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A Unified Approach to Several
Inequalities for Gaussian and Diffusion

Measures
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405 Snow Hall, Lawrence, KS 66045-2142

Abstract

This paper presents a simple unified approach to several inequalities for
Gaussian and diffusion measures. They include hypercontractive inequal-
ities, logarithmic Sobolev inequalities, FKG inequalities, and correlation
inequalities.

1 Introduction

This paper is concerned with several inequalities associated with Gaussian mea-
sures and measures generated by diffusions. We are mainly interested in hyper-
contractive inequalities, Poincare inequalities (spectral gap inequalities), loga-
rithmic Sobolev inequalities, FKG inequalities, and correlation inequalities. A
unified approach is developed to produce all these inequalities at the same time.
This approach is the so-called semigroup approach [9], [10], [6]. However, one

usually obtains hypercontractive inequalities from logarithmic Sobolev inequali-
ties. An interesting point of this paper is to illustrate that the hypercontractive
inequalities can be obtained in a somewhat simpler way. We prove hypercontrac-
tivity by differentiating an auxiliary function once and (while if we differentiate it
twice we obtain the logarithmic Sobolev inequalities). This approach is natural
since it is well-known that the logarithmic Sobolev inequality is the infinitesimal
form of hypercontractivity. If we are only interested in Gaussian measures, our
approach for hypercontractivity is as simple as the famous Neveu approach ([II],
see also ~7~ ) . .

2 Hypercontractivity for Diffusions
Let (E, E, be a measure space and let L2( ) be the set of all square inte-
grable functions from E to ?. Let L be the Markov generator associated with a
continuous Markov semigroup Pt in L’(~c). Denote ~( f ) = fE 
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Assumptions: ts is invariant with respect to Land (Pt)t>o. There is a nice
algebra A of bounded functions on E which is dense in the L2 domain of L,
stable by L, by Pt and by the action of composition with C°° real functions
which are 0 at 0. Let also A be dense in for any 1  p  ~. Pt is ergodic
in the sense that for any f, Pt f - ~C{ f ) ~-almost surely.

Following P.-A. Meyer, we introduce the so-called "carre du champ" operator
r as the symmetric bilinear form on A defined by

- 2 fLg - gLf}, d E A . . (2.1)

Denote r ( f ) = r ( f , f ) . It is well-known that I‘ is positive-definite.
We shall consider a Markov semigroup whose generator is a diffusion in the

following sense: .

For every Coo function ~ on and for every finite family F = ( fl, ..., ,

where 11 , ... E A,

L03C8(F) = ~03C8 ~xi(f1,...,fn)L(fi) + ~203C8 ~xi~xj(f1,...,fn)0393(fi ,fj). (2.2)

The iterated "carre du champ" operator is defined as

(f ~ 9) . 1 2 r(/, Lg) - ~ (2.3)

Let Rg( f ) denote the closure of the range of f. .
The main resut of this work is the following statement.

Theorem 2.1 Let R, r be fixed real numbers. Let 03C6 and 03C8 be C°° functions on
an open interval J C R. If r2( f ) > Rr( f ), d f E A, and if ~(x) > >

0 , ~"(x)  0 , , ~"(x)  0, and

(e RT~~(x)~~(y))2  ~ b’ x,y E J, > (2.4)

then for all f, g E A such that Rg(Pt(/)) C J, Rg(Pt(g)) C J,

~ ~~(9) PT(~(f))~ ~ ~(l~(f))~(~(9)) ~ (2.5)

Proof It is easy to see that for every such ~, and f E A with Rg(/) C J, 
is well-defined and (2.2) holds. Denote Ft = Pt f and Gt = Ptg. For any T > 0,
introduce an auxiliary function of t,

ht := PT-t {[Pr(~(~))]~(~)} , r 0  t  T .

Let us compute its derivative. Let Lt = L - at . By (2.2) it is easy to check that
for any ft gt defined on I~+ x E,

= 
~ Lt (ftgt) = ftLtgt + gtLtf + 2r(ft, gt), (2.6)
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Set ~ = = ~(Gt), ~’ = = ~~’(Gt)~ ~n = and

03A8" = By (2.6) ,

d = -PT-t{Lt[P(03A6))03A8]}
= -PT-t {Lt (PT(~)) ~ + (~) + (~) , ~)}
= -PT-t {Pr [~"r(Ft)] ~ + + 2r(PT(~) , ~)} . (2.7)

Since r is positive definite, we have that

~)12  r(PT(~))r(~) ~

It is proved in [1] (page 149) that if r2( f ) > Rr( f for all f E A, then

r(PT f)  ~ d f ~ (2.8)

Thus we have

I r(PT(~)~ ~)i [  

= 

The last inequality follows from = which is an easy conse-
quence of (2.1) and (2.2). Let us then introduce the operator Pr acting on A x A
by PT(f x 9) = (where ( f x 9)(~~ y) = ~ x~ y E E). Since
Pr is positivity preserving, the same is true for Pr. . Then we have

dht dt ~ -PT-t{[03A6" 0393(Ft)  03A8 + 03A6  03A8" 0393(Gt)

+2e-R|03A6’||03A8’|0393(Ft)  0393(Gt)]} . (2.9)

If (2.4) holds, then ~ ~ 0. Thus ho  hT. Computing hT and ho, we obtain
the inequality

PT ~(~’T (~(,f )))’~(9)} ~ ~ (2.10)

Letting T -~ oo, the theorem is proven. D

This theorem is a generalization of the hypercontractivity theorem. Set

~f~pp = (|f|p).

Corollary 2.2 Let p > 1 and q > 1. If > Rr f and if  
p 1, ,

then ~Pf~q ~ ~f~p > ~f E A.

Proof Let us take Je = (-~/2, +oo), ~~ (,r) = and = 

with 1/q + 1/q’ = 1. Therefore (2.4) is true for 03C6~ and 03C8~ if and only if 
(p -1 ) / (q -1 ) . Thus (2.5) holds for ~E and 1/;e. Letting e -~ 0, we obtain that

0,

»  (~(f))l~p(~ 9 )llq~ .
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In the above inequality replacing f by (f2+~)p/2-~p/2 and g by (g2+~)q’ /2-~q’ /2

and then letting  - 0, we get

> v f> 9 e A .

The corollary is thus established. D

3 Logarithmic Sobolev Inequalities
It is not so easy to compute the second derivative of ht introduced in the previous
section. We shall compute it in the next section for a Gaussian measure. Here
we take 1b(z) = z and T = 0 and compute h§’. In this case we have % =
PT-t(§"r(F)). Differentiating this identity once more with respect to t and
using (2.2) for W(z, y) = §"(z)y and Fi = F and F2 = r(F) , we obtain

_ j~ 

= PT-t {03C6(4)0393(F)2 + §"LtF(F) + F(F)) )
= PT-t{03C6(4)0393(F)2 + + F(F)) )
= PT-t (Tr(AB) + 2R§"F(F) ) , ,

where A = (03C6"/2 03C6(3) 03C6(3) 03C6(4) ) and B = ( 4 [03932(F) - R0393(F)] 0393(F,0393(F)) 0393(F,0393(F)) 0393(F)2). B is

positive definite by [I] , p.149. If (3.2) below holds, >4 is also positive definite.
Thus we have

~ l"’~’~~~~’~~l ~ ~~~~

This implies that the derivative of ht - h§ 1-e-2Rt 2R is non-negative. Hence

hT - ho  hQ (I - e~~~’~) /(2R) . .
Thus we have

Theorem 3.1 Let § be a C" function on some open interval J c R satisfying

4"(Z) > o > 4~~(Z) > o > 2(4~~(Z))~  W"(Z)4~~ (Z) > vZ E J . (3.2)
Assume that F2(f) > RF(f), Vf e A. Then for every f e A such that
Rg(Ptf) c J,

PT(§(f))  §(PT(f)) + 
~ 

PT(§"(f)r(f)) > v T > 0 . (3.3)

Letting T - oo, we have

P(W(f))  4(P(f)) + £P(4"(f)r(f)) . (3.4)
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Remark 1 In (9.4) letting ~(x) = x2, one gets the Poincare inequality and
letting ~(x) = x logx (using the argument of Corollary 2.2), one gets the loga-
rithmic Sobolev inequality, see [6]. For the Ornstein- Uhlenbeck semigroup, (2.8)
is obvious so that the preceding proof of hypercontractivity for Gaussian measures
is indeed rather simple.

4 Gaussian Measures

For a Gaussian measure, we may also use the heat semigroup [8] instead of the
Ornstein-Uhlenbeck semigroup. Let ~c be the standard Gaussian measure on

Let Pt be heat kernel semigroup associated with the standard Laplacian:
~ = APt (We omit the factor 1/2 for simplicity). Let At = A - ît. Denote
by (-, .) the inner product of two vectors or the Hilbert-Schmidt product of two
matrices. The same computation rule (2.2) applies to At and moreover, for any
functions f and g on JRd (in this section, f and g always denote Coo functions
with compact supports except otherwise stated), , if Ft = Pt f and Gt = Ptg as
before,

+ + 

= 2(D’Fc , (4.1)
Fix T > 0. Consider ht = PT-t o  t  T. Then it is easy to see
that

dht dt - 
_ t{03C6( |~Ft|2 + 03C6(F t)03C8" (Gt)|~Gt|2

If we take ~(.c) = 1P(x) = x, and if v f > 0 and 0 component-wise, then
we see ht > 0. Thus hT > ho. Thus we obtain in this way the classical FKG
inequality for Gaussian measures.

Proposition 4.1 If v f > 0, ~g > 0 component-wise, then

~ 

Now, compute the second derivative of ht for general § and ~. We have that

= + oc 

+2At (4.2)

Apply then (2.2) to W = and use (4.1) to compute It
follows that

Ot |~Ft|2) = + 

+03C6"03C8"|~Ft|2|~Gt|2 + |~Ft|2
@ vFt , 

+4~"~’wFt ~ vGt , .
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In a similar way we can compute the other terms in (4.2). If we introduce
xT = x2 , .Y3 , :Y4 , ,Ys~, where

Xi = ~Ft 0 ~Ft, X2 = ~Gt ~ ~Gt, 

X4 = ~2Ft , X5 = ~2Gt,

then we can write 

where A = B + C, B is a 5 x 5 matrix with B45 = B54 = 203C6’03C8’ and the other
elements 0 and C is defined as

/ ~(4)~ 2~(3)~r 2~(3)~ B

2~’ ~~~) 2~y(s) 2y.,~n 2~’~(3)
C = 2~(s) y 2~ y(3) 2~ y~~ 4~ y~ 4~ y~ . (4.4)

203C6(3)03C8 203C6’03C8" 403C6"03C8’ 203C6"03C8 0

203C6"03C8’ 203C603C8(3) 403C6’03C8" 0 203C603C8"

If A is positive definite, then 0. Namely, ho  hT - Thus we proved

Theorem 4.2 If ~ and are C°° functions on some open interval J C I~
such that A is positive definite on J, then for all f g such that Rg( Pt (I)) c J,
Rg(Pt (g)) C J,

~(~(f)~(g)) _ ~(~(f))~(~(9)) + + 

+2~’ (f ) ~l (g) (Df ~ D9} . (4.5)

Remark 2 1) Take ~(.c) = = x. If f and g are convex functions and if
= 0 and p(Dg) = 0, then (.~.5~ implies the following correlation inequality

[8]:
.

2) Let = 1 and let 03C6 satisfy (3.2). Then it is easy to check that A is positive
definite. Thus (,~.5~ implies

~(~(f )) _ ~(~(f )) + ~(~n( f) (4.fi)

As we mentioned, this implies the Poincaré and the logarithmic Sobolev inequal-
ities. In fact, = x2, then 03C6 satisfies (3.2). (4.6) becomes the Poincaré
inequality

_ ~(f)‘ + °

If ~(x) = x log+ x, then ~ satisfies (3.2) (using the argument of Corollary 2.2).
(4.6) implies the logarithmic Sobolev inequality

(f log f) ~ (f) log (f) + (1 f|~f|2 , ~f ~ 0.
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