above our lemma 1,
for the case 8  d/2 in which the Bu(z, z’)s are not extremal (see also [G] p. 386).

We thank P. Bougerol for having drawn our attention on this important fact.
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