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A MARTINGALE PROOF OF 

THE THEOREM BY JESSEN, MARCINKIEWICZ AND ZYGMUND
ON STRONG DIFFERENTIATION OF INTEGRALS

Malgorzata Kuchta, Michal Morayne, Slawomir Solecki

Abstract

We give a martingale proof of the theorem by Jessen, Marcinkiewicz and Zygmund on
almost everywhere strong differentiability of functions on Rn belonging to L(Log+ 
The proof is based on Cairoli’s theorem on convergence of multi-indexed martingales.

There are a few (independently obtained but similar) martingale proofs of the
Lebesgue integral differentiation theorem in Rn ([Ch], [M], [MS]). The main tool in
these proofs is Lévy’s martingale convergence theorem. They substantially simplify
geometric considerations involved in the standard proof of Lebesgue’s theorem via
Vitali’s covering theorem. This approach, however, does not seem to have been
used to prove the Jessen, Marcinkiewicz and Zygmund theorem ([JMZ]) on strong
differentiability of integrals. It turns out that this too can be done if one uses

Cairoli’s theorem on convergence of multi-indexed martingales (instead of Lévy’s
theorem). The proof given here goes very much along the lines of [MS] ; it adapts
the techniques used there to the case of strong differentiation of integrals.
We shall use the following standard notation. Z will denote the set of all integers,

a(A) the a-field generated by a family of sets A. The n-dimensional Lebesgue
measure in R’~ will be denoted by A (we omit the exponent n here as there will be
no danger of confusion). Let (S~, .~’, P) be a probability space. By Ll (S~) we shall
denote the family of all real, Q-measurable functions such that E|f|  ~. In the

case when H is an open subset of Rn and = 1, by .~’ we shall always mean the
family of Lebesgue (or Borel) measurable sets and P = A If A is a subset of

Rn, the set of Borel subsets of A will be denoted by B(A). If A is a family of sets
and X a set, [ X denotes the set {AnX : A E ,A~. For a subset X of R’~ and

a vector x E Rn, we put ~ + X = ~x + y : y E X). A parallelepiped in Rn is the
product of n open non-empty intervals. By b(A) we denote the diameter of A. We
say that a point x of an open set U C Rn is a strong Lebesgue point for f if

1 03BB(Qm)|f(s) - f(x)|ds ~ 0
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for each sequence of parallelepipeds Qm such that x E Qm C U for each rrt  1 and

b(Qm) -~ 0. (Without loss of generality, we can assume that ~ is the center of Qm ,
i.e., Qm = x + ((-bl, bl) x ... x (-~n, bn)) for some bl, ..., bn.)

Here is the theorem of Jessen, Marcinkiewicz and Zygmund.

Theorem 1 (Jessen, Marcinkiewicz, Zygmund). Let f : Rn -~ R be such that

I f I (log+ E L1. . Almost every point of R’~ is a strong Lebesgue point of f. .

The following theorem proved in [C] will be our main tool to prove Theorem 1.

Theorem 2 (Cairoli). For i - 1, ..., n, let be a probability
space and : j E N~ a sequence of a-algebras such that C and

) _ ~’z . Call the product space f and for
J = { j 1, ..., jn ) E Nn, call FJ the sub- a-field 1 

x ... x of F.

If f : ~ - R is ,~’-measurable and EI f I(log+  oo, then conditional

expectations f J = E( f I converge almost surely to f when J ~ oo (that is,
when jl - oo, ..., jn -~ 

We derive first the following corollary which was suggested as one of the

simplifications by the referee. P.-A. Meyer informed us that it is an extension of

Hunt’s lemma [DM, Chapter V, Theorem 45~. .

Corollary 1. With the same notation and assumptions as in Theorem 2,

E{I f -fJI -~ 0 almost surely when J -~ oo.

Proof. For each a E R, one has almost surely

lim supE(|f-fJ| |FJ)  lim sup E(|f-a| |FJ + lim sup |fJ-a| = 2|f -a| ,

wherefrom, almost surely,  2 inf I f -a = 0.1
aE(a

Corollary 2. In the situation of Theorem 2, assume furthermore that each
is generated by a finite or countable partition of For almost all co E S~,

E(I f - I I ,~’J~ tends to 0 when J -~ oo.

Proof. By the countability assumption, conditional expectations with respect
to .~J are defined everywhere, and not only almost everywhere; so the expression

is meaningful. One has

~ + ~

The second term tends to zero for almost all c~ by Theorem 2; the first term, when
evaluated at cv, is equal to E {) f - f J I I .~’J) {~), which tends to 0 for almost all co by
Corollary 1.1
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For t = (tl, ..., tn) E Rn and J = (jl, .., jn) E Nn, we shall denote by Aj the
partition of Rn consisting of all sets of the form

n

(ti+ki 2Ji, ti+ki+1 2ji]

where (k1, ..., kn) ranges over For x = (xl, ..., xn) E Rn, the element of Aj that
contains x will be denoted by If r~ =1, we let h(x), t, x E R, j E N, stand
for ((x)). (61, ..., bn) E we shall call Qo(x) the parallelepiped

(~t"~ ~ , xi+b2); its center is x and its diameter is minorized by supi b2.
All the geometry we need is contained in the following simple lemma, where T

denotes the set ~p, 3 ~n. .

Lemma. Suppose J = (jl, ..., jn) E Nn and ~ _ (61, ..., b~,) E satisfy
38i S 2-ji for each i E {I, ..., r~}. Then, for every x E Rn, one has

.

tET

Proof. As UtET IJ(x) is the Cartesian product of the one-dimensional sets

I0ji (xi ) U I1/3ji (xi ), it suffices to establish (xi -b2 C I0ji (xi ) U (xi); in other
words, we may suppose n = 1 and drop the index i. Now, for any k and f in Z,
the distance between k 2’-? and l2-j + k is at least k 2-j, hence at least 8., As x
belongs to both intervals and and as the distance from each end-point
of to each end-point of is at least 8, the union U L1/3(x) must
contain (x-b, x+b).1

Proof of Theorem 1. . Losing no generality, we assume that f is
in L 1 ( ( 0,1 ) ~’ ) and we shall prove that almost every point of the cube is a

strong Lebesgue point of f. . By modifying the Lebesgue-measurable function f on a
negligible set, we also assume, with no loss of generality, that f is Borel-measurable.
We have to show that, for almost every x E .

~M) / I f (s) - f (x) I ds

tends to 0 when the diameter of tends to 0.
Call the finite a-field on (0,1)~‘ generated by the restriction AJ (0,1)’~ of the

partition AJ to the cube (0,1)’~; notice that is a product a-field with factors ~t
satisfying C ~+1 and a(Uj ~3 ( (0,1 ) ) for fixed t. So for fixed t we are in
the situation of Theorem 2. To each A = ..., 8n), associate J = (j1, ..., jn) such
that 2-~~-1  3bi  2-~i. According to the above lemma, the inequality 3bi  2-~i
implies C h(x); on the other hand, the inequality  3b2 easily
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gives  3" A((~(~)). So one can write

~/!~-~~~~)S/~-~-"
~ 3n03A31 03BB(ItJ(x))

|f(s)-f(x)|ds

=3n03A3 E(|f - f(x)||FtJ)(x).

t6T

(The latter equality requires C (0,1)"; this can be obtained for instance by
restricting ~ to belong to (~ 1-~)"B and by taking ~  c/6.)

Now, when the diameter of Q0394(x) tends to 0, supi 5t tends to 0, and J ~ oo. As
the factor 3~ and the finite set T do not depend on z, A and J, the result follows

by applying Corollary 2 for each fixed t G T.N

We thank Professor P.-A. Meyer for his comments regarding Corollary 1, the
board of editors for their help in preparing the final version of this article, and an

anonymous referee for helpful suggestions and simplifications.
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