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Monotonicity Property for a Class of Semilinear
Partial Differential Equations.

Siva Athreya*

Abstract

We establish a monotonicity property in the space variable for the solu-
tions of an initial boundary value problem concerned with the parabolic partial
differential equation connected with super-Brownian motion.

1. Introduction and main result

The "hot spots" conjecture of J. Rauch has been analyzed in certain planar domains
D by R. Banuelos and K. Burdzy [BB99] using probabilistic methods. In that pa-
per, they synchronously couple two reflected Brownian motions and establish some
monotonicity properties for solutions of the heat equation in D.

In this note we show that by applying similar coupling techniques to super-reflected
Brownian motion one can prove a monotonicity property for solutions of a class of
semilinear elliptic partial differential equations connected with super-Brownian mo-
tion. The result follows easily via an application of the existing machinery developed
in the field of super-processes.

The purpose of this note is to enunciate the ease with which the probabilistic argument
shown in [BB99] can be extended to provide a non-trivial result for solutions of certain
semilinear partial differential equations. To the best of our knowledge the result
presented in this note is new in the field of semilinear partial differential equations.
We consider solutions u : : x D -~ lf~..~ of the following initial boundary value
problem:

~u ~t(t,x) = 1 20394u(t, x) + 03A6(u(t,x)), x ~ D, t > 0, (1)

u(0, x) = 03C6(x), x ~ D, (2)
~u ~n(t,x) = 0, x ~ ~D, t > 0. (3)

Here D is a bounded connected subset of E C1, 
continuously differentiable function of the form

03A6(03BB) = aiA - b103BB2 + / (1 - exp(-Au) - au)v(du), (4)
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Figure 1: Obtuse triangle

where al E R, 0 and v(du) is a regular Borel measure in l~+., such that fo u A
u2v(du)  oo. It is well known that solutions to this initial boundary value problem
exist and are unique.
The partial differential equations that arise when ~(a) _ -~2(choose bl = 1 and

v(du) = 0) and ~(.1) _ -al+a, 0  ,Q  1 (choose bi = 0 and v(du) = ci >

0) are connected with binary and {3-branching super-Brownian motion. The path
properties of the process and various analytical properties of the partial differential
equations have been extensively studied ([DIP89], [LG95], [Dyn91]).
Our main result is concerned with the direction of the gradient of x) in obtuse
triangles. We consider an obtuse triangle D, with the longest side of the triangle lying
on the horizontal axis. The triangle lies in the first quadrant and one of its vertices is
at the origin. The smaller sides of the triangle form angles a and b with the horizontal
axis, with a E (- 2, 0) and b E (0, 2 ) (See Figure 1). Let x) be the angle
formed by the gradient Vxu(t, x) with the horizontal axis. For the remainder of this
article (unless stated otherwise) D will denote this obtuse triangle.
Theorem 1. . Suppose that u(0, x) is C1 and c  x)  d for all x E D, where
c > b - 2 and d  ~ + a. Then for every t and x we have

min(a, c)  x)  max(b, d).

The main idea of the proof is to construct a synchronous coupling of historical reflected
Brownian motions in D. We use the same method as in [Kle89]. The final step uses the
log-Laplace functional of super-reflected Brownian motion to obtain the monotonicity
property for the solutions to (1).
Notation: We shall denote x E R2 as x = x2), where each xi E R (real numbers).
For any Polish space G, y E G, measurable function f : G -3 R and a measure m
on G, we define ( f m) = fG f(y)dm(y) and ~y as the dirac measure at the point y.
For d > 1, Bd will denote the Borel a-field on ]Rd, Cd = C~ = {y E
Cd : y = 2/(- ~ A t) ~, Cd will denote the Borel a-field of Cd, MF(Cd) the set of all
finite measures on Cd, and = ~m E MF(Cd) : : y(~ I1 t) = y m a.e. y~.
For z, w E Cd, we define

z(u) if u  s,(z/s/w)(u) = { w(u - s) if u ~ s.
2. Synchronous coupling of historical reflected Brownian motions
First we provide a brief construction of "synchronous coupling" of reflected Brownian
motions. We refer the reader to [BB99] for further details. Let Bt = (Bt , Bt ) be
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a two dimensional Brownian motion starting at x = x2), where x2 > 0 and
Ct = = (Bt + (yl - + (y2 - x2)), where y = with y2 > 0.
Define çf = 0 A mins~t and çf = 0 A mins~t C;).
We shall call the pair a synchronous coupling of reflected Brownian motions
in the upper half-plane. The above construction can be generalized to any polygonal
domain D C 1~2. The construction gives us for every pair of x, y E D, a pair of reflected
Brownian motions starting at (x, y), such that ~t remains constant in the
time periods when both processes are in the interior of the domain.

We proceed to define a historical process Ht on D x D. Let be spatially coupled
reflected Brownian motions as in [BB99], starting at x and y in D. Then çt = ~t )
is a continuous Markov process taking values in D x D. The path valued process
03BEt = (03BEx (. n t), 03BEy (. n t) ) will be the motion process for Ht and 03A6 (as in 4) will describe
its branching mechanism. Applying Theorem 2.2.3. in [DP91] to the process (~, ~),
we see that the measure valued ~)-historical process Ht exists. The semi-group
Qr,t of H is determined by

= Vr,t(~)))~ >

where = (6z, Vr,t(03C8)~ is the unique solution of

Vr,t(03C8(z)) = Pr,y(r)(03C8(z/r/03BEt-r)) + t-r0 Pr,y(r)(03A6(Vs+r,t(z/r/03BEs)))ds, (5)

where 1/’ is a bounded positive measurable function, m E and z E C4, r 

t.

Since the branching mechanism is spatially homogeneous, the measures
Ht (dx) = Ht(dx x C2) and H2t(dy) = Ht(C2 x dy) are the historical processes asso-
ciated with çf and We call the pair Hf) as synchronously coupled historical
Brownian motion.

Let = y(t) be the coordinate map in C2. Keeping the particle picture in mind,
Xt = H1t03A0-1t and Yt = H2t03A0-1t are 2-dimensional super-reflected Brownian motions in
R2 with the branching mechanism 4? and the motion process 03BEx and 03BEy respectively.
This is verified in Theorem 2.2.4 [DP91]. Let ~ be a positive bounded measurable
function in D. The log-Laplace functional of Xt with Xo = ~c (see [Fit88]) is given by

(~~ ~)))~ I~ E MF(D)~ (6)

where v(t, x) = (~~, = is the the unique solution of

v(t, x) = St(03C6(x)) + t0 St(03A6(v(t - u, .))(x)du. (7)

As 03C6 and 4? are continuously differentiable, by Theorem 1.5 (page 187) in [Paz83],
we conclude that v(t, x) is a solution to (1), with initial conditions (2). As v solves
(7) and the fact that St is the semi-group of reflected Brownian motion imply that v
satisfies the Neumann boundary conditions (3). .

3. Proof of Theorem 1

Let x, y in D be chosen so that they satisfy
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1. xl  yl,

2. they are on a line K inside the domain D, such that

max(b, d) - i  min(a, c) + ~. . (8)

Let Hi and Ht be the coupled historical reflected Brownian motion described in the
previous section, with Ht starting from m = ~~~,y) . Take any (w, z) in the support of
the historical measure Ht and let K(s) be the line joining the points w(s) and z(s).
The sides of the obtuse triangle are not perpendicular to each other; this and the fact
that w(s) and z(s) are "typical" Brownian paths ensures that K(s) is defined in a
unique way for all s a.s. and that we will never have w(s) = z(s). The direction of
K either remains constant or approaches the direction of the side which is currently
reflecting one of the paths [BB99].
For all s, the angle LK(s) can never leave the interval [max(b, d) - ,min(a, c)
+ ~]. We always have

 for all s > 0. (9)

Let y) = and y) = Since every path in the support of H
starts at (x, y) and 03C6 satisfies the hypothesis of the theorem, by (9) we know that

z(s))  z(s)), for all s > 0. Using the relationship established ear-
lier between super-reflected Brownian motions and solutions to (1), we may deduce

u(t, x) = - log E(exp(-(Xt, ~y))

- - logE(exp(- 

 - logE(exp(- 

(10)

Hence the solution u(t, x) is monotonically increasing in xl for all x2) E K n D.
Since this is true for every line K satisfying (8), the gradient of u(t, x) must satisfy
the condition stated in the theorem. 0

4. Remarks

The assumption that D is a triangle plays no role in the arguments described in the
proof of Theorem 1. The only property D needs to satisfy is that, if two reflected
Brownian motions in the domain are synchronous coupled, then the left particle will
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stay left of the other particle for all time t. We refer the reader to [BB99] or [Ath98]
for examples of certain polygonal and non-convex domains D in 1~2 with the above
property.

We also wish to point out that the special form of ~, which enabled the particle
representation of the partial differential equation (1), was crucial for the result to
hold true. The Feynman-Kacs representation of solutions to the partial differential
equation do not yield monotonicity properties of the solution. Hence there does not
seem to be an obvious probabilistic method to extend the above results to other partial
differential equations.
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