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COALESCENCE OF SKEW BROWNIAN MOTIONS

Martin Barlow,1 Krzysztof Burdzy,2
Haya Kaspi3 and Avi Mandelbaum3

The purpose of this short note is to prove almost sure coalescence of two skew

Brownian motions starting from different initial points, assuming that they are
driven by the same Brownian motion. The result is very simple but we would like
to record it in print as it has already become the foundation of a research project of
Burdzy and Chen (1999). Our theorem is a by-product of an investigation of variably
skewed Brownian motion, see Barlow et al. (1999). Our result and methods are

related to those presented in a paper on "perturbed Brownian motion" by Chaumont
and Doney (1999). See also Doney (1998), Doney, Warren and Yor (1998), Perman
and Werner (1997) and Werner (1995).

Suppose that Bt is the standard Brownian motion with Bo = 0 and consider
the equation

, tO, ( 1 )

where Xxt satisfies the initial condition Xo = x. Here ,Q is a fixed number in [-1,1]
and Lt is the symmetric local time of Xf at 0. Harrison and Shepp (1981) proved
that (1) has a unique strong solution, which is skew Brownian motion. One way to
define skew Brownian motion in the case /3 > 0 is to start with a standard Brownian

motion B~ and flip every excursion of Bt below 0 to the positive side with probability
,Q, independent of what happens to other excursions. See Ito and McKean (1965)
or Walsh ( 1978) for more information.

Theorem. If Xf and Xt are solutions of (I) with the same ,Q E ~-1,1~ ~ ~0},
relative to the same Brownian motion Bt then Xf = Xt for some t  oo, a.s.

Proof. For simplicity assume that /3 > 0 and 0 = x  y. Let L° = /3L, Lf -
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y + ,QLt and
To = 0,

Tk = inf{t > Sk-1; -Bt = L0t}, k > 1,

Wk = LySk-1 - L0Sk-1 LyTk-1 - L0Tk-1, k ~ 1,

Vk = LyTk - L0Tk LySk-1 - L0Sk-1, k ~ 1,

Mk = - 

, k > o.

We will first find the distributions of Wk’s and Vk’s using excursion theory.
Recall the fundamentals of excursion theory for the standard Brownian motion

from, e.g., Karatzas and Shreve (1991). The Brownian excursions from 0 form a

Poisson point process whose clock can be identified with the local time of Brownian

motion at 0. The intensity of excursions on the positive side of 0 whose height is

greater than h is equal to 1/(21t).
The stopping time So may be described as the first time when an excursion of

- Bt - L° above 0 hits the level y - it. These excursions can be identified with

the excursions of the skew Brownian motion X° below 0. They form a Poisson

point process P similar to the Poisson point process of excursions of the standard

Brownian motion from 0. The intensity of P-excursions above 0 with height greater
than h is equal to (1 2014 /3)/(2/z). Note the extra factor 1 - {3 as compared to the

analogous formula for the excursions of the standard Brownian motion. The factor

can be explained using the excursion flipping construction of skew Brownian motion
mentioned in the introduction-in a sense, the fraction of excursions flipped to the

other side is equal to ,~/2. When the clock L° for the Poisson point process P takes
a value u then the instanteneous intensity of excursions with height greater than

y - it is equal to (1 - ,Q)/(2(y - ,~~c)). We have Lso  a if no P-excursion

with height greater than y - it occurs before the time s when y - L° = a, i.e., when
L° = (y - Thus excursion theory enables us to write the probability of this

event using Poisson probabilities as follows,

P(LyS0 - L0S0  a) = exp(- (y-a)/03B20 1 - 03B2 2(y-03B2u) du) = (a y)(1-03B2)/(203B2) .

Recall that LyTo - L0T0 = y . We have

P(W1y  a) = LTo)  a) = Lso  a) = (a/y)(1-a)I(2a).

By changing the variable we obtain for w E (0,1),

 w) = w(1-~)/(2a).
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By the strong Markov property, P(Wk  w) = ~(i-/3)/(2/3) for w E (o,1) and every
l~ > l.

A totally analogous argument shows that P(Vk > v) = v-(1+p~l(2~) for v > 1
and k > 1.

Note that, by the strong Markov property, all random variables Vk, Wk, k > 1,
are jointly independent.

Next we will show that the process Mk is a martingale and converges to 0. First,
note that = Mk-1 Wkvk . It is elementary to check that EWk = ( 1- ,Q) / ( 1 + 03B2)
and Ev~ = (1 + /3)/(1 - /3). By the joint independence of Wk ’s and Vk ’s,

E(Mk Mk-2,...) = Mk-1EWkEVk = >

which shows that Mk is a martingale. As a positive martingale, the process Mk
must converge with probability 1 to a random variable Moo. Since for every k, Mk
is the product of and an independent random variable the limit M~
can take only the values 0 or oo. By Fatou’s Lemma, EMo = y, so Moo = 0
a.s.

On every interval [Tk, S k] the process Lyt - L° is non-increasing but it is non-
decreasing on intervals of the form [Sk, Thus

sup Lf - L°  max(Mk, 
J

In view of convergence of Mk to 0, we must have a.s. convergence of it to 0
when t --> oo. It remains to show that the convergence does not take an infinite

amount of time.

Let = limk~~ Tk. In view of the remarks in the last paragraph, it is not
hard to see that the value of is bounded by 03A3~k=1 Mk. Since L0~ = ~, it will
suffice to show that ~~ 1 A1k  oo in order to conclude that Too  oo. We have for

k ~ 1,

Mk = y WjVj .

j=1

We can write

y Wj Vj = exp (log y + [log Wj + log Vj]) .

One can directly check that the distribution of - log Wj is exponential with mean
2~/ ( 1 - ,Q), while the distribution of log Vj is exponential with mean 2~3~ ( 1 + .

Thus, E(log Wj + log Vj+1)  0. It follows that for some a > 0, we eventually have

[log Wj + log Vj] ~ -ak

j=1
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Hence, for some random Ci and all k we have and so ~~,1 Mk  oo,

a.s. D
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