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The Hermite polynomials h,,, n € N, defined by the Rodrigues formulae
2,0y A"
ho(z) :=(-1)" exp(x“/?)m exp(—z2/2), z €R, (D

play an important role in the theory of Brownian motion; see, for example, 3],
(4], [6]. In particular, if (Q2, F, F;, P) is a filtered probability space on which is
defined a standard one-dimensional Brownian motion {B;;t > 0} with By = 0,
then {t"/2h,(B;/v1);t > 0}, is a martingale for every n € N.

An interesting converse, characterizing the Hermite polynomials, has re-
cently been discovered by A. Plucinska [5]: If n > 0 is an integer, h : R — R
is real analytic, and t — t"/2h(B;/\/t) is a martingale, then h is proportional
to hy,. Strictly speaking, this assertion is true only if we alter the initial state
of the Brownian motion to ensure that P[By = 0] < 1. Indeed, for every real
p > 0 there is a non-polynomial real analytic h such that {t*/2h(B,//?);t > 0}
is a martingale, provided the Brownian motion satisfies P[By = 0] = 1; see part
(b) of Theorem 1 below. Our purpose in this note is to give a new proof of (an
extension of) Pluciniska’s Theorem.

As preparation we collect some known results concerning the connection
between space-time harmonic functions and martingale functions of space-time
Brownian motion. Let

pi(z,y) = [2mt] "/ 2 exp(~(y — z)?/2t)

denote the Brownian transition kernel, and define the corresponding semigroup
of transition operators by

Pif(z):= /Rpt(z,y)f(y) dy

= P?[f(B:)] = P[f(z + B:)], zeR,t>0.
Here P” denotes both the law of Brownian motion started at £ and the associated
expectation operator.

(2)
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Lemma 1. If H : R x (0,00) — R is Borel measurable, then the following -
statements are equivalent: :

(a) P_s[H(-,1)](z) = H(z,s) forallz € R and all 0 < 5 < ¢;
(b) P._s[H(-t)](z) = H(z,s) for Lebesgue a.e. ¢ € R, for all 0 < s < ¢,
and P?|H(By,t+r)| < oo forallz € R and all r,t > 0;

(c) t+ H(B:,t+r) is a P martingale, for all z € R and all 7 > 0.
Proof. The implication (a)=>(b) is trivial, and (b)=>(c) follows easily because the
P?-distribution of B, is absolutely continuous with respect to Lebesgue measure
for all z € R and all s > 0:

P?[H(B:,t +r)|F] = P [H(-,t +7)|(B;) = H(B,,s + 1), P?-as.
Finally, if (c) holds then for z € R and r,¢ > 0,
H(z,7) = P*[H(Bo,0+ )] = P*[(H(Bo,t + )] = PLH(,t + r)](x),
which yields (a) after a change of variables. 0

Lemma 2. Let H : R x (0,00) — R be a function of class C*!.

(1) The process t — H(By,t +r) is a P* local martingale for all (z, r) €
R x (0,00) if and only if 0H /0t + 182 H/0z® = 0.

(ii) Suppose that 0H/0t + $02H/0z® = 0 and that for each T > 0 there
is a constant Cr such that |H(z,t)| < Crexp(z?/2t) for all (z,t) € R x (0,T].
Then t — H(B;,t + ) is a P® martingale for all z € R and all » > 0.

Proof. Assertion (i) follows immediately from It6’s formula. Assertion (ii) is a
consequence of classical theorems on the well-posedness of the Cauchy problem.
Let us fix T'> 0 and r > 0, and define

K(z,t) := Pr_JH(,T+7)(z),  (z,t) € R x[0,T].

Then K is a C?' solution of 0H/8t+30%H/8z* = 0 on Rx [0, T) with K (z, T) =
H(z,T+r) for all z € R, and

|K(z,t)| < Cexp(k-z?), (z,t) e R x [0,T],
for some constant k > 0; see Theorem 12 in Chapter 1 of [2]. By Theorem 16
loc. cit., K(z,t) = H(x,t+r) for all (z,t) € R x [0, T]. That is
Pr_[H(-,T+r)l(z) = H(z,t+ )
for all (z,t) € R x [0, T]. Since T > 0 and r > 0 were arbitrary, part (ii) follows

from Lemma 1. 0

Here is the main result of this note. One could relax the conditions imposed
on « and h in part (a) (measurability and local boundedness would suffice); we
leave this extension to the reader.
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Theorem 1. (a)Let h: R — R be of class C?, and let « and 8 be C' mappings
of (0, 00) into itself such that

a(l)=p(1)=1 and B(0+) = 0. (3)

Define
H(z,t) = at) - h(z/B(1)), t>0,z€R, (4)

and suppose that
t — H(By,t+ ) is a P” local martingale, for allz € R and all7 > 0. (5)

Then one of the following statements is true:

(i) h is constant and a = 1.

(ii) h(z) = Const. - and a = .

(iii) B(t) = +/t for t > 0, there is a real number p such that a(t) = t?/2 for
t > 0, and h satisfies the Hermite equation

h"(z)—z-h'(z)+p-h(z) =0, Ve € R. (6)

(b) Conversely, if h is a C? function satisfying (6), then t — H(By,t+r) is
a P® martingale for every ¢ € R and every r > 0, where H(z,t) := t*/?h(z/\/1).
If, in addition, p > 0, then t — H(B4,t) is a P° martingale.

(c) If h is a C? function such that t — t?/>h(B;/+/1) is a P* martingale
for some x # 0, then p is a non-negative integer and h is proportional to the
Hermite polynomial hy,.

Proof. (a) By Lemma 2(i), H satisfies the (dual) heat equation 0H/dt +
$8?H/dz* = 0; consequently,

%h”(m) - BB (t)zh'(z) + [B(1))? I((tt)) h(z) =0, Vi>0,zeR. (7)

If B4’ is non-constant then there are times s,t > 0 such that ¢ := (t),B’(t) —

B(s)B (s) is non-zero. Fix such times and define b := [ﬁ(t)]zf';—:(%2 [8(s))? ‘;(:) ;
then (7) implies

c-zh'(z) = b- h(z), Ve € R. (8)

Any solution of (8) must be of the form h(z) = Const. - 7 for £ > 0, where
v := b/c. For an h of this form to satisfy (7) (for £ > 0) we must have ¥ = 0 or
4 =1. If y = 0 then the C? solutions of (8) are constant; this is case (i) of part
(a) of Theorem 1. If ¥ = 1 then h(z) = Const. - z, which is case (ii).
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Thus, with the exception of the trivial cases (i) and (ii), 8(¢)3’ (t) is constant,
which means that () = v/t for ¢t > 0, because of (3). Inserting this expression
for § into (7) we arrive at

) - ok () + 2 ) = (9)

Unless h is identically 0 (which case has already been dealt with), (9) implies
that ¢ — to/(t)/c(t) is constant. In this case a(t) = tP/2 for some p € R, and
(9) simplifies to (6).

(b) Fix p € R, let h solve (6), and define H(z,t) := tP/2h(z//f). The
function h, being a solution of (6), can be expressed as ¢, Yi(z)+ caYa(z), where

(7") _M(_ P»}n% )v Yz(z) =.’BM(——(p )’2v2 (10)

are linearly independent solutions of (6); here z — M(a, b, z) is the solution of
Kummer’s equation

w”(z) + (b — 2)w'(2) — aw(z) = 0

given by

a(@a+1)---(a+n-1)z"
M(a,b, R

(a,5,2) Zb(b+1) b¥n=1) nl (11)
See 13.1.1,13.1.2,19.2.1 and 19.2.3 in [1]. For b > 0 as in the present situation,
M(a,b,z) is an entire function of z. Moreover, Y; (resp. Y) is a polynomial
if and only if p is an even (resp. odd) non-negative integer. The asymptotic
behavior of M is known [1; 13.1.4], and yields the estimate

|h(z)| < Const. - exp(22/2) - [1 + |z|] T (12)

Clearly (12) implies the bound appearing in part (ii) of Lemma 2. Moreover,
because h satisfies (6), H satisfies 0H/dt + 302H/8z? = 0. The first assertion
therefore follows from Lemma 2(ii). Turning to the second assertion, if p > 0,
then P°|H(B;,t)| < oo by (12). The family {H(B;,t);t > 0} of P’-integrable
random variables is a martingale because of Lemma 2(ii). By the backward
martingale convergence theorem, the limit lim; o H(B;,t) exists P%-a.s. and in
L'(P%); the P°-a.s. limit is easily seen to be 0, by (12) and the law of the iterated
logarithm. Consequently, if H(Bo, 0) is understood to be 0, then {H(B,t);t >
0} is a P? martingale.
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(c) Let h be a C? function such that ¢ — tP/2h(B,/\/%) is a P® martingale
for some z # 0. Then h satisfies (6), and unless h is a polynomial the estimate
(12) can be strengthened to an asymptotic equivalence:

|h(z)| ~ Const. - exp(z?/2) - 2|71, |z] — 0.

See 13.1.4 in [1]. The P? integrability of h(B;/V/1), for t = 1, implies that for
N sufficiently large

00> / Ih(y)] exp(—(y — 2)*/2) dy
R

2> Const. -eXp(-xz/”/ exp(zy)ly| """ dy,
lyI2N

which is clearly absurd because £ # 0. Thus, h must be a polynomial. In
view of (10) and (11), the only polynomial solutions of (6) occur when p is a
non-negative integer, and any such polynomial solution is proportional to h,. O

Remark. Only the local martingale property of t?/2h(B;/+/t) and the inte-
grability of h(B;) were used in the proof of (c). An alternative proof, which
uses more fully the hypothesis that t?/2h(B,//%) is a martingale, was sug-
gested by the referee: If t?/2h(B;/\/t) is a P® martingale for some z # 0,
then lim, o t?/2h(B;/\/t) exists P® almost surely. This implies the existence of
limg o t?/2h(x/+/t), which forces the (entire!) function h to have a pole (of order
at most p) at infinity. In other words, A must be a polynomial.
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concerning the confluent hypergeometric function M.
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