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Laws of the iterated logarithm for the Brownian
snake

Laurent Serlet

Abstract

We consider the path-valued process (Ws, ~S) called the Brownian
snake, with lifetime process ((s) a reflected Brownian motion. We first
give an estimate of the probability that this process exits a "big" ball.
Then we show the following laws of the iterated logarithm for the euc-
lidean norm of the "terminal point" of the Brownian snake:

lim sup 
|Ws(03B6s )| s1/4 (log log s)3/4 

= c, lim sup |Ws(03B6s)
| s1/4(log log(1/s))3/4 

= c

where c = 2.3-3/4.

AMS Classification numbers: 60F10, 60F15, 60G15, 60G17, 60J25

Keywords: Brownian snake, large deviations, law of the iterated logar-
ithm, Borel-Cantelli lemma.

1 Introduction

The Brownian snake is a random process whose values are paths in R~. This
process introduced by Le Gall is closely related to super-Brownian motion, see
[Lgl] and is a powerful tool to study the properties of super-Brownian motion,
see for example [LP]. The Brownian snake also gives a nice probabilistic repres-
entation of the solutions of the partial differential equation Au = u2, see [Lg2]
for an introduction.

Let us first recall the definition of the Brownian snake. For a detailed expos-
ition the reader should refer to [Lgl] and [Lg2]. We call stopped path in Rd a
pair (w, () where ( is a non-negative real number and w is a continuous function
from [0, +oo) to Rd such that, for every t > (, w (t) = w (~) . We denote by W
the space of all stopped paths in Rd. We call ( the lifetime of the stopped path
(w, (). We denote tu = w(() the "terminal point" of the path w. We often abuse
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notation and write only w to designate the stopped path (w, () . In this case we
use the notation ((w) to designate the liftetime. The space W is a complete
metric space when equipped with the metric

(w’, ~’)) = sup (w(t) - w’(t)~ + ~~ - ~’~.
~>o

For z E Rd, we denote x the path with lifetime 0 constantly equal to z.
The Brownian snake ( ( Ws , ~s ); s E [0, +00)) is a strong Markov process with

values in W caracterized under the probability Pw, by the following properties
. Wo = w,

. (,,; s E ~0, +oo)) has the law of a reflected Brownian motion starting
from ((tu), that is has the law of the absolute value of a linear Brownian
motion starting from ((w) , ,

. the conditional law of knowing (~’s)s>o is the law of an inhomo-
geneous Markov process whose transition kernel is described as follows :

for 0  s  t,
- Wt(u) = Ws (u) for all u  m(s, t) = 
- conditionally given Ws{m{s, t)), (Wt(m(s, t) + u), u > 0) is inde-

pendent of Ws and distributed as a Brownian motion in Rd starting
from Ws (m{s, t)) and stopped at time (t - m(s, t).

For the rest of the paper we will work most of the time under the probability
P=Po

Occasionally we will need to work with the "excursion measure" of the
Brownian snake. Note that, for every z E Rd the path x is regular for the
Markov process ( Ws ). Hence we may define the associated excursion measure
Nx (see [Lg2]). Under Nx the lifetime process (~( Wt ) ) is distributed according
to the Ito measure of positive excursions of linear Brownian motion. The condi-
tional distribution of (Wt) knowing (~(W~)) is the same as above. Moreover we
suppose that N~ is normalized so that ~(Wt) > h) =1/2h for every
h>0. 

~

At the end of this paper we also consider the Brownian snake started at w
and stopped at the time 03C3 where its lifetime reaches 0. We will denote P*w the
corresponding probability. 

A first step for us is to prove the following large deviation result which
estimates the probability that the Brownian snake exists a "big" ball before
time 1. The notation log refers to natural logarithm.

Theorem 1 We have

p A] = 0
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with co = 3 .2-4/3.

Then our results follow.

Theorem 2 Let h(s) = (log log s)3/4. Then, P -almost surely,

lim sup|s| h(s) = c1

with cl = c-3/40 = 2 .3-3/4.
Theorem 3 Let = Then, P -almost surely,

lim sup |s
| 03C8(s) 
= c1

with, as previously, cl = 2 .3-3I4.

Surprisingly a similar law of the iterated logarithm with the same function
~ holds for the so-called iterated Brownian motion, see ~CC~ . In this model a
single Brownian trajectory is described according to a reflected linear Brownian
motion whereas in our model a "tree" of Brownian trajectories is described

according to a reflected linear Brownian motion.
We will only prove theorem 2. It is easy to adapt this proof to treat the case

of theorem 3. .

2 A large deviation principle
Our first goal is to prove a large deviation principle concerning the finite-
dimensional marginals of E [0,1]). This has already been done
in [Se2] when the considered Brownian snake has a lifetime process which is a
normalised Brownian excursion instead of a reflected Brownian motion. The

arguments in [Se2] may be adapted to the new setting. The methodology was
to describe the law of the 2n-tuple

(W~1, ... 
with 0  u 1  ~ ~ ~  un  1 and then analyse the behavior of the densities of
this 2n-tuple when it is appropriately scaled. We know that the two stopped
paths Wu; and coincide up to time We note that, under P,
there exists a unique m; such that (m, = and we use the notation

m; = u,+i], (). Thus it is interesting to study the law under P of the
(4n-2)-tuple

(~ui! ’ ’ ’ ) Wun, ~ul, ..., ~um ~mi, ..., ~m"_1, Wmi , ... , 
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To describe this law and consequentely to express the large deviation principle,
we need some notations related to tree structure introduced in [Sel].
Let c~i,..., be distinct nonnegative real numbers. We denote by A(al, ... , ,

the mapping a : { 1 > ...~ > n - --~ ~ 0 > ... > ra -1 } given, for every i E
{l, ..., n -1}, by a(i) = d with

a,  a;, Vj E i, I V i), a~ > a,, a~ as large as possible,

if such an integer I exists and a(i) = 0 otherwise. We also define a mapping
v : : ~1, ..., ra} -~ {1,...,n - 1} by setting v(1) = 1, v(n) = n - 1 and, for
i E ~2, ..., n -1} v(i) = i 2014 1 if ai-I> a~ and v(i) = i otherwise. As it is
proved in [Sel], the mapping v is determined by a = A(al,’ ..., an-i) so that
we use the notation va for v. We state the result without proof referring the
reader to [Se2] for a detailled proof in a slightly different setting.

Proposition 4 Let cr = [0  ui  ...  un  1] be a finite partition of [0,1]. .
Under P, the laws of

(~ W~1, ..., ~ ~ 2/3 ~ 2/3 
2/3 ~,nl,...,~ 2/3 e~,,..., )

satisfy a large deviation principle with speed ~-4/3 and rate function

= 03B221 2u1 + (03B2i + 03B2i+1 - 203B1i)2 2(ui+1 - ui) + |zi - za(i)|2 2(03B1i - 03B1a(i) + |yi - zva(i)|2 2(03B2i - 03B1va(i))

if 0  as  03B2i 039B 03B2i+1 for every i and +~ otherwise.

We recall that we have set zo = 0, 0 being the "starting point" of the Brownian
snake under P. By "large deviation principle" we mean that

. for every U relatively open subset of (Rd)n x ([0, +oo))n x ([0, +oo))n-1 x
>

lim inf ~4/3 log (U) > - inf I03C3

. for every K relatively closed subset of (Rd)n x ([0, +oo))n x ([0, +oo))n-1 x
(Rd)n-I, >

lim sup~4/3 log (K)  - inf /,. .
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3 Probability of exit from a "big ball"
The aim of this section is to prove theorem I . Let us denote by A the set of
continuous W-valued processes (W§ , (§ ) sejo, ij which have the "snake property"
that is W§(u) = W§(u) for 0  s  t  I and u  infjs,tj I’ and which satisfy
moreover sups~[0,1] l F§ I > I We have to show that

lim~4/3 logP (((ews , e A] = -co ( 1)

We start with two lemmas.

Lemma 5 For 0  a%  al  ...  ak and ii; ..,iN e o,+cxJ> and
Zl > Zb > ... > z’N ~ Rd We ha"e

£ N |z’i _ z’ I-1 j2 
~ |z’N - z’0 j2

and
N 

(03B1’i- 03B1’i-1)2 03B3i ~ (03B1’N- 03B1’0)2 03A3Ni=103B3i

Proof. The first inequality (and similarly the second) is an easy consequence
of Cauchy-Schwarz inequality:

|z’N - z’0| ~ |z’i - z’i-1| ~ ( |z’i - z’i-1|2 03B1’i - 03B1’i-1)1/2  (03B1’i - lXl- i)

Lemma 6 For j G (I, ... , n) we have the following upper bound

Ia (vl > ... , yn, > Ql > ... > Qn > °I > ... > °n- I > Zl > ... > Zn - I )

> |yj|2 203B2j + Qg > 32-4/3IY’12/3

Proof. The second inequality follows from the first one by minimizing over
j$; > 0. For the first one the main argument is the previous lemma. We first
note that + 03B2va(j)+1 - 2 > Q; - and, for every I, Qaj> +
Qaj>+1 - 2 aaj> > 03B1i - aaj> . This leads us to a lower bound for I03C3. We simply
select certain terms in the expression of Ia . In heuristic terms describing the
"tree" formed by the paths Wu1, ... , Wu, , we start at the leaf y; and back up
to the root 0 G Rd along the branches of the tree. We denote by p the smallest
integer such that 03B1ap(va(j)) = 0 where aP = a o ... o a. Then

1CT ~ [ )y; - + ~~ ~ 
2 (Qj ~ 2 °avaj»)
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+ |za(va(j)) - za(a(va(j))) |2 2(03B1a(va(j)) - 03B1a(a(va(j)))) + ... + )Zap-i (va(j)) - Zo |2 2(03B1ap-1(va(j)) - 03B1ap(va(j)) ]
+ [ (j$; - 

+ 
- 

~ 
2 ~ UVaj» ~ 2 ~ 

~ ~ ~ ~ ~ 
- 

2 ~ 

Then we use lemma 5. A lower bound of the first quantity in brackets is given
by the first inequality of lemma 5. Similarly the second quantity in brackets is
dealt with the second inequality of lemma 5. We deduce

I03C3 ~ |yj|2 203B2j + 03B22j 2
as wanted. This completes the proof of the lemma.

Proof of theorem I. For a = [0  ui  ...  un  I] subdivision of [0, 1] we
denote by xa the projection which associate to the W-valued process (W§)sejo, ij
the finite dimensional marginal:

(’ui > ... , ’u n > ,I u i > ... , 03B6’un > ,I mj , ... > ,I mi , ’ m’1, ... ’m’n-1 )

where, as in the previous section, mj = arginf([ui, uj+i] , I’) . With the notation
~ of proposition 4 we have

lim sup~4/3 logP (( (e W, , ~2/3 (s ) ) s e jo ij e A]  lim sup~4/3
e$0 

’ 

e$0

But by proposition 4 the limit on the right hand side is less than minus the in-
fimumof Ia over 03C003C3A.
By lemma 6 the latter quantity is lower than -co sup03C003C3A supi [ Wu; |2/3
(we recall that co has numerical value 3 2-4/3). When the stepsize of a tend to
0 the previous quantity has the asymptotic upper bound -co. . So we get

lim sup~4/3 log P [((~Ws,~2/303B6s))s~[0,1] ~ A] ~ -c0.
Conversely,

lim inf~4/3 log P [( (e w, , e2/3 , ) ) , e jo ij e A]
> lim inf~4/3 logP (E ]Qi ] > 1]
~ - inf { 03B221 2 + |y1|2 203B21; |y1 I ~ 1, 03B21 > 0} = - c0

Combining the above results on the liminf and the limsup give theorem 1 .
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4 Proof of the law of the iterated logarithm
Our aim is now to prove theorem 2. We first get the upper bound on the limsup.
We take A > 1, c > ci = co 3/4 and set

An = sup > J
By the scaling property of the Brownian snake

= P sup |s ( > J
By theorem 1 we deduce that, for ê > 0 et n large enough

4/3

 ~) C4/3 log n = ~ _F ) C4/3
Since co c4/3 > 1, we may choose e > 0 so that (co - e) c4/3 > 1 which then
implies Ln P(An)  +00. By the Borel-Cantelli lemma we easily deduce that

lim sup|s| h(s)  °

As this is valid for every c > ci and every A > 1 we have proved that

hm sups,~+~ ( Ws (~h(s)  °

We now pass to the proof of the lower bound on the limsup. We set

tI"= sup .Un= 
sup 

|Ws| ~ c h(03BBn-) j -

We claim that for c  ci, A > 1 and a > 1 close enough to 1, we have

~ +~~ (2)
n

This is obtained as previously by scaling and use of theorem 1: for 6 > 0 et n
large enough

] = P sup |Ws ( > C (log 

> a log n = 1 n(c0+~) 03B1 c4/3.°



309

Let us admit temporarily that for c  ci , a > 1, A big enough, there exists a
constant M such that for all integers m  n

n Un )  M P(Un ) (3)

Then we may apply to (Un ) a Borel-Cantelli lemma as stated for example in [PS]
p.65. This lemma implies that, with positive probability, !7~ occurs infinitely
often. Hence the event

H = c~ J
occurs with positive probability. But the asymptotic event H satisfies a 0-1 law.
Indeed H E u > dv } where dv denotes the smallest zero of the lifetime
after time v > 0. By construction of the Brownian snake this implies that H
is independent of u ~ If we let v tend to +00, we see that H is

independent of ; u > 0 } hence of himself. Thus P ( H ) = 1. Since it is
valid for every c  ci we have proved theorem 2.

It remains to prove equation (3). We start with a lemma.

Lemma 7 There exists a universal constant Kl such that, for w E W, A >
>

Pl [ sup (Ws ~ ~ > A ]  ,, 
P*w [sup |Ws| ~ A j ~ Kl 

Proof. We use proposition 2.5 of [Lg2]. As in this paper we set (" = infuE[o,s] (u.
We denote by { (a; , ,Qs ); i E I } the excursion of ( - ( away from 0 before time
a (where the lifetime first hits 0). We denote by ; i E I} the corresponding
path-valued excursions that is

Ws (u) = (~«~ + u).

We know that the point measure

iEI

is, under Pw, a Poisson point measure with intensity 2 J~ ds Nw(s)(~). We recall
from the introduction that Nx ( . ) denotes the excursion measure of the Brownian
snake away from the path x. The probability, under P, that the Brownian snake
exits the ball of radius A is the probability that at least one of the excursions
Wi t starting from 03B1i does so and thus goes further than A - from its
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origin Wa; . More precisely :

P~ sup = 1- exp -2 / ds sup > A
J 7o /

~ 2 ds No sup )
~ 203B60ds (A - |w(s)|)2 N0 ( sup |’s| ~ 1).

In the last line we have used a scaling argument under the excursion measure
cf. [Lg2] proposition 2.3. The proof of the lemma is complete.

Now we come back to the proof that equation (3) holds for c  cl, a > 1, A
big enough, m large enough and n > m. We already know that for ~ > 0 and
n large enough, > 1/np with Q = (co + 6~) c4/3 a. We write the following
decomposition

P sup > c sup > c 

 Tl + T2 + T3

where

Tl = P sup c 2 h(03BBn03B1)] (4)

TZ = P sup (5)J
Ts = E[1(sup |s|~[c h(03BBm03B1),c 2h(03BBm03B1)]) 1 (sup 

03B6s ~ k 03BBm03B1/2log nj 2 ~ 
_ 

/

sup c 6’ _ /J
The last term arises after application of the Markov property. Let us start with
the first term:

7-. = P sup (Ws ~ > T1 = 

sup |Ws| ~  2 03BBm03B1
~ P sup ~ > ~ a sE[0,l] ~ J
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~ 

~ ~o-)(~)~
~ 

for large enough m  n, as soon A is chosen so large that

(co-~)(-) ~2/?=2(co+6)c~a.

For the second term we use scaling and a well known large deviation result for
Brownian motion:

Ts = P T2 = /e[o,i] 03B6s ~ )
 exp ( 20142014 m-03B2 n-03B2

as soon as /~~ ~ 4/?. For T3 we first notice that

sup ~ ~ /
~ sup c + P sup c 

~ ~ /
The aim is to show that these two quantities are bounded by M P(!7~). The
second one is precisely equal to P(!7~). For the first one we use lemma 7:

P*W03BBm03B1 (sup|’s > c h(03BBn03B1)) ~ K103B603BBm03B10 ds (c h(03BBn03B1) - |W03BBm03B1
(s)|)2

Let us recall that in this computation we have  § and

thus for every s, ]  ~(A""). We also have ~.  
We deduce

B~[0,r] ~ t.2 ’’~ ~

 
4K1 K 

. 

" 

 ’
- 

~ 
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for n large enough. Substituting this result in the definition of T3 give the
sought-after bound, as for Ti and T2 and we conclude that inequality (3) is

true.
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