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On the martingale problem for super-Brownian motion

Richard F. Bass1 2 and Edwin A. Perkins3 4

Abstract. The law of super-Brownian motion can be characterized as the solution
to a certain martingale problem. We give a new proof of this fact that uses only
basic stochastic calculus and some simple facts about weak convergence.

1. Introduction.

The law of super-Brownian motion may be characterized in several ways, one
of which is as the solution to a martingale problem. To state this result, we use the
following notation. If  is a measure, we will often write (f ) for  f Let .Nl be
the set of finite Borel measures on ]Rd with the topology of weak convergence. The
collection of continuous functions from ~0, oo) to M is denoted C(~0, oo), M). Let
C~b denote the collection of infinitely differentiable functions on JRd with all deriva-
tives bounded and let C: denote the k times continuously differentiable functions
whose first k derivatives are all bounded.

We say that a probability measure P on C(~0, oo), M) is a solution to the
martingale problem for super-Brownian motion started at a finite measure p if

(a) 
(b) if f E Cl then

0

is a continuous martingale with quadratic variation

t0 Xr(f2) dr.
The following theorem is well-known. See Dawson (1993) for a proof that uses

log-Laplace functionals and an associated nonlinear partial differential equation.

Theorem 1.1. . Let  E M. . There exists one and only one solution to the martin-
gale problem for super-Brownian motion started at ~c.

The goal of this paper is to give an elementary proof of the uniqueness of
the martingale problem for super-Brownian motion. We use only basic stochastic
calculus and some simple facts about weak convergence. The proof illustrates a
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basic fact: the existence of a solution to a martingale problem which depends nicely
on the initial data in fact gives uniqueness of solutions to the martingale problem.
We hope that suitable modifications of this idea will be helpful in establishing new
weak uniqueness results for certain interactive measure-valued diffusions.

We discuss existence briefly in Section 2 and prove uniqueness in Section 3.

2. Existence.

Super-Brownian motion may be constructed as the limit of branching diffu-
sions. One way to do this is to let Xt be the process constructed as follows. Let
the initial configuration of particles be given by a Poisson point process with mean
measure n~c(~) and let Xo assign mass 1/ n to the site of each particle. They move
as independent Brownian motions for time 1/n, at which time each particle either
splits into two or dies, each with probability 1/2 and independently of the other
particles. The particles that are now alive move as independent Brownian motions
for time 1/n, at which time each particle either splits into two or dies with equal
probability, and so on. Xt is the measure that assigns mass to each point at
which there is a particle alive at time t. We choose the right continuous version of

We then have the following theorem.

Theorem 2.1.

(a) For each n the process Xr(l) is a martingale in t.
(b) Any subsequence of ~Xt ~ has a further subsequence which converges weakly

in the Skorokhod space D([0, oo), .11~() to a process taking values in the space
C([o, oo),.Nl).

(c) IfP is any subsequential limit point of the laws of Xnt, then P is a solution
to the martingale problem for super-Brownian motion started at ~,.
For the proof of Theorem 2.1, see Perkins (2000). Of course Theorem 1.1

now shows that in fact ~X’~} converges weakly to super-Brownian motion but our
goal is to give an elementary proof of the uniqueness part of Theorem 1.1 and and
the above construction of a solution will play an integral role.

3. Uniqueness.
Let D be the set of points ... , , xd) in Rd such that x1, ... , , xd are rational.

Let E = {2’~ : m integer }. Define

00

Mc = ,

i=l

where 03B4x is point mass at x. Nothing precludes several of the xi being equal. Then
is a countable dense subset of M .

For each measure ~ we can construct a solution to the martingale problem
started at  by means of tightness as in Section 2. By using tightness and a diago-
nalization procedure, we can find a subsequence of {2k} such that the laws of
Xr along this subsequence converge for every starting measure p in Me. Let us call
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the limit law note that so far this is only defined for E Mc. Let denote

the law of Xt when  is our limiting initial measure.
Now let f be a nonnegative function in and for x E D, let

9S (x) , hs(x) = log gs(x) (3.1 )

> hs (~) - 

We next use translation invariance to show the log-Laplace functional hs is
smooth.

Lemma 3.1. . There exists ci such that for all xED and all natural numbers n,

(a) 1 >_ 9S (~) ~ 9s (x) ~ cl ~
(b) 0 > > log c1; and

(c ) gs(x) is uniformly continuous on D.

Proof. By Theorem 2.1(a), is a martingale for each n, so

and by Fatou’s lemma,  ~c ( 1 ) . So for x E D,

~~~ (Xt(1) ~ 2) ~ 1/2.

With probability at least 1/2 we have that Xt ( f )  2 ~ ~ f ~ ~ ~, hence exp ( -Xt ( f ) ) >
Therefore gs(x) > (1/2) and as the same argument

holds for gn, this gives (a). (b) follows immediately.
If we set f x (y) = f (y + x), clearly the law of Xs(f) is the same as the

law of Xs(fx) because this is the case for the approximating So gs (x) =
Since Xs(fx) = f fx(y) Xs(dy) is continuously

differentiable in x, then so is gs (x) and also hg (x). The latter uses the integrability
of XS ( 1 ) to allow differentiation under the integral sign. 0

Remark 3.2. We may thus extend the definition of gs and hs to all of ]Rd as
functions in Cl. From the proof of part (c), we also see that for each s, E N}
are equicontinuous-in fact uniformly Lipschitz continuous. Note that if P is any

solution to the martingale problem starting at /~, then an elementary Fatou argument
shows

E Xt(1)2  (1)2 + (3.2)

This allows us to differentiate twice in the proof of part (c) to see that gs and hs
are in Cl.
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Next we use the multiplicative property of super-Brownian motion.

Proposition 3.3. (a) ) is a uniformly continuous function on the
set JI~(~(N) ~ ~c(1)  N} and J1 - E is equicontinuous in n on

(b) = ~c E 

Proof. If then the law of X’~ under is the same as the law of the

sum of two independent copies of one governed by and the other governed by
this follows by the way the Xn were constructed and the fact that the particles

move independently of each other. So

= 
~ (3.3)

In particular, if ri = 2-m,

~1’ ) - 

or

E ri03B4xie - Xns(f) = = exp ( / ri03B4xi (dx)
Therefore

~ = exp ( / = 
~ ~ E (3.4)

Let n ~ oo along {n’} in (3.4) to prove (b) (use the bounds in Lemma 3.1). As
hs E ct and ~hs ~ is uniformly Lipschitz by Remark 3.2, (a) is then clear from (b)
and (3.4). D

Let = {~c : ~c(1)  N~. What we have so far is sufficient to
prove the Markov property for Xt).

Proposition 3.4. (a) For all  E P n, converges weakly say to P .

(b) If G is bounded and continuous on then for each N > 0 the function

~c - E is uniformly continuous on 

(c) If G is bounded and continuous on .Nl and s, t > 0, then

Proof. Let G be a bounded and continuous function on M. We first show that for

each t and is equicontinuous on .11~1(N). .
If f > 0 is in then the equicontinuity of ~c ~--> E ~ on 

established in Proposition 3.3, and the continuity on for each fixed r~ (which
is trivial) show that p - E is equicontinuous on .M (N) . Letting f =

where each f 2 is nonnegative and in we deduce that the map
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~ ,-~ is equicontinuous on Linear combinations of expres-

sions such as are dense in the set of continuous functions of

hence is equicontinuous over 
Let s  t both be multiples of 1/2m for some m. Define to be

By independence, the Xt have the Markov property at times t that are

multiples of 1 /n, so

(3.5)

if n is a multiple of 2m. By what we just proved, Pnt-s G2 is equicontinuous, and

it follows that  ~ E G1(Xns)G2(Xnt) is equicontinuous over M(N) if n is a mul-

tiple of 2m. Repeating, if sl  ~ ~ ~  s~ are all multiples of 2-m for some m and

G1, ... , Gl are bounded and continuous functions, then  ~ E G1(Xns1)...Gl(Xnsl )
is equicontinuous over .11~((N). 

We now prove (a), (b), and (c). In view of Theorem 2.1(b), the processes Xt ~
are tight, and it suffices to show that if Gi,..., G.~ are bounded and continuous and

sl  ...  s~ are dyadic rationals, then ~ G~(X e ) converges. We have
convergence for ~c E Me, and the convergence for arbitrary p E M follows by 

the

equicontinuity. This proves (a). (b) follows easily from (a) and the equicontinuity.
Finally, the equicontinuity, the convergence for each ~c, and (3.5) imply (c). D

Now define

B(h, ) = ~0 -03BBse (hs)[03BB-A(hs, )]ds.

e (f)A(f, ) is essentially the infinitesimal generator of e (f), f E Cb, f  0,

and B is related to a resolvent. The key step is the following.

Proposition 3.5. Let  E M and let P be any solution to the martingale problem
started at /~. Then

E ~0e-03BBrB(h,Xr)dr = ~0 e-03BBse (hs)ds .

Proof. By Ito’s formula and the fact that hs E Cb (Remark 3.2),

= eX0(hs) + martingale + t0eXr(hs)Xr(0394hs/2)dr

+ 1 2t0eXr(hs)Xr(h2s)dr
= eX0(hs) + martingale + t0 eXr(hs)A(hs,Xr)dr.
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We now take expectations with respect to P. Since hs  0, then 1. The
quadratic variation of the martingale term is fo dr. Since |hs| and
|0394hs| are bounded by Remark 3.2, in view of (3.2) we can take expectations. We
thus have

EeXt(hs) = e (hs) + E t0 eXr(hs)A(hs,Xr)dr.

We now multiply by and integrate over s from 0 to 0o to obtain

E~0 e-03BBseXt(hs)ds = ~0 e-03BBse (hs)ds + E~0t0e-03BBseXr(hs)A(hs,Xr)dr ds.
Finally, we multiply both sides by e-03BBt and integrate over t from 0 to oo. Hence

E~0e-03BBt{ ~0e-03BBseXt(hs)ds}dt

= 1 03BB~0e-03BBse (hs) ds + E~0t0 e-03BBt ~0 e-03BBseXr(hs)A(hs, , Xr ) ds dr dt

= 1 03BB~0e-03BBse (hs)ds

+ IE~0 ( ~re-03BBt dt) ~0 e-03BBseXr(hs)A(hs,Xr)ds dr.

Therefore

~0e-03BBse (hs)ds = IE ~0 e-03BBr{~0e-03BBseXr(hs)[03BB-A(hs,Xr)]ds]dr,
which is the desired result. r-,

The other important proposition is

Proposition 3.6. For all p e ,~(

B(h~ I~) = e-w(,f),

Proof. The measure ~~ is a solution to the martingale problem started at p, so by
Proposition 3.5,

/ yoo ds.
~o ~o

Applying this and Proposition 3.3 with p replaced by the measure Xt, we have

EXte-03BBrB(h, Xr) dr = ~0 e-03BBseXt(hs) ds = ~0 EXte-03BBse-Xs(f) ds.

Taking expectation with respect to  and using Proposition 3.4(c), we then obtain

E  ~0 e-03BBse-Xs+t(f) ds = E  ~0 e-03BBrB(h, Xr+t) dr.
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Multiplying by e-~’t, we have
00 yOO

E~ ~ / J~ / (3.6)

Differentiating (3.6) with respect to t and using the continuity of the integrand, we
get

for all t. Letting t -i 0 proves the proposition. D

Proof of Theorem 1.1, uniqueness. Let Pi and ~2 be any two solutions to the
martingale problem started at ~c, and denote the corresponding expectations by E i
and E2. By Propositions 3.5 and 3.6, for each f > 0 in 

E1 ~0e-03BBre-Xr(f) dr = E1 ~0e-03BBrB(h,Xr)dr = ~0e-03BBre (hr) dr
and similarly with E i replaced by lE 2. Therefore

E1 ~0e-03BBre-Xr(f) dr = E2 ~0e-03BBre-Xr(f) dr.
By the uniqueness of the Laplace transform and the continuity of Xr ( f) in r,

)

for all r.

Let f l, ... fm be non-negative functions in Cb and let ,Ql, ... , ~im be positive
reals. Letting f = 

- ~’1 2e-xr(f) 
By the uniqueness of the Laplace transform, the joint distribution of (~(/i),..., ,
~r(/~)) ) is the same under Pi and I~2 . This implies that the distribution of X r is
the same under Pi and I~2.

The space is a separable metric space, hence regular conditional proba-
bilities exist (see Stroock and Varadhan (1979), p. 34). With this comment, we can
proceed just as in Stroock and Varadhan (1979), Section 6.2, and conclude that all
the finite dimensional distributions of ~Xt; t > 0} are the same under Pi and I~2.
Since X is a continuous process, the law of the process X under Pi and I~2 are the
same. D

Remark 3.7. By Stroock and Varadhan (1979), uniqueness of the martingale
problem implies that (I~~‘, Xt) is a strong Markov process.
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