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On the Onsager-Machlup functional for elliptic
diffusion processes

Mireille CAPITAINE

University of Toulouse

Abstract

In this paper, we show, following K. Hara and Y. Takahashi [7], how the
stochastic Stokes theorem and the Kunita-Watanabe theorem on orthogonal
martingales may be used to produce a general and easy computation of the
Onsager-Machlup functional of an elliptic diffusion process, even for large classes
of norms in Wiener space.

1 Introduction

In their paper [7], K. Hara and Y. Takahashi present a rather simple and efficient
computation of the Onsager-Machlup functional of an elliptic diffusion process for the
supremum norm. The first task of this work is to present this simple approach and to
show how it extends to various families of norms on Wiener space. In particular, this
approach to the Onsager-Machlup functional is rather elementary when the diffusion
matrix is the identity matrix and may be applied to the cases of the L2-norm and
LP-norms with 2  p  4 yielding some new results.

First we introduce the problem of the Onsager-Machlup functional for an ellip-
tic diffusion process. Denote by Co ~~0,1~; the space of IRd-valued, continuous
functions on [0,1] vanishing at the origin, by [[ . ~~~ the supremum norm on [0, 1]
and by B the Borel afield of (Co (~0,1~;1Rd) , (~’~~~). Let P be the Wiener measure
defined on B and w = (wl, ... , wd) be the canonical Brownian motion on the Wiener
space (Co ([0,1]; JRd) B, P). Let X(t) be the elliptic diffusion process solution of the
stochastic differential equation

dX (t) = r (X (t)) dw(t) + b (X (t)) dt, X(0) = xo, X (t) E IRm,
where 0" is an m x d matrix of smooth vector fields on b is a smooth vector field
on and Xo belongs to A Riemannian structure is naturally induced by the
diffusion coefficients on lRm, such that the generator of the diffusion is where
OM is the Laplace-Beltrami operator and f is a vector field. To be more precise, equip
IRm with the metric g = (Q~*)-1 and the Levi-Cevita connection (we denote by cr*
the transpose of the matrix It is quite natural to consider X as the diffusion on
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the Riemannian manifold M = with generator + f where for every
1 

fi (x) = b= (x) + - (03C303C3*)lj (x) { lij },

denoting by ( } the Christoffel symbol:

( _ - {~ ~xl(03C303C3*)-1qj + .

2 q=1 Vx~ C~x9

Recall that the Laplace-Beltrami operator is given by

0394MF = (QQ*)sj a2F - (03C303C3*)ij { ikj}~F ~xk.
Let p (x, y) be the Riemannian distance on M and let II’ II be a measurable norm
on a subspace of Co ([0, 1], IR). Let ~ and W be two smooth M-valued functions on

[0, 1], starting at xo. Denote by p (X, ~) the IR-valued function on [0, 1] defined by
p (X, ~) t -~ p (X (t), ~(t)). If the limit

lim 
P (~03C1 (X, 03A6)~  E)

exists and can be written as

exp 0 1 L ~~(s), ~(s)~ ds - 0 L (~(s), ds , ,
such a function L on the tangent bundle T M is called the Onsager-Machlup function
of X for the norm II’ I) .

Y. Takahashi and S. Watanabe proved in [15] that, if one chooses on Co ((0,1~;1R,)
the supremum norm, the Onsager-Machlup function on the tangent bundle T M is
given by

L (p, v ) _ - 2 I I f (p) - v~2p - 1 2div f (p) 12 (p) ,
where, for every pin M, II’ ~p denotes the Riemannian norm on the tangent space TpM
at p, div f ( p) is the divergence of f at p and R(p) is the scalar curvature at p. They
used probabilistic techniques such as Girsanov’s formula, stochastic Stokes’ theorem
(see Lemma 2 below) and the Kunita-Watanabe theorem on orthogonal martingales
(see Lemma 3 below). In [5], T. Fujita and S. Kotani obtained the same result by
a purely analytical approach. In [4], we proved that this expression of the Onsager-
Machlup function is still valid for a large class of norms on Co ([0, 1]; IR), including
in particular Holder norms I) . II« with 0  a  2. One key idea in [15] consisted
in a Besselization technique to come down to small balls of a Bessel process, using
Girsanov’s transformation. But as the Besselizing drift was singular, the proof was
quite complex. Recently, K. Hara has found a new Besselizing drift which is smooth
(see and [7]). This makes the proof of [15] simpler and this shorter proof has
been presented in (7~. As a consequence of the regularity of the drift, the stochastic
Stokes theorem may be applied in greater generality and the proofs do not require
anymore bounds on small balls probabilities. In particular, we observe here that this
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new approach is still valid for large classes of norms on Wiener space, simplifying the
early reasonings of [4].

The method of K. Hara and Y. Takahashi is presented in section 3 of this paper.
Section 2 consists of a collection of basic lemmas that will be used throughout this
work. In the last section, we discuss the case of constant diffusion coefficients and
compare recent results for various norms on Wiener space in this context.

2 Fundamental lemmas

Lemma 1 (see Let h, ... , In be n random variables on a probability space (~, ~i, P) .
Let family of events in j6. Let al, ... , an be n real numbers. If, for
every real number c and every 1  i  n,

lim supE (exp {cI;}  

then

lim E exp Ii} |A~) = exp ai).

The proofs presented in this paper are based on the following two lemmas.

Lemma 2 (Stochastic Stokes’ theorem, see [15] or [7]) Let Y = (Yl, ... , Ym) be a
continuous semimartingale starting at zero and let 03B2 be a space-time 1-form defined
by

m

~ _ ~ ~Q;(s, 
i=l

Let us define

x) = / o ,Qs(s, ux )du,
8;;(s) = s0 Yi(u)dYj(u) - Yj(u)dYi(u).

Then, we have the following identity (where o stands for the Stratonovitch integral) :

10
03B2i(s,Y(s)) o dYi(s) 

= 1 2  10 (~03B2j ~xi 

- ~03B2i ~xj) (s,Y(s)) o dSij(s)

- E / (1, Y(1)) Y(1).
=i ’’~ as 

i=l

To prove Lemma 2, one can apply the classical Stokes theorem for the 1-form ,Q and
the random surface ~(t, uP(t)), 0 _ t  1, 0  u  1}, where P is every polygonal
line approximating the sample path Y. Then, the formula follows from the fact that
the Stratonovitch integral is the limit of the line integral along polygonal lines.

Lemma 3 Let (S2, ,~’, P) be a complete probability space and be a filtration
which satisfies the usual conditions. Let (Z(t))o~t_1 and (M(t))ot1 be two contin-
uous square integrable Ft-martingales such that 2 has the predictable representation
property and (Z, M) = 0. Let g = u {Z(s), 0  s  l~ be the u-field generated by Z.
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Let A in G such that P (A) > 0. Let be a continuous Ft-adapted process.
Let assume that there exists C > 0 such that, ,for every w in A and every s in [0,1],
(M)1 (w)  C and (F(s) (w)!  C. Then,

and consequently

Proof: Define on (03A9, F) the probability measure dQ = 1 P(A)1AdP and denote by EQ
the expectation relative to Q. Since A belongs to G, there exists a process 03C6 adapted
to the filtration generated by Z such that

1

IA = P (A) + £ 
Using the fact that M and M fo are martingales, we obtain that, for all
0  s  t  1 and every bounded Fs-measurable variable 03BE,

EO( Mt - 

1 
E Mt P A + 03C6(u)dZ(u))]Q = P A (P ( ) + o ( ) ( )

- E M s + 
1 

E M s ~ ’ ( ()~) PA () o ’~~~~~~~~~() ~ 
- EQ (M(s)~’) .

We conclude that M is a square integrable martingale under Q. Moreover, the stochas-
tic integrals of F with respect to M under P and under Q are obviously the same
Q-almost everywhere. Similarly, the quadratic variations of M under P and under Q
are equal Q-almost everywhere. Now, we have

Novikov’s criterion (see [12]) allows us to conclude that (N(t))0t1, defined by

is a martingale under Q and in particular

which yields the first assertion of Lemma 3.

Now, write that

Then, using the Cauchy-Schwarz inequality and applying the first point of this lemma
to 2F, we obtain, for every E > 0,

The proof of Lemma 3 is thus complete.
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3 The general case

Let [[ . [[ be a measurable norm on a subspace of Co ([0,1], IR).

3.1 Theorem

Theorem 1 Let X (t) be the elliptic diffusion process which is the solution of the
stochastic differential equation

dX t = u(X(t))dw(t) + b (X(t)) dt, X(U) = x°, X(t) E IRm,

where u is an m x d matrix of smooth vector fields on b is a smooth vector field
on ~R~ and xo belongs to Assume that the norm ~~ under consideration on
Co ([0, l~,1R) dominates the supremum norm. Then, the Onsager-Machlup function L
is given by

L (p, v) = -211f (p) - vllp - 1 2divf (p) + 
12 
R (p) ’

3.2 Reduction of the problem
Let us consider a norm [[ . [[ on Co ([0, 1], R) which dominates the supremum norm.
We will reduce the problem of the Onsager-Machlup function for this norm [[ . [[ to
an evaluation of a conditional exponential moment with regard to small balls of a
Bessel process. The approach we will follow here is the one by Y. Takahashi and S.
Watanabe in [15] (where they study the case of the supremum norm). However, the
smooth Besselizing drift y we will use has been found by K. Hara in [6] and is different
from the drift used by Y. Takahashi and S. Watanabe in [15], which is singular at the
origin. Let ~ be a smooth M-valued function on [0,1], starting at To.

3.2.1 Introduction of a system of normal coordinates along the curve ~

On the product manifold [0,1] x M, let /$ be the curve: t E [0,1] - (t, ~(t)). Let
introduce a coordinate system in a neighborhood U of ~ as follows. Let us choose
an orthonormal basis e° _ ~e°, ... , e,°m~ in the tangent space at ~(0). For
every t > 0, let et = ~ei, ... , be the orthonormal basis in obtained
as the parallel translate of e° along the curve ~. There exists a neighborhood U
of /$ in [0,1] x M such that the mapping (t, x) E U - (t, xl, ... , xm) E ~0, l~ x

where x = is well defined (s -~ expq (sv) is the geodesic c
with initial conditions c(0) = q and c’(0) = v). e : : (t, x) -~ (t, x1, ... , xm) is a
diffeomorphism of U onto some neighborhood V of the curve t --~ (t, 0) in [0,1] x IRm,
and for each fixed t, a- 2014~ (xl, ... zm) is the normal coordinate system Nt in a
neighborhood of (t) with respect to the frame et. Denote respectively by g~~ (t, x),

x), x) and f=(t, x), the components in the normal coordinates system Nt
of the metric, its inverse, the Christoffel symbols and the vector field f. Denote by
(~i(t)) i ~m the components of the tangent vector it in the frame et. Finally, let
us consider the space-time process (t, X(t)). Its generator is at + Z~M + f . This
differential operator on U C [0,1] x M is transformed by the above diffeomorphism to
the differential operator a + 1 gij t x) a2 

+03A3mi=1 b (t x) a on V C [0,1] x 
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where b;(t, x) = f t(t, x) - + E~(t, x) - 2 where E;(t, x) is
a smooth function satisfying = ~ (cf Lemma 1.2 [5]). Let

T = inf {t > 0 (t, X(t)) ~ V } and (t A T,X(t A T)) = 0 (t A T, X (t A T )). Denoting
by I . I the Euclidean norm on we have for E small enough,

II E . °

Moreover, X is given as the solution of the stochastic differential equation

dX(t) = o~ (t, X (t)~ dB(t) + b (t, X(t)~ dt, X(o) = 0, X(t) E ~,m,
where ~ (t, x) = (Q~’ (t, x)) 1 ; 5 m is the square root of the inverse of the metric

g(t, x) in the normal coordinates Nt, and B is a Brownian motion on .

3.2.2 Use of Girsanov’s transformation

For each fixed t in ~0,1], since the coordinates system is the normal coordinates system
Nt, we have by Gauss lemma, for every 1  i  m,

m

~ x)xj = x~’ (1)
j=1

and thus 
m

~ x)xj = x;.
j=1 

.

Let us define for every 1  i  m, 

03B3i (t,x) = 1 2 03A3 ~gij ~xj(t,x).

Differentiating both sides of ( 1 ), we obtain that’)’ satisfies

m 
~~ 

m

~ (1- 9it(t’ x)) = 2 x)xj.
i=1 9=1

Let Y(t) = (Yl(t), ... , Ym(t)) be ’the solution of the stochastic differential equation on
(o,1]. . _

dY(t) = ~ (t, Y(t)) dB(t) +’Y (t, Y(t)) dt, Y(o) = 0, Y(t) E ~,m’
We get

m m

d = + .

i=1 i=1

m m m

= 2 ~ (t, Y(t)) dBk(t) + 2 ~ y(t),y; (t, Y(t)) dt + (t, Y(t)) dt
i,k=1 i=1 i=1

m 
_

= 2 ~ + mdt,
k=1
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since E~i (, = and E~i (1 - ~())) = 2 ~(~ 
Define ~ = is a Brownian motion on IR and, as =

+ we thus get that is an m-dimensional Bessel process.
Using Girsanov’s transformation, we obtain that for every ~ > 0,

P  6) = E (t, Y(t))03B4j (, 

- 1 210gij(t,Y(t))03B4i(t,Y(t))03B4j(t,Y(t))dt} : ~|Y|~)
~ 
.j=i ~ j /

where 03B4i (t, :r) = 6, (t, a’) 2014 03B3i(t, a’) and ij (t, a’) denote the components in the normal
coordinate system A~ of the inverse matrix of (i.e the components of the
square-root Thus, we get

P (~||~  6) = E (exp {/’ ij (t, Y(t))03B4j (t, Y(t))di(t)

- )
If we succeed in evaluating the limit of ~~~~~, when ~ tends to zero, for everysmooth path 03A6 starting at .x-o? we will obviously be able to evaluate the limit of

to zero, for all smooth paths 03A6 and 03A8 starting at a;o.P(~03C1(X,03A6)~) P(~03C1(X,03A8)~), wh en  t end s t o zero, for all smooth path s 03A6 and 03A8 st art ing at x0.

Since, for e small enough,

P(~(~)))6) 
= , , III I Y I II  .!HY1!!6)

where

I = yi yi 
the computation of the Onsager-Machlup functional therefore consists in the asymp-
totic evaluation of a conditional exponential moment. Thanks to Lemma 1, it suffices
to handle the conditional exponential moments of each term appearing in the linear
expression of T.

By making the change of drift with respect to the smooth function ~y, we will be
able to make a general and unique study for every natural norm on the Wiener space.

3.3 Control of the different conditional exponential moments
According to the second theorem of Elie Cartan (see [11), for each fixed ~, since the
system of coordinates is the normal coordinates systen , we have a Taylor develop-
ment of at zero (and therefore of ,.r) and where the
coefficients are universal polynomials in the successive covariant derivatives of the
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curvature tensor at 4~(t). All the O q > 0, which will appear in the develop-
ments of the functions of the form h(t, z) will be uniform in t. in [0, 1]. We will use
the following developments (see [5] , [6] , [7] , [15] ):

gij(t,x) = iij + 

" iij + 
~ m

ii(~’ ") ~ ~ j £ + 

i(t,x) = fi(t,0) - i(t) + (~fi ~xj(t,0) - 1 3Rij(t,0))xj + O(|x|2),l;(t, z) = f;(t, 0) - 03A6i(t) + £ (§(t, °) - jR;;(t, °)) z; + 
03B4i 

= fi(t,0) - 

i(t) + 

(~fi ~xj(t,0) - 1 6Rij(t,0) )xj + O(|x| 2),

where I%; (t, z) are the components of the Ricci tensor in Nt. We get

9i) (~’ Y(~)) ’ (~’ Y(~)) i~ (~’ Y(~)) * iij °) ~ + ° l) °

Then we see easily that, for every 1  I  m, every I  j  m and every real c,

lim supE (exp {- c 2 / I g;; (t, Y(t)) I’ (t, Y(t) ) 03B4j (t, Y(t) ) dt ) ) [[ [Y[ [[  e)
 exp {-c 203B4ij 10 (f;(t, 0) - i(t))2 dt).

By Lemma I , we can deduce that, for every real c,

j gij (t, Y(t))03B4i (t, Y(t))ój (t, j III IYI II  j
~ exp {-c 2 10 (fi(t, 0) - i(t))2 dt}.

Now, write that

f /~ bij t, Y(t) ) I’ (t, Y(t) ) ~ f £~ gjl (t, Y(~) ) °~ (~’ Y(~)) 
i,j=I 

° I,j=I 
0

"’ I
. - £ / g;i (t, Y(t) ) i~ (t, Y(t)) ’yi (t, Y(t) ) dt.

~~;_~ 
0

since g;i (t, Y(t)) i~ (t, Y(t)) qi (t, Y(t)) = O([Y(t)[), for every I  j  m and every
I  I  m, we easily get that, for every real c,

E (C £ 1 9jl (t, Y(t)) I’ (t, Y(t)) ’fl (t, Y(t))dt} 11 lYl 11  ) ~ i°
Similarly, write that

£ gjl (t, Y(t)) " (t, Y(t))dYl(t) * £ gjl (t, Y(t)) °’ (t, Y(t)) ° 
~)(9jl (°, Yl’)) " (" Yl’)) ’ Yl’))1°
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We have

dgjl °, Y(°)) i~ (°, Y°)) , Y(°))t * £ t, Yt)) &#x26;~~ l, Yt)) (t, Yt)) dt
~~

~ £ 9~~ (~’ Y(~)) (~’ Y(~)) d~

* ’jl 0) - 1 6Rjj(t, o)) dt + 
Then, we see easily that for every real number c,

lim sup E {-c 2 
~ exp{ -c203B4jl10{~fj ~xj (t, 0) - 1 6Rjj(t, 0)}dt} °

Consider now J) g;i (t, Y(t ) ) 6" (t, Y(t) ) o dY (t) . Applying Lemma 2, we get

10gjl(t,Y(t))03B4j (t, Y(t)) ° dYl(t) " f 10 ~(gjl03B4j) ~xq (s, Y(s)) ° dSql(s)
I a (gjl03B4j >

(i’ Y(i)) Y(il’

where

(g;16j)(S, Z) # ux)du,

* / 0 s - 

Since moreover

(" Yl’))’ * f §£§#~ (~, Y(t)) (9~~(t, Yt))%(t) ~ Y(t) )Yt» dtq k-i k q
. 

= O(lY(t)I)dt

we get that

10(gjl03B4j)(t,Y(t))odYl(t) = 10~(gil03B4j) ~xq (t, Y(t))dSql(t)+ 10O(|Y(t)|)dt+O(|Y(1)|),
and the control of the conditional exponential moments of (t, Y(t ) ) o dY (t )
is equivalent to the control of those of §fl§=~ J) ~~§f~’~ (t, Y(t)) 

Let Mql be the martingale part of 
q

~ 
"’ t 

_~~ 
_ 

"’ t 
_ ~ 

_

~~ (~) ~ £ ~ l’~’ "16’~)) ~ £ ~ l’~’ "16’~)) k=1 ~ k=1 ~
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We have

= 

+ /" ~(gjl03B4j) ~xq (, Y(t)) {Yq(t)03B3l (, Y(t)) - H(h, (, v())} dt.
We see easily that, for every real number c,

lim supE fexp L /’ ~(gjl03B4j) ~xq (, V()) {Yq(t)03B3l (t, Y(t)) - Yl(t)03B3q (t, Y(t))} dt} )!! |Y| !!  )
~ 1.

Recall that d|Y(t)|2 = + where Bt = The

(1- field generated by J9, ~{~(~),0  ~  1}, is the same as the one generated by 
7{)K(~,0  ~  1}; moreover

(~ M~), = ~ /’ (~(.)~ (., V(.)) - H(.)~ (., K(.))) ~,(B, Mq/}t = t=i*~ (s, Y(s)) - y,(s)uqk (s, Y(s)) ds,

and since = ~) and = ~), we
obtain

Thus, by Lemma 3, we get for every real number c and every 0  ~  1,

E (exp L/ ~ «, ~)) ~!) .)B t. -’o ~, j ’ /

Moreover, as

= E = o (!r()!’) ~,
Jk=l

we have

lim supE (exp L /’ ~(gjl03B4j) ~xq(t,Y(t))dMql(t)}|~|Y|~  ) ~ 1.
By Lemma 1, we deduce that, for every real number c,

HmsupE 10ij(t,Y(t))03B4j(t,Y)(t))di(t)} |~|Y|~  6~ L t ’~-"’ J J

~ exp {-c 210{~fj ~xj(t,0)-1 6Rjj(t,0)}dt}.
Using once more Lemma 1, the proof of Theorem 1 is thus complete.
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4 When a is the identity matrix
If m = d and if for each x in is the identity matrix, the Riemannian structure
induced by the diffusion is the Euclidean one. Denote by |.| the Euclidean norm on

So, Theorem 1 gives the limit, when E tends to zero, of for every
smooth functions 03A6 and 03A8 and every norm ~ . ~ on Co ((0, 1], It) which dominates the
supremum norm. Actually, studies on the Onsager-Machlup functional in the case
u := Id used to consider the problem in a more general framework and to investigate
the limit, when E tends to zero, of for every functions 03A6 and 03A8 such that

03A6 - xo and 03A8 - xo belong to the Cameron-Martin space and every norm ~
on Co ((o,1~, That is to say in particular, the norm under consideration is not
assumed a priori of the form: (~ ’ ~) = (~ ~ ’ ~ ~~~ where ~~ ’ ~~~ is a norm on Co (~0,1~,1R). In
this context, we noticed that the preceding techniques (the stochastic Stokes theorem
and the Kunita-Watanabe theorem) give a very quick proof of the following theorem
whose framework is a little more general that the one of Theorem 1 for u := Id.

4.1 Theorem

Theorem 2 Let X(t) be the diffusion process which is the solution of the stochastic
differential equation

dX (t) = b (X (t)) dt + d03C9(t), X (U) = xo, X(t) E IRd,
where xo belongs to IRd and b is a IRd-valued function on IRd of class C2, bounded,
such that all its derivatives are bounded and its second derivatives are Lipschitz con-
tinuous. Let ~~ be a measurable norm defined on a subspace F of the Wiener space
Co C~O,1~; IRd) to which c~ and belong (for every ~ in such that (F, ~~ ’ ~~)
is separable. If the norm ~ dominates the L2-norm and is such that the random
variable is measurable with respect to the u-field u ~~w(s)~, 0  s _ 1~ (where ~ ’ ~ [
denotes the Euclidean norm on then the Onsager-Machlup functional of X for
the norm ~ exists and is given by

L(03A6,03A6) = -1 2 |03A6i - bi(03A6)|2 - 1 2 ~bi ~xi(03A6).
4.2 Proof

We will need one more lemma.

Lemma 4 (see j13~, Let f be a deterministic function in L2~0, l~. Define
I; ( f ) = f (t) d03C9i (t). If the norm ~.~ dominates the L1-norm then

lim E (exp {Ih (f)|} |~03C9~  ~) = 1.
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Using Girsanov’s transformation (see [8]), we obtain, for every c > 0,

P(!)X-~!c)=exp(-~’~)-6(~))~)
E(exp {1 210|b(03A6(s))|2ds - 1 210|b(03C9(s) + 03A6(s))|2 ds

- 10 bi(03A6 (s)) d03A6i(s) + 10bi(03C9 (s) + 03A6 (s)) d03A6i(s)

-1003A6i(s)d03C9i(s)

~~

+ 10bi(03C9 (.) + $ (s)) d03C9i(s)} = !H)  ).
Therefore

P(~X - 03A6~  ) P(~03C9~  ) = exp(-1 210|(s) - b(03A6(s))|2ds)E,
where E = E(exp{1 210 |b(03A6(s))|2ds-1 210|b(03C9(s) + 03A6(s))|2ds

- E 10bi (03A6(s)) d03A6i(s) + E (03C9 (s) + 03A6 (s)) d03A6i(s)
,=i ~o ,=i ~o

-1003A6i(s)d03C9i(s) + 10bi(03C9(s) + 03A6(s))d03C9i(s)}|~03C9~  ).
The computation of the Onsager-Machlup functional therefore consists in the asymp-
totic evaluation of Ee. According to Lemma 1, it suffices to handle the conditional

exponential moments of each term of the sum inside the exponential map.
By using the fact that 6 is Lipschitz continuous and bounded and that )~’ ~ domi-

nates the we easily get for every real number c,

- 1 210|b(03C9(s) + 03A6(s))|2ds)}|~03C9~  ) ~ 1
and for every 1 ~ ~ ~

limsupE(exp{c(~B~(~(~)+~(~))-~(~~)))~(~))}~H!~~ 1.
As an immediate consequence of Lemma 4, we have for every 1 ~ ~ ~ and for every
real number c,

lim sup E (exp L (10 03A6i(s)d03C9i(s))}|~03C9~  ) ~ 1.
We are left with the control of the exponential moments of J~ 6, (~ (~) + ~ (~)) ~, (~)
which is the main interest of this proof. We can write

10bi(03C9(s) + 03A6(s))d03C9i(s) = 10bi(03C9)(s) + 03A6(s))o d03C9i(s) - 1 210~bi ~xi(03C9(s) + 03A6 (s))ds.
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Now, developping (s) + 03A6 (s)) at the point $ (s) up to the order 1, we get

10 ~bi ~xi(
03C9( s) + 03A6( s)) ds = 

10 ~bi ~xi(
03A6( s)) ds + 

10

03A8i( s, 03C9) ds.

Since the derivatives of order 2 of bt are bounded and since the norm [[ . [[ dominates
the there is C > 0 such that

/ o ~ c6
JO

on the event  }. Thus we get for every 1  i  d and for every real number c,

lim sup E(exp{c(-1 210~bi ~xi(03C9(s) + 03A6(s)))ds) }) ~ {c(-1 210~bi ~xi(03A6(s))ds) }.
Let us now analyze 10 bs (w (s) + 03A6 (s)) o (s). By using an approximation of 03A6
by smooth functions on [0,1], one can easily check that Lemma 2 is still valid for

(3(s, x) = b(x + 03A6(s)). So, we get

10bi(03C9(s) + 03A6(s)) o d03C9i(s) = £ = (s,w(s)) o 
-10~bi ~s

where

bi(s,x) = 10bi(ux + 03A6(s))du,

Aji(s) = s003C9j(u)d03C9i(u) - 03C9i(u)d03C9j(u).

Since b is bounded, we get by Lemma 4 that for every 1  i  d and every real
number c,

 E  1.
Since the derivatives of b are bounded and since the norm ~.~ dominates the 
we easily get for every 1  i ~ d and every real number c,

lim sup E(exp{- c 10~bi ~s(s,03C9(s))03C9i(s)ds}|~03C9~  ) ~ 1.
Now, rewrite

10~bi ~xj(s,03C9(s)) o dAji(s) = 10~bi ~xj(s,03C9(s))dAji(s) - 1 210~2bi ~x2j(s,03C9(s))03C9i(s)ds
+1 2 10~2bi ~xi~xj(s,03C9(s))03C9j(s)ds.

Similarly, for every 1  i  d and every real number c,
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lim sup E exP ( § I ~2bi ~xi~xj> ( S , W ( S ) ) W; ( s ) ds - £ 
1 

w ; ( s , W ( s ) ) W; ( s ) ds)} | l l w 1 1  e 
~ 1.

d 
s w~ (t) ..

Define for every 0  s  I , the Brownian motion Zs = £ / 03C9k(t) |03C9(t)|d03C9k (t). Aji and

Z are orthogonal since Aji, Z)t = 0, for every 0  t  I. The filtration generated
by Z, g = u (Zs, 0  s  I), is also the one generated by [w[, s  I).
Therefore, provided that the norm under consideration is a measurable variable with
respect to the radial process, the event ([[w[[  e) belongs to g for every 0  e  I,
and by Lemma 3, we get for every real number c and all 1 ~ I, j  d,

E[exp {c 10 ~bi ~xj(s,03C9(s))dA ji(s)

} |~03C9~  ]
~ {E[exp{ 2c210 (~bi ~xj (S, 03C9(s)))r (wl(s) + 03C92j(s)) ds} |~03C9~  

Therefore, for every real number c and all I  I, j  d,

lim SUp E eXp C / g (S , W ( S ) ) dA" ( S ) ) ) )W ) )  e  1

Now, Lemma I allows us to conclude that

lim P (~X - 03A6 ~  ) P(~03C9~  ) = exp (- 1 2 10 |03A6(s) - b(03A6(s)) |2ds - 
1 2 10 ~bi ~xi(03A6(s))ds ),

and the proof of Theorem 2 is complete.

In the last section, we briefly compare what we obtained to earlier, as well as more
recent, results in this framework.

4.3 Previous results

It was proved in [8] that, if one chooses on Co ([0, 1] ; the supremum norm

= sup [w(t) [, (2)
t~[0,1]

and if 03A6 is of class C2, the Onsager-Machlup functional is given by

L (., ") = - 1 2|i - bi(03A6) |2 -1 2~bi ~xi(03A6).
This case enters the setting of Theorem I or Theorem 2. L.A. Shepp and O. Zeitouni
proved in [13] that the result still holds for every norm which is equivalent to (2) and
if 03A6 - zo only belongs to Moreover they showed in [14] that this expression is still
valid for other norms, in particular for LP-norms, p > 4, and Hölder norms [[ . [[ a with
0  a  1 3 in the case d > 2 and with 0  a  ) in the case d = I . They deal more
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generally with a class of completely convex norms and obtain the Onsager-Machlup
functional for some norms which do not enter the context of Theorem 1 or Theorem

2. In [3], we extended this result to a large class of natural norms on Wiener space,
including in particular Holder norms for every 0  a  2; our approach closely follows
[14] but we have to use versions of the norms which are rotationaly invariant on the
range of the Brownian paths. Nevertheless, the context in [3] is still a bit more general
than the one of Theorem 2. Recently, 0. Zeitouni and T. Lyons showed in [10] that
this geometric property may actually be relaxed in the case of Holder norms. On the
other hand, using different approaches, 0. Zeitouni in [16] and E. Mayer-Wolf and 0.
Zeitouni in (11~, obtained the Onsager-Machlup functional for the L2-norm.

In [8], [13], [14], [3], [10] the authors use Girsanov’s transformation to come down
to Brownian small balls (as it was done in the proof of Theorem 2). The diffi-

culty is then to evaluate conditional exponential moments of the stochastic integral
fo (b (w (s) + 03A6 (s)) , d03C9 (s)). The usual method consists in a Taylor development of
b (w (s) + 4) (s)) at the point 4) (s); the minimum order of this development is fixed
by the probability of the small balls relative to the norm under consideration. The
computation of the Onsager-Machlup functional therefore consists in the asymptotic
evaluation of conditional exponential moments of the stochastic integrals appearing
in the development.

Now, as we saw in the proof of Theorem 2, the stochastic Stokes theorem and
the Kunita-Watanabe theorem (techniques which were naturally used in the case of
diffusion processes on manifolds) give immediately the asymptotic evaluation of the
exponential moments of fo (b (w (s) + 03A6 (s)) , d03C9 (s)), provided that the norm under
consideration on Co ([0, 1]; IRd) is such that the random variable is measurable

with respect to the u-field  s  1~. Using this approach, we have to
assume that b is of class C2, bounded, such that all its derivatives are bounded and
its second derivatives are Lipschitz continuous. This smoothness assumption on b is
independent of the norm under consideration whereas in the previous methods it is
imposed by the order of the requisite Taylor development and thus depends on the
norm. At last, this new proof has the noteworthy advantage of including the case of
the L2-norm as well as the case of the LP-norms with 2  p  4 (which did not seem
to have been considered up to now). Indeed, in the previous methods, the techniques
used to handle some stochastic integrals in which appear first derivatives of b, only
hold in the case of a norm which dominates the L4-norm.
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