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In this note, some properties of continuous martingales shall be investigated,

starting from the following important remarks :

from Levy’s characterization of Brownian motion as the continuous martingale

(Mt) with increasing process M> t = t, one readily deduces the following

invariance properties :

i) if (~et) is a predictable process which only takes the values + 1 and -1,

then : :
- 

ME M, where : M~t def t0 ESdMs ;
ii) for every bounded predictable process 

D03C6t = exp(t0 03C6sdMs - 1 2 t0 03C62sdM>s)

is a martingale, and if we denote by Q = Q03C6 the probability such that : :

= 

then : : M - L cps dM>s satisfies : {M,P}

iii) if SMt = sup Ms > then : SM - M |M|
" ’ s~t 
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To avoid any confusion, let us emphasize again that these identities in law
are true for M a (~t ) Brownian motion. (Indeed, for a general continuous
local martingale M, D~ may only be a local martingale... ).
In fact, in the sequel, where M is not in general a Brownian motion, it will

be convenient for our discussion to consider some adequate variants of ii),
precisely :

ii)det Same as ii), but 03C6 is now a deterministic, Borel, bounded, process ;

Same as ii), but rp is now a bounded predictable process, which

depends only on M>.

The rest of this paper consists in discussing which continuous martingales M,
other than {~t) Brownian motions, satisfy i), or some of the above variants
of ii) or iii).

For instance, it is not difficult to prove that, more generally, if (Mt) is

a Gaussian martingale, which is, as is well-known, equivalent to :

(M>t,t ~ 0) is a deterministic process,

then all three properties are still valid.

Pushing those arguments a little further, it is not difficult again to show
that these properties are still valid for (Mt) an Ocone martingale that is :
a martingale whose Dubins-Schwarz representation : Mt = ~~M~ 

t 
features

independent ~ (: Brownian motion) and M>.

The reason for our terminology is that Ocone [2] showed that this independence
property is equivalent to the above property i). Moreover, a discussion of the

interest of Ocone martingales in relation with Levy’s transformation (in other

terms, property iii)) is made in [1].

Concerning property ii), we shall now show the
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Theorem 1 : The following properties are equivalent : :

a) (Mt) is an Ocone martingale.

b) Property holds ; c) Property ii) det holds.

Proof : . c) ~ a) We assume that ii)det holds, and we consider a
deterministic integrand cp, always assumed to be Borel, bounded.

We then use that, for positive functionals F, one has, simply from the defi-

nition of Q :

t)] = 

Now, as a consequence of one has :

t)] = t)],

so that :

t)] = 

Obviously, this is equivalent to : t] = 1,

hence also to :

(1) EP[exp(t0 03C6sdMs)|M>s,s ~ t] = exp(1 2 t0 03C62s dM>s).
The right-hand side of (I) is equal to :

EP 03C6sd(03B3M>s))|M>s,s ~ t) >
where (03B3u,u ~ 0) is a Brownian motion independent of (M>s,s ~ 0).



420

Hence, the identity (I) yields :

(2) (Mt,M>t ; t ~ 0) (law) (03B3M>t,M>t ; t ~ 0).

Recall that : Mt = 03B2M>t; hence, time-changing both sides of (2)

with the inverse of (M>t,t ~ 0), we obtain :

~(J~u~u ’- p) ~ 3 (~M~t~t ’- p)~ ((~,u~u , p) ; l (~M~t~ t~ 0)~

which shows precisely that @ and M> are independent.

. a) _~ b) : We start from 0) an Ocone martingale,

and we consider an integrand of the form : s), which is

predictable and bounded.

Then, we have, denoting simply M for 

t)]

- u ~ t ) 2 1 t "

o 0

We then recall :

.... 

M> 
u

Mu = ~~M~ - t

u 
0

and we also perform the time-change in the exponential.

Next, within the latter expectation, we condition with respect to the 03C3-field

generated by (M>u,u >- 0) ; then, as a consequence of the well-known property
it) for Brownian motion, we obtain that :

this conditional expectation is equal to

>u  t) I M>]
u
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and we denote :

Gt = ~ + 
(~ 
~0

On the other hand, we associate to F the martingale :

Ft = = 

using the f irst part of the theorem.

We now apply Ito’s f ormula :

FtGt = Fo03B3 + t Fs-dGs + t GsdFs + [F,G]t,
~0 ~0

but, since G is continuous, and (Ft) and (Gt) are orthogonal, we have :

= == 0.

Thus, finally, 03A6 ~ FG = Fo + ~ Fs- 03C6(M>sdMs + ~ GsdFs,
~0 ~0

which proves the second point, a

We now give some examples of Ocone, and non-Ocone martingales.

Theorem 3 : Let (Bt,t >- 0) be a (Ft) Brownian motion, aad (for simplicity)

let ( t,t ~ 0) be a (Ft) adapted, continuous process such that s ~ 0,

ds dP a.s., and = oo a.s.

~0 ) 

Then, {Mt = t s dBs, t >_ 0} is an Ocone martingale iff the Brownian motion
~ Jo ’ ’ 
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so that finally we have obtained :

t)] = t)].

. b) :=~ c) : This is obvious. D

Comment 1 : Note that property it) only involves martingale densities (D~)
which are stochastic integrals with respect to dM . In [3] it is remarked in

Exercise (1.41), Chap. VIII, that the only martingales such that the

reinforcement of ii) holds with any possible martingale density are the

martingales with deterministic bracket, i. e : the Gaussian martingales,
denoted by G below.

Comment 2 : a) It is quite doubtful that the general property ii) is satisfied

for an Ocone martingale ; we postpone investigating this equation in depth.

R ) To avoid lengthening the statement of Theorem 1, we did not add

there the following equivalent property d), which is nonetheless worth

mentioning :

d) for every deterministic bounded process cp, {M>,P}.
The proof of the equivalence : a) ~-=~ d) uses the same arguments as :

a) ~_===~ c).

Comment 3 : Although an Ocone martingale shares properties i), and iii)

with Brownian motion, it does not share a priori the important martingale

representation property, that is, precisely : every martingale {Nt) , with
respect to the natural filtration of (Mt ) , is not necessarily a stochastic

integral with respect to M.

Indeed, there is the following

Proposition : : An Ocone martingale (Mt,t >- 0) enjoys the martingale repre-

sentation property (with respect to its natural filtration) i f f (M>t,t >- 0)
is a deterministic process.
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Proof : Since, from the definition of an Ocone martingale, M> is independent

of ~, the DDS Brownian motion associated to M, we can write :

(-) PM = P(M> E da) Wa ,
where PM , resp : Wa, denotes the law of M, resp : the law of the conti-

nuous martingale with (deterministic) increasing process a(’).

We now recall (see, e.g. [3], Chap. V) that M enjoys the (martingale)

representation property iff PM is extremal among the set of laws of

(continuous) martingales.

Now, from (*) , it follows that PM is extremal iff P(M> e da) reduces to

a Dirac measure ; in other terms, there exists a deterministic increasing

function a( ~ ) such that : P(M> = a( ~ )) = 1. a

At this point, it seems interesting to draw the following diagram, which

indicates 4 remarkable classes of continuous (local) martingales :

A classification of continuous local martingales.

The four letters stand for : @ : : extremal, P : pure,  : gaussian, C : Ocone.

And the diagram indicates that : ~ c P c ~ , where c denotes strict

inclusion.

On the other hand, 0 n ~ = n n ~’ _ ~.
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We now wish to complete the above Proposition by describing all martingales
with respect to the natural filtration of (Mt). It will be useful to

introduce {Nt} the natural filtration of {M>t,t >_ 0}.
We now prove the

Theorem 2 : Let (Mt) be an Ocone martingale :

1) Every {N t} martingale an martingale, and it is orthogo-

nal to (Mt) , that is : (NtMt,t ~ 0) is a {Mt} local martingale ;

2) The space generated integrable {Mt} martingales is the direct sum generatedstable space generated by {Nt} martingales and of the stable space generated

bY 

Proof : 1) Consider (Nt) a uniformly integrable {N t} martingale.

We shall show : ] = Nt (= 

which proves the first point of the first assertion of the theorem.

With obvious notation, one has :

t)]

= 

f (~ ~M~ ~ s ‘- t)js

= t)]

= W(dw) t)]

= ,s ~ t)].

Similarly, we now show that 0) is a martingale. Let s  t.

Then, we have :
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s)]

= E[Nt > u ‘- s)~.

We then use the martingale property for ~, and the independence of M> and

~ ; this yields :

Mt s)] = ~M> s ,u ~ s)].

Next, we use the martingale property for (Nt), with respect to {Nt} ; we
obtain :

Mt s)] = ~~M> ~)~

= Ms s)].

2) To show the second point, it suffices to consider variables

~ e L2(M~,P), of the form : ~ = FG, where F E L2(N~,P) and G E L2(B~,P) ,
where B~ = 03C3{03B2s,s ~ 0}.

As is well known, G may be written in the form :

G = 2’ + 

~0
for some y e ~, and some predictable process c~ such that :

E r  ao.

~0

Making the time change s = M> , we obtain :

G = y + ~ 03C6(M>u)dMu ,0
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{03B8t def t sgn( s)d
s,t ~ 0 } is independent from the 03C3-field

0

N~ = 0}.

Proof : As previously discussed, 0} is an Ocone martingale iff

(3) E [exp (i ~0 03C6(s )dMs)| N~] = exp (- 1 2 ~0 03C6 2(s) dM>s)
m

f or any {N 
s 
} predictable process ~p, such that : ~~  ao.

The identity (3) is obviously satisfied if 8 is independent from N .

Conversely, assuming that (3) holds, we now take : cp(s) = f(s) 
1 

with f

)
a generic, simple, deterministic f unction, with compact support. Thus, we

deduce from (3) : :

E exp i 
~ 

N - exp - 1 ~ ~ ~ ~0 s I o0 ~ 2 ~0 
which is obviously equivalent to the independence of 8 and N~ o

Here is another (fairly general) variant of Theorem 3.

Theorem 3’ : Assume that {Nt} ts the naturaL f iLtration of a {Ft} martin-

gaLe which is pure, i.e : Nt = N>
t 

,t >- 0, with (N>t,t ~ 0)

measurabLe with respect to the 03C3-field 03C3{03B3u,u ~ 0} of the Brownian motion

(3’u,u >- 0).

Then, > 0) is an Ocone martingaLe as soon as N and M are orthogonaL.

Proof : It f ollows immediately f rom our hypothesis and Knight’s theorem on

continuous orthogonal martingales (see, e.g, [3)) that 03B2 and 03B3, the
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respective DDS Brownian motions of M and N are independent. Now, since N~
is, again under our hypothesis equal to the 03C3-field generated by , N~ and 03B2
are independent, which finishes the proof. a

To conclude this work, we present a number of simple examples of Ocone, resp :

non-Ocone, martingales.

Of course, to avoid trivialities, when looking for Ocone martingales, we

exclude the Gaussian examples (one might call the non-Gaussian Ocone

martingales "strictly Ocone" martingales).

a) Perhaps, the most simple example of an Ocone martingale is

M(1)t = t0 CsdBs , t ~ 0,

where B and C are two independent Brownian motions.

The stochastic area of the planar Brownian motion (Bt,Ct), defined as :

At = 1 2 t0 (CsdBs - BsdCs)

is another example of an Ocone martingale.

This follows readily from Theorem 3, since :

A>t = 1 4 t0 ds R2s , R2s ~ B2s + C2s ,

and we can write :

At = 1 2 t0 Rsds ,
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where t 
def t0 CsdBs-BsdCs Rs , t ~ 0, is a real-valued Brownian motion inde-

pendent from (Rt,t ~ 0) ; see, e.g., Yor [9].

b) Here are now some examples of non-Ocone martingales, among which :

M(2)t = t0 BsdBs , t ~ 0

and 03C0t 
def 

BtCt = 
t0 

(CsdBs + BsdCs).

Indeed, (Mt2), t ~ 0) is a pure martingale, which is easily seen by

time-changing it with the inverse of

= t ds B’M(2)>t = t0 ds B2s

(see, e.g., Stroock-Yor [6]). Since M(2)> is not deterministic, it follows

from the above classification that is not an Ocone martingale.

Also, it is easily seen that the property d) in Comment 2 above is not

satisfied for q/(s) = 1 (e In fact, under Q~ = Q~’, the process (Bt) is

an Ornstein-Uhlenbeck process with parameter A, hence :

(~Mc2)~~Q~) ~ (~Mt2)~~P).

The argument we shall use for {~rt} is somewhat different : first of all,

one finds :

03C0>t = t0 ds R2s ,
but the process 0} is certainly not independent from the

Dubins-Schwarz Brownian motion attached to {~rt} (hence, is not an

Ocone martingale).
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We see this non-independence property as follows : since one has, obviously :

then, conditionally on (Ru,u >- 0) , the variable (BtCt)

cannot be Gaussian, since it is bounded.

Thus, {03C0t} is not an Ocone martingale ; we also remark that it is of the

form t0 (A Bs,dBs), where Bs = (Bs Cs) , and A = (0 1 1 0). Hence, since A is

symmetric and has two non-zero, distinct eigenvalues (+1 and -1), it follows

from [7] that the natural filtration of is that of a 2-dimensional

Brownian motion.

We end up with an example of an Ocone martingale Mt = t0 03C6s dBs within the

0

filtration of a 1-dimensional Brownian motion (Bt,t >- 0), and we also assume

that 03C6s ~ 0, ds dP a.s. (otherwise, there are some quite easy examples).

We write : Mt = t0 s ds , with s = s0 sgn(Bu)dBu (hence : 03C6s = s sgn(Bs))

With the help of Theorem 3, we choose (s,s ~ 0) to be a strictly positive

process, independent from the Brownian motion {Bt } , whose natural filtration

is identical to that of (,t >- 0}. This implies that 0} is an

Ocone martingale ; to be more explicit, we may take, as an example of process

{~Ps} ~ i

s = as 1(sto) + (1 + 2 sgn(Bto ))1(to~s),
for some to > 0, and {as} a strictly positive deterministic function.

We also note that, as a consequence of Theorem 2, no strictly Ocone martingale

(Mt) , such that is equivalent to Lebesgue measure dt on R+ can

generate the filtration of a 1-dimensional Brownian motion.
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Final comment : As a consequence of Theorem 2, the filtration of an Ocone

martingale, when it is not Gaussian, corresponds, in Mathematical finance, to
an incomplete market. However, the above representation theorem should be
useful to discuss further constructions of probability measures now familiar
in such cases in Mathematical finance, e.g : the variance-optimal martingale
measure for continuous processes [5].
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