
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

DAVID G. HOBSON
Marked excursions and random trees
Séminaire de probabilités (Strasbourg), tome 34 (2000), p. 289-301
<http://www.numdam.org/item?id=SPS_2000__34__289_0>

© Springer-Verlag, Berlin Heidelberg New York, 2000, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_2000__34__289_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Marked Excursions and Random Trees

David G. Hobson

Department of Mathematical Sciences,
University of Bath,

Claverton Down, Bath, BA2 7AY. UK.

1 Introduction

This article is devoted to the study of the properties of a marked Brownian excursion,
and an embedding of a branching tree in an excursion with marks. The embedding
depends upon the heights of the excursion at the various mark times, and the heights
of minima between consecutive marks. The resulting tree is a critical binary tree
with an independent branching structure. The construction also gives rise to a
natural connection between a Brownian excursion with at least one mark, and a
family of Brownian excursions each with exactly one mark.

The relationship between Brownian excursions and trees has been much explored
in the literature, a selection of which we note here. Neveu and Pitman [9, 10]
(see also Le Gall [5]) considered excursions of height at least h, and embedded a
tree in the excursion based on the locations of h-maxima and h-minima, which
are excursion dependent local-extremes (see [9, 10] for definitions.) LeGall [6] has
described one fruitful application of the relationship between excursions and trees
to the construction of super-processes.

Aldous [1, 2, 3] based a tree on the excursion value at arbitrary times chosen
independently of the excursion structure. His tree, the Brownian continuum random
tree contains an infinite number of ’leaves’. Le Gall [7] considers a tree with a finite
number of leaves which correspond to times chosen uniformly over the lifetime of a
Brownian excursion. This article has much in common with this last paper.

Le Gall chooses an excursion according to Ito measure, re-weighted by the length
7 of the excursion, and imagines putting p points uniformly, and independently, in
the interval [0, He then defines a construction of a tree based upon the excursion,
and in particular the excursion values at these time-points. Here we imagine a
Brownian motion and an independent Poisson process marking the time axis. We
consider the first Brownian excursion to contain a mark, or equivalently we choose
an excursion according to the Ito measure of marked excursions. This first marked
excursion contains a random number of marks, but by the properties of the Poisson
process, each mark is uniformly distributed over the lifetime of the excursion. Now
we have an excursion with a (random) number of identified points and we can define
an embedded tree in the manner of Le Gall [7]. We investigate the properties of the
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resultant tree: since the excursion and the marks have been chosen in a canonically
simple fashion, the resulting tree is also particularly simple.

We extend this idea to construct a second tree in which each node of the tree

corresponds to a mark in the original excursion, and in the final section use this
construction to explain an observation on the Arcsin law.

In this article we consider marked excursions. A related problem involving nor-
malised excursions (ie excursions of unit length) has been considered by Pitman [12].
Pitman derives the joint distribution of the values of a normalised Brownian excur-
sion at times 0   ~ ~ ~  U(n~  1 and the minima of the process over
subintervals (~U~i), U(i+1)~)1in-1~ . Here U(1), ... are the order statistics of n

independent standard uniform random variables. The choice in this paper of excur-
sions which contain a mark introduces a size bias which is exactly the right factor
to guarantee the independent branching structure of the embedded tree.

It is a pleasure to thank Jean-Francois Le Gall for discussions and correspondence
on this subject, and an anonymous referee whose detailed reading of an earlier
version of this manuscript ensured that this version is much clearer.

2 Preliminaries on Trees

2.1 Trees

A tree consists of a finite family of elements ordered into generations. The zeroth
generation contains a single parent individual who has a random number of offspring.
These offspring form the members of the first generation. Subsequently each member
of the kth generation has a random number of offspring who form part of the 
generation.

Formally, following Neveu [8], define a tree as follows; T is a tree if T is a finite
subset of U := U=o, where ~J° := {0}, such that

. 

~ for k > 1, if u = ul ... u~ E T then ul ... E T;

. for k > 1, if u = ul ... u~ E T with uk = n then u = ul ... uk-lm E T for

1  m  ?~. 
’

Let T be the set of trees, and if u = ul ... uk let ~u) = k.

2.2 Marked trees

A marked tree is of the form

where T and Lu E ‘du E T. The mark Lu should be interpreted as the
branch length or lifetime of the individual associated with element u. Let T be the
space of marked trees.

Note the unfortunate dual use of the word marked. In an excursion a mark refers

simply to an identified time. In a tree a mark is a piece of additional information
associated with an element. Hopefully no confusion will arise.
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2.3 Binary trees .

In a binary tree the number of offspring is always either zero or two. Let Tb be the
set of binary trees. Introduce a measure on Tb by setting

~c(T) = 

where 11711 is the cardinality of T. The measure v models a branching process with a
binary branching distribution where each individual has zero or two offspring with
probability 2 . If p := E T : ~l ~ T} (~ then p is the number of elements of the
tree with no descendents = 2p - 1. Such elements are termed ’leaves’ of
the tree. 

’

Let Tb be the space of marked binary trees. For a positive define a measure ~a
on ~b by setting

= dLu) :_ ~~T) 

This measure corresponds to a continuous time branching process with offspring
distribution the uniform measure on {o, 2}, and exponential, rate a, lifetimes. In

particular, for u E T, the law of the subtree rooted at u is the same as the law of
the whole tree..

Figure 1: A representation of a marked binary tree. Vertical distances correspond
to the branch lengths. Note that the horizontal scale and spacings are not part of

the definition of the tree.

2.4 Binary trees and excursions

Define the set E of excursions to be the family of functions e : : l~+. e u A

with an associated lifetime 7 = a(e) E 14 such that e(0) = 0, limstu e(s) = 0, e is
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continuous on [0, ~) and positive on (0, ~), and e(s) = ~, Vs > ~. The element A is
a graveyard state. We will loosely define an excursion by describing it’s lifetime u
and a continuous function e : [0, o-) ~ R+ with the appropriate properties. In the
sequel we will also use the concept of an excursion started from h > 0, which is as
above except that e(0) = h. We will also specify time-points 0  si  ... sp  Q
during the lifetime of an excursion. These points will be identified with leaves on
an associated tree. Let Ep be the space of excursions, with p specified time-points,
and let E - Ei.

Given an excursion e, for a finite integer p, fix 0  si  ... sp  a. Then in
each interval [sr, (r =1, ... p -1), there exists a time tT such that the infimum
of e over the interval is attained at tr. Assume that tr is unique and in the open
interval (sr; sT+1 ), and further that the values e(tj) are distinct. When we consider
Brownian excursions these assumptions will be satisfied, almost surely.

Figure 2: A plot of a typical excursion e up to its lifetime 7, with identified points
si  ... s6  cr. The time t at which the infimum of e over ss] is attained is also
shown, as are t- and t+.

Suppose, inductively, that we are given a label u E T, an associated excursion eu,
and an ordered set of times 0  ...   Initially we take u - 0,
e~ == e, and ... , sp~u)) _ (sl, ... , sp). Then

e if p(u) = 1, set u to be a leaf, so that u1 ~ T and u2 ~ T. Let Lu = eu(si ) and
eu - eu. Note that e~, E E.

e if p(u) > 1, let tu be the time-point between the first mark (at si) and the last
mark (at at which the excursion eu attains its minimum value, so that
eu(tu) = eu(t). Associate with the label u the length Lu - 
Moreover, set u1, ~2 E T. We wish to decompose eu into three excursions; an
excursion eu with exactly one labelled point, and two other excursions eul, eu2,
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each with at least one labelled point. Define the times tu- ~ supssnl{eu(s) =

eu(tu)} and tu+ = infs>sup(u) {eu(s) = eu(tu)}. The three components of the

decomposition are then as follows: eul(s) := eu(t" +s) -eu(t") is an excursion
with lifetime tu - eu2(s) := eu(tU + s) - an excursion with lifetime

(t+ - t"); and eu(s) which has lifetime (t+ - and is given by
eu(s) := eu(s) for and eu(s) = + s), for s > t"

For the label u E T this construction defines a mark Lu and associated excursion eu E
E. Moreover, when p(u) > 1 the construction produces two sub-excursions labelled
u1 and ~2, with marks (s"1 . s"1 ) - (su - ... su - and (s’~2 ... , su2 ) -
(S~+i - tu, ... , , sp(~~ - respectively, where j = sup{k : : sk  

Figure 3: A A-marked excursion, and superimposed the associated tree with six

leaves, corresponding to the six marks.

Since p is finite this construction must terminate, to produce a marked tree

(T, (Lu, u E T)), and a family of excursions (eu, u E T). Note that each member of
this family of excursions has exactly one identified point which corresponds either
to one of the original marks, or to one of the split times tr.

The first aim of this article is to describe the law of the marked tree, and the

associated excursions, when the original excursion is chosen to be a marked Brownian
excursion.

3 Ito excursions and marked trees

Let B be a Brownian motion with local time process at zero. Then, as Ito observed,
B can be decomposed into excursions away from zero, indexed by l. These excursions
form a Poisson process, on the space of excursions (as defined above, but also with
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the choice of sign), with intensity n(de). By saying that ’e is a Brownian excursion’
we mean that e has been chosen according to n.

Suppose further that time is marked by an independent Poisson process with
constant intensity A. For an excursion e, with duration cr = r(e), the probability
that there are k marks is By properties of the Poisson process the
intensity of Brownian excursions e with k marks at 0  si  ...  cr is

dsi ... ,) = n(de) 
dsl ds k

, 

a T

We will say that ’e is a A-marked excursion’ or just ’e is a marked excursion’ if e is
chosen according to n and the time domain of e contains at least one mark of the
Poisson process.

For Brownian motion B, with local time process A and first hitting times H,
and for Ta the time of the first mark of the independent Poisson process, we have

> z) = P(Hz  Ta)
= E(~Hz03BBe-03BBtdt)

= E(e-03BBHz) = e-z203BB. (1)

Here the first equality is based on Levy’s Theorem identifying the law of the local
time of Brownian motion with the law of the maximum. It follows that the rate of
marked excursions is and that the probability density of an excursion e with
k marks at 0  s1  ...  03C3k  03C3, conditional on the excursion having a mark, is

03BB,k(de,ds1,..,dsk) = n(de)03BBke-03BB03C3 203BBds1... dsk

Let 03BB = 03A3k>1 ñ03BB,k be the probability density of an excursion with associated
Poisson marks, conditioned to have at least one mark.

Theorem 1 Let a = 2B/2A. Under na the distribution o f T(e) is . Moreover

each of the associated excursions is a a-marked excursion conditioned to have exactly
one mark, and the excursions associated with different individuals in the tree are

independent.

In the proof of this theorem we need a key lemma on excursions with a single
mark.

Lemma 2 A 03BB-marked excursion conditioned to have exactly one mark has the

f ollowing structure; the height Z of the mark has an exponential distribution, rate

a, the post-mark process is an independent Brownian motion, started at Z and

conditioned to hit zero before being marked, and the pre-mark process is a time

reversal of a further independent Brownian motion, again started at Z and again
conditioned to hit zero before being marked.
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Proof of Lemma 2

We have that

I > z) = > z) = P(Hz  Ta) = 

(recall (1)) so that the height of the first mark in a Brownian motion has an ex-
ponential distribution, rate 2a. Further the probability started from z of hitting
zero unmarked is e-x 2~’. Hence, the height of the mark in an excursion conditioned
to have exactly one mark has density proportional to

( 2.1e x 2a)(e-x 2a) - 
so that it has an exponential distribution, rate a = 2~/2A. It also follows that the

probability that a A-marked excursion has exactly one mark is 1/2.
The other statements follow from the strong Markov property and the invariance

of the excursion measure under time reversal (see Rogers and Williams [13, VI.49]).
o

Given an excursion e, started from h > 0, define e(s) - Then

by Levy’s Theorem, if e is a Brownian excursion run until it first hits 0, then

((e - e)(s), s > 0) is a reflected Brownian motion started at 0 and run until the local
time at 0 first reaches h. Further, if e is a Brownian motion conditioned to have no
marks, then the excursions of (e - e) from 0 are Brownian excursions conditioned
to have no marks.

Proof of Theorem 1

Let e be a A-marked Brownian excursion with lifetime u. Let Tl be the time of
the first mark, and let ç == e(Tl) be the height of the first mark. Then ç has an
exponential distribution with rate 2a and if eT(s) = e(Ti + s) then the process
(eT - eT) is a reflecting Brownian motion, independent of ~, run until the local time
at 0 reaches ~. For s  r 2014 Ti define Y(s) := (eT - s). The process Y is
a reflecting Brownian motion run until it’s local time at zero first reaches ~, but we
can think of it as the first part of a reflecting Brownian motion run for all time, and
also labelled Y. We are interested in the last marked excursion from 0 (if any) of
the process e - e, this corresponds to the first marked excursion of the time reversed
process Y (if that excursion occurs before the local time at zero reaches ~.)

The first A-marked excursion of Y occurs when the local time at 0 reaches r~ where

r~ has an exponential distribution with rate (again recall (1)). The probability
that the excursion e has exactly one mark is precisely the probability that ç  r~,

namely one-half, and moreover the law of r~ is exponential rate a = 
Consider the case where ~  Conditional on ~  yy the excursion e contains

exactly one mark at a height ~ which has an exponential rate a distribution, and
we can apply the description in Lemma 2. Consequently, with probability 1/2, the
marked tree consists of just the parent individual, who has lifetime ~. Note that,
conditional on ~  has an exponential, rate a distribution.

Now consider the case where q  ~. The process Y contains excursions which
are unmarked, followed by a first marked excursion at local time r~, which begins at
time tY and ends at tt. Now consider these times in terms of the original excursion
e. Let t :_ ~ - tY and t+ = u - and let t- := = e(t)~. Then t, t_, t+
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Figure 4: A Brownian excursion e, with first mark at Ti and the process e also

plotted..

have the meanings they were given in Section 2 and the excursion e is divided into
three excursions, el, e2, e~ given by el (s) := e(t- + s) - e(t_) for 0  s  t - t_,
e2(s) := e(t + s) - e(t) for 0  s  t+ - t and e~(s) = e(s) for s  t-, and

e~(s) = e(t+ - t- + s) for s > t-. By construction the time reversal of e2 is

a marked excursion of Y, and, by invariance under time-reversal of nx, so is e2.
Moreover, again by the invariance under time-reversal of and by the strong
Markov property, so is el. Finally, by Lemma 2, 60 is precisely a Brownian excursion
with exactly one mark.

Recall that  ~) = 1/2 so that the probability that the excursion contains
more than one individual is one half. Then the marked tree has a parent individual

(with lifetime conditional on 7y  ~, r~ has an exponential distribution, rate a)
who has exactly two offspring. These offspring correspond to the marked excursions
el and e2, which are independent of each other, and of the excursion 60 associated
with the parent.

The theorem follows by induction. D

Remark 3 It follows from the theorem that if we extend the notion of a mark or

label on an element of a tree from a lifetime to an excursion with exactly one mark

or identified time then we have a correspondence e H (T, (eu, u E T)) where e is a
À-marked Brownian excursion, T a critical binary tree, and eu a family of Brownian

excursions conditioned to have exactly one mark.
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4 Equating marks with leaves

Our goal in this section is to embed a different tree, p, in a marked Brownian

excursion. This new tree has one node (rather than one leaf) for each mark in
the excursion. The motivation for consideration of this new tree is a Ray-Knight
interpretation of excursions and local times at different levels. An application is

given in the next section.
Suppose, inductively, that we are given an individual labelled u E p, an associ-

ated excursion eu , and an ordered set of times 0  ...  s~(,~}  Initially
we take u = 0, e, and (s~, ... , sp~,~)) _ (sl, ... , sp). Let {e~,(si ), ... , 
be minimised at h = for some i. Associate with the label u the lifetime

Lu = h. If p(u) = 1 then this individual has no offspring. Otherwise there is at least
one excursion above the height h which is marked; label the d = d(u) such marked
excursions sequentially u1, u2, ... , ud. These excursions correspond to direct de-
scendents of u in the tree p. For j = 1, ... , d let be the start of the jth marked
excursion eu; above h, and define new mark times s"~ as appropriate. We
are now in a position to repeat the construction for these sub-excursions. Since the
number of marks p is finite this construction must terminate, to produce a marked
tree ( p, (Lu, u E p) )

Theorem 4 Under fix the distribution of p(e) is that of a critical Galton- Watson

process with geometric offspring distribution. In particular the measure of a tree p
is v( p) - . The marked tree has law

= dLu) 2 ~1+d~’~»(1 + 
uEp

= v(p) II (1 + 
uEp

where d(u) is the number of offspring of the individual labelled u.

We prove Theorem 4 by defining a surjection from ~~ to t. Given a marked

binary tree (with marks corresponding to individual lifetimes) associate with each
leaf u = Era total lapsed time lu = (the sum of its own lifetime
plus the lifetimes of its ancestors).

Let u be the label of the leaf with lowest lapsed time. Let this lapsed time lu
be the lifetime of the parent 0 of the marked tree p. Now consider the number of
descendents of the parent individual in the binary tree T (excluding the individual
corresponding to the leaf u), who are alive at the time lu, see Figure 5. Each of

these individuals is the root of a marked binary tree (we consider only that part of
the sub-tree above lu), and to each of these individuals we can associate an offspring
of the parent in p. In this way we can build inductively a marked tree p in which
each node, including the leaves, corresponds to a leaf in T.

Proof of Theorem 4

Most of Theorem 4, and in particular the independent branching structure, follows
from Theorem 1, and in particular the fact that the marks have an exponential
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Figure 5: Constructing the general tree from a binary tree. In the new tree the

parent has four offspring, the last of whom has one offspring. Again the horizontal
scale is unimportant, although it has been inherited from a Brownian excursion.
Note that each node in the new tree corresponds to a leaf in the old tree.

distribution, and from the mapping f H p. The remaining part is to identify the
joint law of the lifetime and offspring distribution.

Number of offspring. Each event in the binary tree is with equal probability
either a split or a death. The number of offspring of the parent in p is exactly the
number of splits before the first death in T (working upwards through the tree) and
has a Geometric, parameter 1/2, distribution.

Each individual alive at this first death is the root of a future tree, by the
exponential lifetime property in f, each of these trees is independent and has the
same probabilistic structure as the whole tree.

The law of the lifetime, conditioned on the number of offspring. Conditional

on the parent 0 having k offspring, the lifetime of 0 is the sum of independent
exponentials Ta + T2 + ... + T(k+1~«. Here Ta, rate a, is the time until the first

event in the binary tree, rate 2a, is the subsequent time until the second event,
(there now being two individuals in the binary tree), and so on.

By well known facts on the Yule process, or inductively on the number of off-
spring, the lifetime of the parent, conditioned on k offspring, has density

fk(t) = (k + 

a
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5 Trees and the Arcsin Law

Let Bt be a Brownian motion and let ~ = (lit) f~ be the proportion of
time that Brownian motion has spent positive by time t. Then by Brownian scaling
Vt g V, a random variable independent of t which has the Arcsin distribution:

P(V ~ v) =du 03C0u(1-u); 0 ~ v ~ 1.

The original motivation of this study was to explain and understand the obser-
vation that, for all integers k > 0,

lE(Vk) = 2-2k ( ) = P(random walk of length 2k is always non-negative).
Since V is a distribution on [0,1] and is completely determined by its moments, an
explanation of this observation can be viewed as an alternative proof (though hardly
the most direct) of the Arcsin Law.

The final equivalence that we need relates a tree p with m ~ 1 individuals to
an excursion of a simple random walk S with 2m steps. Given a tree p, define
a map f : : { 1, 2, ... , , 2m -1 } H {u : : u E p} as follows. Let f (1 ) = ~. Given

1 (i) = u = ul ... uk choose, if possible, the first child v of u which has not already
been visited, and let f (i + 1) = v, otherwise let f (i + 1) = Finally let
So = 0, ~ = + 1 and ~ = A.

Standard combinatorial properties give that if p is a critical branching process
with geometric parameter 2 offspring distribution, then the resulting random walk
is an excursion of a simple symmetric random walk. This construction, called the
contour process or exploration process, is due to Harris [4], see also Le Gall [5].

Proposition 5

= P(random walk of length 2k is always non-negative)

Proof.
The proof is based upon the observation that the kth moment of V is the probability
that for a Brownian path with k marks, the value of the Brownian motion is positive
at each of the mark-times. We combine this remark with Theorem 4 and the bijection
between critical Galton-Watson branching processes and excursions of random walks
to deduce our result.

Let Tk+i be the time of the (k+1)th mark. Consider Brownian motion on [0, Tk+i]
(with exactly k marks) and Conditional on Tk+l, the times Ti  ...  Tk are
(the order statistics of) k uniform random variables on [0,Tk+1]. Thus

E(Vk) ~ E(VkTk+1) + Tk+10...Tk+10I{Bs1>0} ... >0} ds1 Tk+1 ... 

= P(BTi 

Now consider the whole path of B. Use Theorem 4 to identify the jth marked
excursion of B, (with m~ marks), with a jth realisation of a branching tree (with m~
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individuals) and a positive or negative label according as the Brownian excursion
is positive or negative. The jth realisation of the branching tree is in one-to-one
correspondence with an excursion of a simple symmetric random walk (with 2~n~
steps). We use the label of the tree to decide if this is a positive or negative excursion
of the random walk. Now glueing these excursions together gives us a simple random
walk (Sn, n > 0). The positivity of ... BTk is equivalent to the fact that (Sn > 0)
for every n  2k. 0

For other consequences of the relationship between Brownian motion sampled
uniformly at random times, and simple random walks, see Pitman [11, Corollary 3~.
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