
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

YASUKI ISOZAKI

SHINICHI KOTANI
Asymptotic estimates for the first hitting time of fluctuating
additive functionals of brownian motion
Séminaire de probabilités (Strasbourg), tome 34 (2000), p. 374-387
<http://www.numdam.org/item?id=SPS_2000__34__374_0>

© Springer-Verlag, Berlin Heidelberg New York, 2000, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_2000__34__374_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Asymptotic estimates for the first hitting time of
fluctuating additive functionals of Brownian motion

Y. Isozaki S. Kotani

1 Introduction

In [3], we obtained the following estimates for the first hitting time of the integrated
Brownian motion: Let B(t) be the linear Brownian motion started at 0. It holds with
some explicit constant k > 0

(1.1) P[u0 B(s)ds  r for all 0 ~ u ~ t] ~ kr1/6t-1/4 as r1/6t-1/4 ~ 0,

which is a refinement of Sinai’s estimates[12].
The above formula as well as the other ones follow systematically from the theorem

in [3]: Let (X(t), Y(t)) be the Kolmogorov diffusion ([5]).

(1.2) Y(t) = y + B(t), X(t) = x + t0 Y(s)ds.
Let T be the first hitting time to the positive y-axis:

(1.3) T = inf {t > 0; X(t) = 0, Y(t) > 0}.

Hence Y(T) is the hitting place on the positive y-axis. We denote by and 

the expectation and the probability measure for this diffusion respectively.

Theorem ~f ~~) > 0 and x  0, y E 1~ it holds

(1.4) 

as tends to 0, where

h , (~, ~) _ 3( 2h + ~)r~s) ~1~3
2~ + 21~s

and

(x,y) = |x|5/6e-2(y+)3/9|x| 0393(1 3) ~0 dte-t(|x|t + 2|y-|3/9)1/6(|x|t + 2(y+)3/9)-5/6.
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The proof depends heavily on a formula obtained by McKean[8].
We considered in [4] a generalization for this problem. We redefine (X(t) Y(t)),

the odd additive functional, as

(1.5) Y(t) = y + B(t), X(t) = x + 

and we retain the notations T, E(x,y) and In [4], we were able to prove some
weaker estimates:

Theorem ~f.~~~ For a > 0, v := l/(o; + 2), x  0 and y = 0, there exist positive
constants k’(a), k"(a) such that

(1.6)  > t]  

for all 

The present paper proves the existence of the limit value for > t~,
and more generally, we obtain similar results for some additive fuctionals that are not
odd, or symmetric. We shall observe that the exponent -1/4 of time parameter in
the above theorems varies between 0 and -1/2 in accordance with the skewness of
additive functionals.

There are at least two approaches for our problem: the analytical one using Krein’s
spectral theory of strings(cf. Kotani-Watanabe~6~) and the probabilistic one based on
the excursion theory, among which we mainly take the latter course.

Acknowledgement. The authors would thank M. Yor for helpful discussions.

2 The main theorem

In the remainder of this paper, almost all quantities depend on the parameter a > -1
and c > 0 without a.ny mentioning. Let V be a function on the real line which is

positive on (0,oo) and negative on (-oo, o).

(2.7) V(x) for x > 0; V(0) = 0; V(x) = for x  o.

We define a diffusion (X (t), Y(t)) on 1~2 in a similar way and denote it by the same
symbol:

(2.8) Y(t) = y + B(t), X(t) = x + t0 V(Y(s))ds.

We denote by E(x,y) and the expectation and the probability measure for the
diffusion started at (x, y) E Let T be the first hitting time to the positive y-axis
as usual. Let To be the first hitting time to x-axis:

(2.9) T! = inf~t > 0; Y(t) = 0}

and for r~,.l, ~c > 0, x  0, y E 1~ define uo(x, y) = uo(x, y; by

(2.10) uo( x, y) = 
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and more generally u ( x, y ) - u ( x, y; r~, a, ~ by

(2.11 ) r(x, y) = [exp {- T - 0 8T) - 0 9T - T)} ]
(2.12) _ E(x,y)[exp {-~T} F(,1V + r~; Y(T))]

here 8t is the usual shift operator on the path space and the function F(aV + ~; z) is

the unique bounded solution of 2 F"(z) = (aV (z) + on (0, oo) with F(0) = 1.
It is clear that 0  u(x, y)  l, ’u(O,O) = 1 and uo(0, y) =1 for y > 0.

Theorem 1 Define positive numbers 0  v  1, 0  p  1 by v = + 2)
and c" sin p) = sin Then for ~, ~, ~ > 0 there exists a positive constant

a,,u) such that it holds

(2.13) 1- v(x, 4; ~1/2y~, N ~t 

as tends to 0.

Corollary 1 It holds that

(2.14) 1- 0; ~) ^’ C(0, 4~ 

as tends to 0, in other words,

(2.15) P[s0 V(B(u))du  |x|for all 0 ~ s ~ t] ~ C(0,0,1) 0393(1 - 03C1/2) |x|03BD03C1t-03C1/2
as tends to 0.

We have, more generally, the following theorem.

Theorem 2 There exist a positive constant C(x, y) such that, for r~, ~, ~ > 0, x  0

and y E R, it holds that

(2.16) 1- ^’ 

for positive Q, ~ such that tends to 0, where a, ~c) is the same as in

Theore’m 1 and C(a,~, y) is given by

- > Y " 
()

~0 dte-t (|x|t + 203BD2 c|y-|1/03BD)
03BD03C1 (|x|t 

+ 203BD2(y+)1/03BD)-1+03BD-03BD03C1 .

Remark 1. The function u has the following scaling property: for any c > 0

- 

_ V ’ ’~j ]
and the theorems are stated accordingly.
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Remark 2. The distribution of Y(T) under P(o,y) is known explicitly by Rogers-
Williams[10], see also McGill[7]: For y  0,

(2.17) P~(T) ~ ~ = 

Their methods do not seem to cover, however, the cases involving the stopping time
T.

Remark 3. We denote by the inverse of the local time of Y at 0. It is well

known that ~ is a stable process with index ~ and it holds

(2.18) P [ for all s  q - 1 const 
as tends to 0. See e.g. Bertoin[2]. This result has the same order as our

Corollary 1 in the space variable but differs in the time variable t.

Remark 4. Note also that p is equal to the probability > 0]
independent of t, which can be proved using the result by Zolotarev[13].

3 Proof of Theorem 1

We denote by L(t) the local time at 0 of Y(T): Lt = 1(-~)(~))~ and
by t or the right continuous inverse of Lt: t = r() = inf{u > 0; Lu > t}. Let
n+ and 7~" be the Ito measure for positive and negative excursions respectively, and
set n = n+ + n". ..

We denote a general excursion by 6 = > 0), its lifetime by ( = ((e) and
define a random time for r  0,

(3.19) T(6,~)=inf{o~(;~+ it V(~)~>o}. .
We set = ( if there is no such t. It follows, through calculations of the Levy
measure of that 

’

n+[1 - exp{-03BB03B60 V(~s)ds}] = 03BD203BD-1203BD0393(1 - 03BD) 0393(03BD)03BB03BD,

n-[1 - exp{03BB03B60 V(~s)ds}] = 03BD203BD-1203BD0393(1 - 03BD) 0393(03BD)(03BB/c)03BD
for positive A and that

(3.20) n+ [ 03B60 V(~s)ds > 03BE] = 03BD203BD-1203BD 0393(03BD)03BE-03BD,

(3.21) n- [ 03B60 V(~s)ds  -03BE] = 03BD203BD-1203BD 0393(03BD)(c03BE)-03BD
for positive 03BE.

We have an integral equation for it(~,0).
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Lemma 1 We extend u for positive x by u(x, 0) = l. . Then it holds for x  0

C
n u x + ~ 0 - u(x, 0) 0

(3.22) - n u x + ~ 0 ~1- + ~; x)))} . .
Proof. Let F(z) = F(03BBV + 03BA; z). Define a V b = max(a, b), a n b = min(a, b) and

M(t) = u(X(t n T ), Y(Tt n 

then u(x, 0) = holds for any t > 0 and x  0.
If T  Tt_ then M(t) - M(t-) = 0.
If Tt_  T  Tt then Tt is the first hitting time of 0 by Y after T, i.e., Tt = To o BT.

In this case,

M(t) - M(t-) .= - 0)

and T - Tt_ = X (Tt_ ) ), here ~ denotes the excursion started at Tt_ and ended at
Tt: ~$ = Y(S -f- TZ_), S  Tt - Tt_..

Finally if Tt  T then

M(t) - M(t-) = 9) - 0)

and t - Tt_ _ 03B6(~). The master formula of excursion theory(cf. Revuz-Yor[11] page
439) tells us

( M(s) - NI (0) ~ = ~ 
~ X(Tt_)))) -  ~ ~

c

X(Tt_) + ~ ~ _ ~ 
Recalling u(x, 0) = M(s ) ~, we know that the integrand of the right hand side
is identically null.

Since X(Tt) is a v-stable Levy process, the paths are right continuous and the
transition density decays as t goes to 0 uniformly outside any neighbohood of X(0).
The proof is hence complete if we show

n+ ~ e ~T ~~’x~F(~~T (E, x))) - ~)s x)  ~ ~
C

+n ~. + ~ 0 - u(x, 0); T (~, x) _ ~ ,

which coincides with

n u x + / 0 x))) - u(x, 0) ,0

is continuous on ~x  0} and its absolute value is dominated by an integrable function
plus a constant. We need the following lemma.
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Lemma 2 The function u(z,» is infinitely differentiable on lz  01 and £ is
positive.

Moreover, if a > 0, v  1/2 then p is positive, in particular ~u ~x = o(i/lrl) asz 

au 
z

z - -cxJ. If - i  a  0, 1 /2 « v  i then £ = O( i/ lzl) aS z - -CxJ .
an,~

Remark. It can be proved for any m > 0 and n > 0, ~ 
= However

z
the statemant above is sufficient for our purpose.

Proof. Let F(z) = F(AV + x; z). By the scaling property it holds that

u(z, 0; x, A, p) = 

Since F( z) decays exponentially as z - ~, the differentiation inside the expectation
can be justified. Hence

#-$(z,0;K,A,p) = E-i,o> 

.
Here -F’(z) is a positive decreasing function. The integrand is obviously positive
and if 2w - 1  0 it is strictly decreasing in ]z]. If w > 1 /2, we use again the scaling
property:

£l’~’ °% ~’ A’ M) " + ~~’~"Y(T)(~F~(Y(T)) I °

The integrand is a bounded function of two variables T and Y(T). D
End of the proof of Lemma 1. The difference between

n ) U (z + / o { V(£s)dS, °) e~"~~~~’~~F(£(T(E, z))) - u(z, 0) )
and n ( u(z + j/ 0) - ii(z, 0) ] is bounded since it is dominated by

n j 1 - ~~>T(E>X) > z))) j ]
> n j 1 - exp -p7’(e, z) - x(( - T(e, z)) - A ( ,~ ~(e,x) ~ ~

which is also bounded by

n [ 1 - exp { -(  03BA)03B6 - 03BB 03B60 V(~s) 0ds} ]
 n [ 1 - exp ( - (p v x )( ) ] + n [ 1 - exp{-03BB03B60 V(~s) v  ~.

We divide n ( u(z + j/ V(es)ds, 0) - .u(r, 0) ) into two parts.
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n [ + J~ 0) - 0)~;) > 1 j is bounded because 0 ~ ~ ~

1 > 1 ]  oo by (3.20) and (3.21). Integrating by parts,

n[|u {x + 03B60 V(~s)ds,0} - u(x,0)| ;|03B60 V(~s)ds|  1]
= 10 d03BE~u ~x(x + 03BE,0)n+ [03BE  03B60 V(~s)ds  1 ]

- 0-1 d03BE~u ~x(x 
+ 03BE,0)n- [ -1  03B60 V(~s)ds  03BE],

which is integrable, since it is a convolution of two integrable functions au and n± [03BE 

| 03B60 V(~s)ds|].
The continuity also follows using the above arguments since T (E, x) and x))

are continuous in x. 0

Putting the explicit value of n~(~  ~ into the left side of Lemma 1,
we have

n[u(x + 03B60 V(~s)ds, 0) - u(x, 0) ]
= 03BD203BD-1203BD 0393(03BD) |x|-03BD ({1 - u(x,0)} - 03BD10 |1 - t|-03BD-1({1 - u(xt, 0)} - {1 - u(x,0)})dt

- v r I1 _ _ tl-v-~ (~l - v(xt, 0)} - {i - ({1 - u(xt, 0)} - {1 - u(x,0)})dt )
The integral transform on this right side can be inverted.

Lemma 3 For v ~ C1((-~,0)) such that dv dx is integrable, define ) E C (( -oo, 0 ) )
by

= v / - + v |1 - t|-03BD-1 c03BD(v(xt) - v(x))dt.
If v(x) - Lv(x) = f(x) then it holds

(3.23) v(x) = 0-~ dt |t| f(t)G(- |t| |x|)
with a function G(b) defined by

G(b) = G(- log(-b)), b  0,

(03BE) = lim 
A-Ae-i03BEx 203C0r(ix)

dx, 03BE ~ R

r(z) = 1 0393(03BD)sin03C003BD03C10393(1 - z)h(v + z) sin + z), z E C

and with 03C1 ~ (0,1 ) defined by c03BD = 
sin 03C003BD03C1 sin 03C003BD(1 - 03C1).
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Moreover, if  oo then

(3.24) lim v(x) |x|03BD03C1 = 0393(03BD) sin 03C003BD03C1 03C003BD03C10393(03BD03C1)0393(03BD-03BD03C1) 0-~ |x|-1-03BD03C1f(x)dx.
Remark. The Markov process associated to L turns into a Levy process by

taking the logarithm. This property enables us to calculate G(~) and r(z) explicitly.
We prove this lemma at the end of this section.

Proof of Theorem 1. . We set

f(x) = 0393(03BD)|x|03BD 03BD203BD-1203BDn [u(x + 03B60 V(~s)ds, 0) (1 - e- T(~,x)F(~(T(~, x)))) ]
for x  0. It is obvious that f(x) is positive everywhere and continuous. As we saw in
the proof of Lemma 2, is bounded, hence f(x) = 
as x tends to 0.

We have also

f(x) = 0393(03BD)|x|03BD 03BD203BD-1203BD
n [u(x + 03B60 V(~s)ds,0) - u(x,0)] .

By integration by parts, n [|u(x + 03B60 V(~s)ds,0) - u(x,0)|;|x| 2 > fo v(ES)ds) is dom-

inated by const / It is shown in Lemma 2 that = )

-oo, which implies

(lt + / o I) - o) ; 2 x > v(ts)ds / ) = 
Finally, n + ~ 0) - 0)!; ~’  ] is easily dominated

by n ~2~  ~ 1 = O( since 0   1 for every a.~.

Therefore we have shown that f (a;) = 0(1) as z - -oo, hence the integra-
bility of f(x) with respect to and the existence of the limit value for

(1- as x --> -o.

The statement of the theorem follows from the scaling property of u: for any c > 0,

~/; = /t, A, /~).

Setting y = 0, c = is equal to which

satisfies 1- u(~l~2yx, o; r~, a, ~) N const as tends to 0. 0

Proof of Lemma 3. Define the functions u and J on R by v(x) = v(- exp( -x))
and J (x) = f (- exp( - x) ). Define the integral operators L and L’ by

(3.25) g(x) := 03BD ~0 |1 - e-X|-03BD-1e-X {g(x + X) - g(x)} dX

+03BD c03BD 0-~ |1 - e-X|-03BD-1e-X {g(x + X) - g(x)} dX
(3.26) ’g(x) := 03BD c03BD ~0 |1 -eX|-03BD-1eX {g(x + X) - g(x)} dX

+03BD 0-~ |1 - eX|-03BD-1eX {g(x + X) - g(x)} dX
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for 9 E C) with integrable dg dx. It is obvious that Lv ( x ) - 
To prove the lemma, it is sufficient to show that

(3.27) v(~:) = x)dy.

We can show, by an standard argument, that I, v and Lv belong to and for

any § E S(R) it holds
(3.28) (v - Lv)(,~’~) = ~((1 - Z/)J~)
It is elementary but tedious to verify that

(3.29) 1 - r(i03BE) = 03BD c03BD ~0 |1 - eX|-03BD-1eX {e-i03BEX - 1} dX

+03BD0-~ |1 - eX|-03BD-1eX {e-i03BEX - 1} dX,

(3.30) (1- L’).~’~(x) - .~~~(~’)r(i~)J(x), ~ E S

and that the function 
1 

on R is infinitely diffenrentiable and

(3.31) r(-i03BE) = r(i03BE), 1 r(i03BE) = 
const x03BD 

+ O(x-1-03BD) as x ~ ~.

We next show for any X E S(R)

(3.32) F[~(x) r(ix)] = F~ * .
We start with

(3.33) F [~(x) 1[-A,A](x) r(ix)] = 1 203C0F~ * F [1[-A,A](x) r(ix)], A > 0.

It is clear that the left side of (3.33) converges to the left side of (3.32) as A tends to
oo.

The difference between G(y) and 2~,~’(1 (t~~~x~~(y) is dominated by 
To see this, it is sufficient to estimate positive A.

By (3.31), is less than with

some positive constants c2, c3. ~A exp(-iyx) x03BDdx = , is . domi-

nated by with

M = sup / .

z

Since 2~~’~1 (i~~~x~~(y) converges to G(y) for fixed y > 0, the right side of (3.33)
also converges to the right side of (3.32) as A tends to oo. Hence we have established
the equation (3.32).

We now show (3.27). Set X(x) = E is equal to v((1 -
by (3.30), which is further equal to the left side of (3.28). Since v - Lv = 1, ,

we have
= f(.~~).
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Here is equal to the left side of (3.32). Hence we have

= f(FX * G)
= ~-~ dy(y) ~-~ d03BEF~(03BE)(y - 03BE)

= ~-~ d03BEF~(03BE) ~-~ dy(y)(y - 03BE).

The both sides of (3.27) are continuous and bounded, and coincide in S’(R), hence
they also coincide in 

If, moreover, f(x) is integrable with respect to on the negative half

line, then 0-~ dt |t|f(t)G(-|t|/|x|) |x|03BD03C1 converges to the right side of (3.24) as x tends to
- 0 because of the following asymptotics:

G(b) ~ 0393(03BD) sin 03C003BD03C1 03C003BD03C10393(03BD03C1)0393(03BD - 03BD03C1) |b|- 03BD03C1 as b ~ - ~,

G(b) ~ 

0393(03BD) sin 03C003BD03C1 03C003BD(1 - 03C1)0393(03BD03C1)0393(03BD - 03BD03C1)
|b|1-03BD03C1 as b ~ -0,

G(b) ^’ + 1 as b --~ -1. .

D

4 Proof of Theorem 2. .

By the scaling property of Brownian motion, we have for positive c

= 

In the previous section it is established with some constant C > 0

(4.34) 1- 0) - as c --7 +0

while in this section we prove

(4.35) 1 - ~’(.r, y) - y) as c -~ +0

for fixed x  0, y E R.

4.1 The case of the starting point (x, y) in the third quadrant.
Let Yo = y  0. In this case % is negative until the hitting time Applying
the optional sampling theorem to the martingale F(AV- exp ~ fo V(Y(s))ds ) ,
A > 0, we obtain 

~ 

= F(aV ,

where F(aV ; z) is the unique bounded solution of 2F"(z) = on ~z > 0~
with F(0) = 1. 
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The function ~) is expressed in terms of modified Bessel functions:

= ~2014(2A/c)~~~(2~~(2A/c)~~).
Here 1/ = 1/(2 + a) as usual. Using the formula (2.13.42) in Oberhettinger-Badii [9],
we can invert the Laplace transform to obtain

(4.36) E(0,y)[X(TY0) ~ d03BE] = 03BD203BD203BD|y| 0393(03BD)c03BD|03BE|1+03BDexp {-203BD2|y|1/03BD c|03BE|} d03BE on {03BE  0}.

It is obvious that the law of X(TY0) under is identical to that of x + X(T) )
under P(o,!/). .

By the strong Markov property of (~(~),~K(~)), ,

= 

= ~(X(T~),0)] + 0(E[1 - exp {-c~}]).

We see from (4.35) that 2014201420142014’2014 is dominated by with some constant C’,
c~ 

~ ) ’

and it is well known that = = O(c).
Combining this with the integrability of |x + we know

lim 
1 - uc(x,y) Cc03C1 

= E (0,y)[|x + X(TY0)|03BD03C1] .

Putting (4.36) into the right hand side,

(x,y) = E(0,y) [|x + X(TY0)|03BD03C1 ]
= ~0 d03BE (|x| + 03BE)03BD03C1 03BD203BD203BD|y| 0393(03BD)c03BD|03BE|1+03BD exp {-203BD2|y|1/03BD c|03BE|}.

Replacing ~"~ by t , we obtain

(x,y) = 0393(03BD)-1 ~0 dte-t (|x|t + 203BD2|y|1/03BD c)03BD03C1 t-1+03BD-03BD03C1. []

4.2 The case of the starting point (.r,?/) in the second quad-
rant.

The function ~ satisfies in the left half plain (z  0} the differential equation

1 ~2uc 
~uc

2~~=~
with the boundary condition on the positive y-axis :

y) = + y) = F(AV + x; cy), y > 0, c > 0.
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0

Let U~(y) = y), z > 0. It follows from Theorem 1

(4.37) l~z - U~(0) = + vp)z-1-~° as c -~ 0.

An integration by parts shows

1 Un y = (zya + - -f- ~; cy), y > 0.c( )
Let ~~(y), be the solutions of the equation 2 f"(y) _ (zya + f(y) on
(0, ~) determined by the following conditions:

03C6c(0) = 1, 03C6’c(0) = 0

03C8c(0) = 0, 03C8’c(0) = 1
F~(0) =1, is bounded, i.e., = F(zV + y).

Let 03C60(y), 03C80(y), Fo(y) be the solutions of 1 2 f"(y) = f(y) normalized similarly.
We have by the method of variation of constants that

y

- + / -~ ~; 
0

+2’~c(y) / + ~; c~)d~.

Since + 03BA; c03BE) is a convex decreasing function it holds the inequality 0  1-

F(03BBV + 03BA; c03BE)  |dF d03BE(03BBV + 03BA; 0 ) Hence we have, for each fixed y > 0,

/ -t- I~; - / + ~ c
0 0
00 00

/ + ~; - / + C(c)

as c tends to 0. Noting the differential equation of ~~ and F~ we obtain

y o~

2F~(y) ~ ’~c(~)~‘~F(~V + ~; c~)d~ + 2~~(y) / F~(~)~‘~F(aV + r~; 

= 
Fc(y)(03C8’c(y) - 1) - 03C8c(y)F’c(y) z 

+ O(c) = 1 - Fc(y) z + O(c).

We need to prove that, for each fixed y > 0, Fc(y) - Fo(y) = 0(c) as c ~ 0. By the
Feynmann-Kac formula, - y) is the same as f T°(zV (BS)+
c2 )ds)]. Here To is the first hitting time to 0 by a standard Brownian motion Bs. Now
it is clear that 0  Fo(y) - = Ey(exp(- (1- 
Ey(1- =1- = 0(c).

Combining these with (4.37) we have 
’

(4.38) 1/z - Uc(y) = Cc03C10393(1 + 03BD03C1)F(zV ; y)z-1-03BD03C1 + 0(c) as c ~ +0.
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We can conclude by a standard argument that

1 - as c -~ +0

with

/" 2/) = F(l + 

Since = ~2014(2~)~~~(2~/~(2~)~~), we can invert the Laplace trans-
form (see Oberhettinger-Badii [9] (13.45)) to obtain

(x,y) = 0393(1 + 03BD03C1)|x|1/2+03BD03C1-03BD/2 0393(03BD)2(1-03BD)/203BD1-03BDy(1-03BD)/203BDexp {-03BD2y1/03BD |x|} W03BD 2-1 2-03BD03C1,03BD 2(203BD2y1/03BD/|x|)
where is a Whittaker function defined by(see Abramowitz-Stegun [1] (13.1.33)
and (13.2.5) )

iv (z) = 
z1/2+ e-z/2 0393(1/2+ -03BA) ~0 dte-ztt-1/2+ -n(1+t) +03C0-1/2."~~’r(i/2+/.-~)~ 0 "’ ’ 

Replacing 203BD2y1/03BDt/|x| by t, we obtain

(x,y) = |x|1-03BD+203BD03C1 exp {-203BD2y1/03BD/|x|} 0393(03BD) ~0 dte-tt03BD03C1 (|x|t + 203BD2y1/03BD)-1+03BD-03BD03C1. []
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