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TIME DEPENDENT SUBORDINATION

AND MARKOV PROCESSES WITH JUMPS

Masao NAGASAWA1 and Hiroshi TANAKA2

Abstract

Bochner’s subordination is extended to time-inhomogeneous Markov processes and the
Feynman-Kac formula is generalized to the time-dependent subordination. As an
application it is shown that stochastic differential equations with jumps can be directly
solved with the help of the time-dependent subordination and consequently that the
equation of motion for relativistic quantum particles is solved.

I. Introduction

For a prescribed drift coefficient b(s, x) and a potential function c(s, x), we prepare a
pair of operators

A f = I (J V + b(s, x))~ + c(s, x) 1,
2

and

ct = 1 2(03C3~ b(t,x))2 + c(t,x)I,

which are formal adjoint of each other, and set

Mcs = - -Asc + 03BA2I + 03BAI, ct = - -ct + 03BA2I + 03BAI.
We then consider

~03C6 ~s + Mcs03C6 = 0, (1.1)

p c, ~- ~t 
+ Mt  = 0, (1.2)

1 Institut für Mathematik der Universität Zürich Irchel, Winterthurerstr. 1 90, CH-8057
Zürich Switzerland
2 
Department of Mathematics, Japan Women’s University, 2-8- 1 Mejirodai Bunkyo-ku
Tokyo Japan



258

which is the equation of motion of Nagasawa (1996, 1997) for a relativistic (spinless)
quantum particle(s). The movement of a relativistic quantum particle is described by
Markov processes of pure-jumps ( Y(t) , t E [a, b], Q} such that the distribution of Y(t)
is given by

Q[ Y(t) E dx] _ x)dx,

where x) and x) are solutions of equations (1.1) and (1.2), respectively. In the

Schrödinger representation we have

] _ x~ t, y~ b, 

where q(s, x; t, y) is the fundamental solution of the pair of equations (1.1) and (1.2)
which are in duality with respect to dtdx, and { lpa, is a prescribed entrance-exit law,
for details cf. Nagasawa (1996, 1997). Nagasawa-Tanaka (1998, 1999) discussed the
existence and uniqueness of solutions of equation (1.1) in terms of stochastic differential

equations of pure-jumps. The objective of the present article is to solve equation (1.1)
more directly, through extending Bochner’s subordination to temporally inhomogeneous
diffusion processes and generalizing the Feynman-Kac formula to the time-dependent
subordination.

2. Time-Dependent Subordination

2.1 Bochner’s Subordination

We begin with a remark that it is immediate to construct a pure-jump Markov process

{ Yr, t E [a, b], P } with the fractional power generator

where

A = 1 203A3(03C303C3T)ij(x)~2 ~xi~xj + bi(x) ~ ~xi, (2.1)

which does not depend on time. In fact, we apply the subordination of Bochner (1949) to

the semi-group Pt of the temporally homogeneous diffusion process (X(t), t > 0, P}
with the generator A in (2.1), i.e., we set

Yr = X(Z(t)), t E [0, °°), (2.2)

where ( Z(t), t E [0, oo), P} is the subordinator of Sato ( 1990), which is independent of
the diffusion process X(t) (cf. also Vershik-Yor (1995)). Then the subordinate process
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(Yt = X (Z(t)), t > 0, Px} is a temporally homogeneous Markov process of pure-jumps
with the transition probability

Qtf(x) = = f ps.f(x)Pf Z(t) E ds], ~7o

and the generator M of the semi-group Qt has the expression

Mf(x) =~0{)rf(x) - f(x)}v(dr),

where is the Lévy measure of Z(t). However, if the coefficients of the operator in
(2.1 ) depend on time, Bochner’s subordination in (2.2) is no longer applicable.

2.2. Time Dependent Subordination

A typical example of time-dependent coefficients appears in the equation of motion in ( l.1 ).
We consider a stochastic process governed by

with

As = ~- ~ x) a2 + ~ d b ~ (s, x) a . (2.3)

Let B(t) be a d-dimensional Brownian motion and Z(t) be a subordinator which is
independent of the Brownian motion, and define the inverse function of Z(t) by

Z ’ 1 (t) = inf l s Z(s) > t}, , (2.4)

which is right-continuous in t. We denote by the unique solution of a stochastic
differential equation

X(t) = x + tt003C3(t0 + Z-1(s-t0),X(s))dB(s) + tt0 b(t0 + Z-1(s - t0),X(s))ds.

(2.5)

The key point in equation (2.5) is the inverse function Z -1(s - to) in the time parameter of
the coefficients x) and b(s, x). We assume that the entries of the matrix 6(s, x) and
vector b(s, x) are bounded and continuous in (s, x), Lipschitz continuous in x for each
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fixed s, and the Lipschitz constants are bounded in s, so that equation (2.5) has a unique
solution. We then set

= + Z(t - 

which will be called time-dependent subordination of the solution X to,x(t) of equation
(2.5). It is clear that satisfies

Yt0,x(t) = x + t0

+ Z(t - t0)03C3(t0 + Z-1(s - t0),X(s))dB(s)

+ t0+Z(t-t0)t0 b(t0+ Z-1(s - t0), X(s))ds.

To avoid notational complexity, let us set to = 0, and denote Y(t) = X(Z(t)), where

X(t) is a solution of equation (2.5) with to = 0, that is,

X(t) = x + t0 03C3(Z-1(s),X(s))dB(s) + t0 b(Z-1(s),X(s))ds.

Then Y(t) = X(Z(t)) satisfies

Y(t) = x + 
Z(t)0

03C3(Z-1(s),X(s))dB(s) + 
Z(t)0

b(Z-1(s),X(s))ds.

Putting Z -1(s) = u formally, we obtain a stochastic differential equation for Y(t)

Y(t) = x + t0 03C3(u, Y(u))dB(Z(u)) + t0 b(u, Y(u))dZ(u), 

which, however, does not give the right expression, but a more careful treatment of jumps
of the subordinator Z(t) will prove that X (Z(t)) satisfies

X(Z(t)) =x + 03A3
Z(s)Z(s-)03C3(s,X(u))dB(u) + 03A3 Z(s)Z(s-)

b(s,X(u))du,

(2.6)

where we assume Z(t) is a pure-jump process.
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On the other hand, let W(dw) be the Wiener measure on the space of all

continuous paths, and ~r(s, x, w) be the unique solution of

r t

~(t) = x + 6(s, + ~(u))du, (2.7)

where s is fixed. Then, as will be shown in Section 4, equation (2.6) is equivalent to the
stochastic differential equation of pure-jumps

Y(t) = x + (0, t] (0, ~) 03A9c{

03BE 03B8(s, Y(s-), w) - Y(s-) }N(dsd03B8dw),

that was discussed in Nagasawa-Tanaka ( 1998), where N(dsd03B8dw) is a Poisson random
measure with the mean measure ds and is the Lévy measure of the
subordinator Z(t) .

3. Lemmas

Let Z(t) be a right continuous non-decreasing function on [0, ~) such that

Z(t) _ ~it + ~ {Z(u) - Z(u-) }, (3.1)
0u_r i

where ~3 >_ 0 is a constant.

Lemma 3.1. Let Z(t) be given in (3.1), and define Z -1(t) by (2.4). Then

Z(r)

~ f(Z -1(.s)~ , g(s))ds

r ~s)
= 03B2t0f(u, g(Z(u)))du + 03A3 Z(s)Z(s-)f(s, g(u))du, (3.2)

for any Rd-valued continuous function g (s) on [0, ~) and real-valued continuous
function f(s x) on [0, ~) X Rd. In applications, equation (3.2) is often expressed in
another form as



262

Z(t)0f(Z -1(s),g(s)ds = 03B2t0 f(u,g(Z(u)))du

+ 03A30394Z(s)0 f(s, g(Z(s-) + u))du,

where dZ(s) = Z(s) - Z(s-).

Proof. (i) At the first step, we assume that the set of jump times of Z(t) has no finite
accumulation point, and denote them by

0  ~i  ~2  ~3  ..., ,

in natural order. Let us assume /3 > 0. The case /? = 0 is simpler, and can be handled in
the same way. If 0 _ t  s~, then Z(t) = ~ t and Z -1(s) = s/~ for 0 _ s  Z(t).
Therefore, we have

Z(t)0f(Z-1(s), g(s))ds = 03B2t0f(u, g(Z(u)))du. (3.3)

When  s2, we have

Z(t)0f(Z -1(s),g(s))ds = Z(s1-)0 f(Z -1(s), g(s))ds + Z(s1)Z(s1-) f(s1, g(s))ds

+ Z(s1)+03B2(t-s1)Z(s1) F(s1 + s - Z(s1) 03B2 , g(s))ds,

on the right-hand side of which the first integral is equal to

in view of equation (3.3), in the second integral we have applied the property that Z -1(s)
remains constant in the interval (Z(s i-), and hence Z -1(S) = Z (sl)) = Sl, ,
and the third integral is equal to
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03B2 ts1f(u, g(Z(u)))du,

for which we put u = s1 + (s - Z(s1))/03B2 and s = Z(s1) + 03B2(u - s1) = Z(u).
Therefore,

f(Z w(s), g(s))ds = /3 r f(u, g(Z(u)))du + f(sl, g(u))du.

Repeating the same argument, we have, for sn ~ t  sn + 1 ,

Z(t)0f(Z-1(s), g(s))ds = 03B2t0f(u, g(Z(u)))du + 03A3Z(sk)Z(sk-) f(sk, g(u))du,

(3.4)

which yields equation (3.2) in the special case of no accumulation point, and also

J 0 f(Z -1(S)~ g(S))ds

= 03B2t0f(u, g(Z(u)))du + 03A3 0394Z(sk)0f(sk, g(Z(sk-) + u))du.

(ii) In the general case, we set

_ /3t + ~ {Z(s) - Z(s-)} Z(s-)),
i

for E > 0. Then ZE(t) satisfies the condition of the first case, and hence

Z~(t)0f(Z-1~(s),g(s))ds

= 03B2t0 f(u,g(Z~(u)))du + 03A3Z~(s)Z~(s-) f(sk, g(u))du,

in view of equation (3.4). Since T Z(t) and ~ Z-1(t) as ~ ~ 0, we have
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equation (3.2). This completes the proof.

Let B(t) be a d-dimensional Brownian motion, and Z(t) be a subordinator which is
independent of the Brownian motion. By definition the subordinator Z(t) is expressed as
in equation (3.1) and its L~vy measure v(~f0) satisfies

~0, ( m I  ~..

We define

= a{B(s); 0 _ s S t}, = 6{Z(t) t >_ 0}, and ~’r = 

Then B (t) is an {Ft}-Brownian motion.

Let g(s) be an Rd-valued continuous process, and f (s, x) be a real-
valued continuous function on [0, oo) X Rd. Then f (Z -1(t), g(t)) is a right-continuous

process. Therefore, the Ito integral

t0f(Z-1(s), g(s))dB(s)
is well-defined.

Lemma 3.2. . Let g (s ) be a Rd-valued continuous {Ft}-adapted process, and
f(s, x) be a real-valued continuous function on (0, ~) IR d. Let Z(t) be a
subordinator of the form in equation (3.1) with the Lévy measure v(dr). . Then

Z(t)0f(Z-1(s), g(s))dB(s) = t0f(u,g(Z(u)))d(u)

+ 03A3Z(s)Z(s-)f(s, g(u))dB(u), (3.5)

where B (t) is the continuous part of the Lévy process B (Z(t)), which is equal to
law.

Proof. We can and will proceed as in the proof of Lemma 3.1. . (i) We first assume

V((0,  oo, and denote the jump times of Z(t) as 0  si  s2  s3  .... The
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equation (3.5) then turns out to be

Z(t)0f(Z-1(s),g(s))dB(s) = t0f(u,g(Z(u)))d(u)

+ ~ f(sk, g(u))dB(u). . (3.6)
Z(sk-)

Let us prove equation (3.6). .

If 0 _ t  si, then Z(t) = ~ t and Z -1(s) = for 0 _ s s~. . Therefore, we
have

Z(t)0f(Z
-1(s),g(s))dB(s) = 03B2t0f(s 03B2,g(s))dB(s) = t0f(u, g(03B2u)))dB(03B2u).

Hence, defining

Bp(u) = for u _ sl,

we have, for 0 ~ t  s1,

Z(t)0f(Z-1(s),g(s))dB(s) = t0f(u,g(Z(u)))d0(u). (3.7)

Let t ~ 0 and s1 ~ s1 _ t  s2. Then Z(s1 + t) = Z(s1) + 03B2 t, and

Z(s1+t)0f(Z -1(s), g(s))dB(s) = Z(s1-)0 f(Z -1(s), g(s))dB(s)

+ Z(s1)Z(s1-)f(s1, g(s))dB(s) + Z(s1 
+ t)Z(s1)

f(Z-1(s), g(s))dB(s),
J~i-) 

(3.8)

where, in view of equation (3.7), the first integral is equal to

s10f(u,g(Z(u)))d0(u),
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and to the second integral we have applied that Z ~1(s) = (sl)) = s~ for
s E (Z(si-), In the third integral on the right-hand side of (3.8), we have
Z -1(s) = si + (s - Z(sl))/~ , and hence it is equal to

Z(s1)+03B2tZ(s1)f(s1 + 
s = Z(s1) 03B2,g(s))dB(s) 

= s1+ts1 f(u,g(Z(u)))dB1(u), (3.9)

where we set, for s1 ~ u ~ s2,

B 1(u) = B(Z(sl) + /3(u - sl)) - B(Z(sl)). ~s. ~o)

We can verify equation (3.9), going back to the definition of the stochastic integral. In

fact, let

= to  ~1  ...  tn = + ~,
and set

uk = s1 + tk - Z(s1) 03B2.
Then

tk = + - S1).
and

By definition, the left-hand side of equation (3.9) is the limit of

+ ~ 
- 

k ~

_ 8(Z(sO + - si)))
k

X (B(Z(sy + - sy) - B(Z(sy + - sy) )

where + = Z(uk), if si + t  s2, and hence,

= - B(Z(uk-O)), ,
k

from which we get the right-hand side of equation (3.9) in view of (3.10). Thus we have,
S2,
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Z(s1+t)0f(Z -1(s), g(s))dB(s) = s10 f(u, g(Z(u)))d0(u)
+ Z(s1)Z(s1-)f(s1, g(s))dB(s) + s1+ts1f(u, g(Z(u)))d1(u).ls~

(3.11)

Moreover, defining B(u) by

(u) = 0(u), for 0 ~ u ~ s1,

=B(sl) + B1(u), for sl _ u _ s2,

we have, for si + t  s2,

Z(si+t)
Jo fcZ -lcs>> gcS"dBcs,

= s1
+t0f(u,

g(Z(u)))dB(u) + Z(s1)Z(s1-)f(s1, g(s))dB(s).- 

Jo 

Applying the same argument, we have, for s2 _ t  s3 , ,

z(t)
0 f(Z -1(s), g(s))dB(s)

= t0f(u, g(Z(u)))d(u) + 03A3Z(sk)Z(sk-) f(sk, g(u))dB(u),
l o k= ~ 

(3.12)

where we set

Ba(u) = B(Z(s2) + - sz)) - B(Z(sz)). for S2 _ u _ S3 ~ ,

and then defme B(u) by
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,

+ for si 5 u  s2 ,

=B(s2) + B2(u), for s2  u  s3 . (3.13)

It is clear that B(u) is the continuous part of B(Z(u)) and equal to in law.

Repeating this procedure we obtain equation (3.6).

(ii) For the case of v((0, oo)) = oo. . Let N(dtd8) be a Poison random measure
which is independent of B(t), with the mean measure and set

Z(t) = 03B2t + (0,
t] (0,~)03B8N(dsd03B8),

(3.14)

Z~(t) = 03B2t + (0,
t] (~,~)03B8N(dsd03B8).

Then we have

(3.15)

=~ ~ ~. 0, (3.16)
and

==> B(Z(t)), as ~ ~. 0, (3.17)

where we may take ~ = 1/n and "=~" denotes the uniform convergence on each finite
time-interval almost surely. Let us denote by VE the Lévy measure of ZE(t). . Then

v~((0,  ~. Therefore, in view of equation (3.6), we have

Z~(t)0f(Z-1~(s),g(s))dB(s) = t0f(u,g(Z~(u)))d~(u)
+ 03A3 Z~(s)Z~(s-)f(s,g(u))dB(u), (3.18)

where is defined by (3.13) with in place of Z(t). We notice that B~(t) and
B(t) are the continuous parts and B(Z(t)), respectively. Let us define
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J(t) = lim 03A3 {B(Z(s)) - B(Z(s-))},
0s_t

> 1/n

where dZ(s) = Z(s) - Z(s-), and set

= ~ {B(Z~(s)) - .

0s_r t

Then

B(Z(t)) = B(t) + J(t), and B(Ze(t)) = + Je(t).

Moreover,

~ B(t), as E .~ 0,
(3.19)

~ J(t), as E .~ 0.

Therefore, we have equation (3.5), making E ~. 0 in equation (3.18), because of (3.15),
(3.16), (3.17) and (3.19). This completes the proof.

4. Stochastic Differential Equations with Jumps

Let Xt0,x(t) be the solution of a stochastic differential equation

X(t) = x + tt003C3(t0 + Z-1(u - t0),X(u))dB(u)

+tt0b(t0 + Z-1(u-t0),X(u))du , (4.1)

where B(t) is a d-dimensional Brownian motion and Z{t) is a subordinator which is
independent of the Brownian motion. Generalizing the subordination in (2.2), we set

Yto,x(t) = + Z(t - t0~)~ (4.2)

which will be called time-dependent (or time-inhomogeneous) subordination of the
solution Xto, x(t) of equation (4.1 ). Then Xt0,x(t0 + Z(t - t0)) satisfies
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Xt0,x(t0 + Z(t - t0)) = x + t0+Z(t-t0)t0 03C3(t0 + Z-1(u - t0),Xt0,x(u)),Xt0,x(u))dB(u)

+ t0+Z(t-t0)t0b(t0 + Z-1(u - t0),Xt0,x(u))du. (4.3)

We first consider the case t0 = 0, to avoid notational complexity. Let X(t) be the
unique solution of equation

X(t) = x + t003C3(Z-1(u),X(u))dB(u) + t0 b(Z-1(u),X(u))du. (4.4)

ThenX(Z(t)) satisfies

X(Z(t)) = x + Z(t)003C3(Z-1(u),X(u))dB(u) + Z(t)0b(Z-1(u),X(u))du,
and hence by Lemmas 3.1 and 3.2

= X + r~ ~ 

+ 03B2 t0b(u,X(Z(u)))du + 03A3

0394Z(s)0

b(s,X(Z(s-) + u))du. (4.5)

We first treat the case that v((0, ~))  ~, and denote the jump times of Z(t) by
= {0  ’Gl  T2  Z3  ... , where ~; = Zl(fU), 1 = 1, 2, ... ). . We decompose

Brownian paths B(t, f.J) depending on jump times of Z(t). Let us denote

= Z(z;) - Z(z~-) > 0,
and set

B ~T‘~(u) = + 

Then

B ~Ta - {B (~~)~u~~ ~ ~ u  ) (4.6)

are Brownian motions with the life-times Enlarging the basic probability space, if
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necessary, we can introduce independent Brownian motions B (03C4), 03C4 = 03C41, 03C42, 03C43, ...,

with infinite life time such that (i) (03C4)(u) = B (03C4)(u) for 0 ~ u ~ 0394Z( 03C4), and (ii) the

family {B (03C4), 03C4 = 03C41, 03C42, 03C43, ... } is independent of B(t) which is the continuous part of
the L~vy process B(Z(t)) and equal to ~B(t) in law. Then

~) = B (~)), D(c~). (4.7)

is a stationary Poisson point process with the characteristic measure v(d9)W(dw). . Let

N((0, s] d03B8dw) = #{ 03C4 ~ D(03C9) : 03C4 ~ s,p(03C4, 03C9) ~ d03B8dw}

be the counting measure of the point process p ( z, Then it is a Poisson random

measure with the mean measure ds v(d 8)W (dw), where W(dw) is the Wiener measure
on the space Qc of all continuous paths. We will sometimes write z = zl , for simplicity.

We rewrite equation (4.5) as

X(Z(t)) = x + t003C3(u,X(Z(u)))d(u) + 03B2t0b(u,X(Z(u)))du

+ 03A3 { 0394Z(03C4)0 03C3(03C4, X(Z(03C4-) + u))dB (03C4)(u) + 0394Z(03C4)0b(03C4, X(Z(03C4-) + u))du}.

(4.8)

Let (Q, P) be a probability space, and W be the Wiener measure on the space Qc of all

continuous paths on Rd, and consider a stochastic differential equation

03BE(t) = x + t003C3(s,03BE(u))dw(u) + t0 b(s, 03BE(u))du, (4.9)

where s is fixed. For fixed s and x, we denote by 03BEt(s, x, w) the unique solution of
equation (4.9), and set

~t(s, x, w) _ ~r(s, x, w) - x. (4.10)

Lemma 4.1. . Let X (t) be the unique solution of equation (4.4), and define
X (z~(t), t _ by

X (~)(t) = + t). (4.11)
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Then X (03C4)(t) satisfies equation (4.9) with x = X (03C4)(0) = X(Z(03C4-)) and w = B (03C4).

Proof. In view of equation (4.4), we have, for t 5 

= x + J ,~ZcT_>+~ a(Z -’(u), X(u))dB(u) + /-Z(T-)+f ~0 lo
and

X ~’‘~(0) = X(Z(z-))

= x + J z(T_) ( z(z ) ~0 ~o

Subtracting, we obtain

X ~’‘~(t) - X~’‘~(0)= ( Z(i-)+t a(Z-i(u),X(u))dB(u)X O(~) - X~(0) 0(Z -~(M), X(M))~(M)

+ /’Z(T-)+ 
Since Z -1(u) = T, for u E (Z(z ), Z(’C)], we have, for t _ 

X O(~) - - X (z) (0) = r (T) (u) + r (T) (u))du, (4.12)
Jo Jo

on the right-hand of which we have used equation (4.11). This completes the proof.

In particular, equation (4.12) yields

/’/1Z(T) 
X ~T ~T ~(u)X (03C4)(0394Z(s)) - X(03C4)(0) = 

0
03C3(03C4, X (03C4)(u))dB (03C4)(u)

+ 0394Z(03C4)0b(03C4,X(03C4)(u))du,
Jo
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which implies

x ~T ~(~), B ~~‘~) = J /’aZ(t) a(~~ X ~~~(u))dB ~2~(u)
+ 0394Z(03C4)0b(03C4,X(03C4)(u))du,

where 03BEt(s, x, w) is defined by (4.10). Therefore, equation (4.8) can be expressed in

terms of 03BE0394Z(03C4)(03C4, X (03C4)(0), B (03C4)) as

X(Z(t)) = x + t0 03C3(r,X(Z(u)))d(u) + 03B2t0b(u,X(u))du
+ 03A3 03BE0394Z(03C4)(03C4, X(Z(03C4-)), B (03C4)), (4.13)
oT_r t

where

£ X ~ZW )). B ~~‘~)
oT_r

= (0, t] (0, ~) 03A9c03BE03B8(s,X(Z(s-)),
w)N(dsd03B8dw), (4.14)

with the counting measure N(dsd03B8dw) of the Poisson point process p(03C4, 03C9) =

(dZ(T), B (03C4)) given in (4.7). Equation (4.13) together with equation (4.14) implies that
Y(t) = X(Z(t)) satisfies

Y(t) = x + t003C3(u,Y(u))03B2dB(u) + 03B2t0b(u, Y(u))du

+ (0 t] (0, ~) 03A9c{03BE03B8(s, Y(s-), w) 
- Y(s-)}N(dsd03B8dw). (4.15)

In general, for the case that v((0, ~)) = ~, let Z(t) and Z~(t) be defined by (3.14).
Then (3.15), (3.16) and (3.17) hold. Let XE(t) be the unique solution of equation (4.4)
with Then = X~(Z~(t)) satisfies equation (4.15) with N~(dsd03B8dw),
whose mean measure is dsv((E, dA)W(dw), that is,
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Y~(t) =x + t0 03C3(u,Y~(u))03B2dB(u) + 03B2t0b(u,Y~(u))du
+ (0, t] (~,~) 03A9c{03BE03B8(s,Y~(s-),w) - Y~(s-)}N(dsd03B8dw). 

(4.16)

Letting E ~ U, since

YE(t) = XE(ZE(t)) ~ Y(t) = X(Z(t)), as ~ J. 0, (4.17)
we have

Theorem 4.1. Let Z(t) be a subordinator of the form as in equation (3.1). Then
the time-dependent subordination Y(t) = X(Z(t)) of the unique solution X(t) of
equation (4.4) satisfies

Y(t) =x + rt a(u, + /3 f t b(u, Y(u))du
+ (0,t] (0,~) 03A9c {03BE03B8(s, Y(s-), w) - Y(s-)}N(dsd03B8dw), (4.18)+ 

J(o, r~ x(o, 

where ~t(s, x, w) is the unique solution of equation (4.9).

For the case 0, we apply, instead of Lemmas 3.1 and 3.2,

Lemma 4.2. Let Z(t) be given in (3.1), define Z-1(t) by (2.4), and denote
0394Z(s) = Z(s) - Z(s-). Then

t0
+Z(t - t0)t0f(t0 + Z-1(u - t0), g(u))du

= 03B2tt0f(u, g(t0 + Z(u - t0)))du

+ 03A3 0394Z(s 
- t0)0

f(s,g(t0 + Z((s - t0)-) + u))du,
roS-r l o
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for any Rd-valued continuous function g (s) on [to, ~) and real-valued continuous

function f (s, x) on [to, 

Lemma 4.3. Let B(t) be a d-dimensional Brownian motion, and let f(s, x) and
g(s), s E [to, be as in Lemma 3.2, and Z(t) be a subordinator of the form as in
equation (3.1 ). Then

t0+Z(t - t0)t0f(t0 + Z-1(u - t0), g(u))dB(u - t0)

= tt0f(u,g(t0 + Z(u - t0) + 03A3

Z(s-t0)Z(ss - t0)-)f(s,g(t0 + u))dB(u),

where (u) is def ined by (3.13) and equal to 03B2B(u) in law.

Proofs of the lemmas can be carried over in the same way as for Lemmas 3.1 and 3.2.

Then, applying Lemmas 4.2 and 4.3, we obtain the general forms of equation (4.8) and

equation (4.18) on a time interval (to, t]. . Hence we have

Theorem 4.2. The time-dependent subordination Yto, x(t) = Xto, x(to + Z(t - to))
of the unique solution of equation (4.1) satisfies a stochastic differential equation
with jumps

Y(t) = x + tt003C3(u,Y(u))03B2dB(u - t0) + 03B2tt0b(u, Y(u))du

+ (t0, t] (0,~) 03A9c{03BE03B8(s,

Y(s-), w) - Y(s-)]N(dsd03B8dw),

where : t >_ 0 } = {B (t) : t >_ o } , in law, which is the continuous part of
the Lévy process B (Z(t)), 03BEt(s, x, w) is the unique solution of equation (4.9), and
N(dsd8dw) is a Poisson random measure with the mean measure 
where v(d8) is the Lévy measure of Z(t), and W (dw) is the Wiener measure defined
on the space ~2~ of all continuous sample paths.

Theorem 4.2 solves the problem of constructing Markov processes with jumps in the
case of no scalar potential. To solve the case with potential functions, we shall generalize
the method of Kac to the time-dependent subordination.
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5. A Formula of Feynman-Kac Type

Let Xs, x(t), unique solution of the stochastic differential equation
in (4.1 ) with tp = s, defined on a probability space { S~, P } . . Let c(t, jc) be continuous
a.e. and bounded above

(S.1 )
We define

s+Z(t-s)
M(s,t) = exp(s c(s + Z-1(u - s),Xs,x(u))du),

taking it for granted that the right-hand side is well-defined, where Z(t) is the same
subordinator adopted to define Xs, x(t) in (4.1). . We set

c(t, x) = c+(t, x) + c-(t, JC),

with c+ = (c)v0 and c- _ (c) A 0. Then

M(s~ t) = M (+)(s~ t)M (_)Cs~ t)~
where

M (+)(s, t) = exp(s+Z(t-s)sc+(s + Z -1(u - s),Xs,x(u))du),

and

M(-)(s, t) = exp(s+Z(t-s)s c-(s + Z -1(u - s), Xs,x(u))du).

Moreover, by Lemma 4.2

M (+)(s~ t) = M n, +>(s~ t)M (2~ +)(s~ t)~ M (_)(s~ t) = M (1, _)(s~ t)M (2, _)(s~ t)~
with

M(1,±)(s, t) = exp(03B2tsc±(r,Xs,x(s + Z(r - s)))dr),

and

M ~2~ ±) (s, t) = exp( ~ 
Z(r _ s) 

+ u))du),

where

0 ~ M (1’ )(s~ t)~ M~-~~)1, ~
and, by (5.1),
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P~M~I’+~(s~ t)~ ~ e ~°~‘-s}.
We then assume

P~M~2’+~(s~ t)~ ~ (5.2)

so that M ~2’ +~ is well-defined. We notice that

M(2,+)(s, t) ~ exp(c0 03A3 (Z(r) - Z(r-))) = exp(c0Z(t - s)),
0 r_r-s

and hence

pfM~2’+~(s~ t)J - exp((t - s) (e~°e -1)~Cde)).0

Therefore, a sufficient condition for (5.2) is

~ = cl  ~.

In this case we have (5.2) with this constant cl  ~. .

Lemma 5.1. (i) Let Ys,x(t) = Xs,x(s + Z(t - s)). Then

Yr, x( t ) - Ys, Yr, x ~S)(t)’ r ~ S ~ t.

(ii) Denote the functional M(s, t) as M(s x, t, l~). Then

x~ t~ ~) = x~ s~ Yr, x(S)~ t~ ~)~ r ~ s ~ t.

The proof of the lemma is routine and omitted.

For fixed s we define a semi-group t >_ 0, by

r

P(s)tf(x) = W[f(03BEt(s x)) exp(t0 c(s, 03BEr(s, x))dr)] , (5.3)

with the unique solution ~t(s, x) of

t t

~(t) =x + + ~(u))du. (5.4)
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We assume that the semi-group is a strongly continuous on Co(Rd), whose generator
is

A~=~ d 6~T‘~S a 2 + d b~ ~s, x> a + cs, x>1, 5.5>Acs = 1 203A3 (03C303C3T )ij (s ,x )
~ ~xi~xj + bi

(s, x)
~ ~xi 

+ c(s, x)I, (5.5)

with a core Moreover, we apply Bochner’s subordination with

Z (d)(t) = (0, t] (0, ~)03B8N(drd03B8),
(see (3.14)) to the semi-group Pt s). Then the subordinate generator is given by

_ j - f(x) } ~Cd e)~ , (5.b)
0

where is the Levy measure of Z ~‘~(t), and is a core of 

Let us define

T(s, x) = sup { t > s : ~ c-(s + Z-1(u - s), Xs,x(u))du) > -~ },
= s),

and set

D = { (s, x) :  T(s, x)] =1 } .

We define Qs, t by

Qs,rf (x) = P[f (Ys,x(t))M(S, t)], , for (s, x) E D. (5.7)

We set Qs, t f(x) = 0, for (s, D. Then we have

Theorem 5.1. Let c(s, x) be any potential function being continuous a.e., and
satisfying the conditions in (5.1) and (5.2), and let Qs,r f be defined by the formula in
(5.7). Assume is continuous in (s, x). Then

lim Qcs, tf(x) - f(x) 
 = 03B2Acsf(x) + M(s)f(x), (s, x) ~ D,

t - s

for any f E 
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Proof. To avoid notational complexity we set s = 0 and (0, x) E D, and consider

Qc0,tf(x) = P[f(X(Z(t)))exp(Z(t)0 c(Z -1(u), X(u))du)], (5.8)

where X(t) is the unique solution of equation (4.4). Let us denote

F(t) = f(X(Z(t))),
and

M(t) = exp(Z(t)0c(Z-1(u),X(u))du).
Let 0 = t0  tl  t2  ...  tn = b be a partition of [0, b], and 03B4 = 

Then

n

F(b)M(b) - f(x) _ ~, )
i=1

n n

= ~ + ~ ~ (5.9)
t=1 i=1

We { z : > ~} == {0  zl  z2  ~3  ... }, since v((0, oo))
may be infinite, and denote CO) = (4ZE(~), B ~T ~) the point process defined on

where is given by (3.14). Let X~(t) be the solution of equation (4.4) with
Let us set

and

M~(t) = exp(Z~(t)0c(Z-1~(u),X~(u))du).
We have, by Lemma 3.1,

Z~(t)0c(Z-1~(u),X~(u))du
=03B2t0c(u,Y~(u))du + 03A3Z~(s)Z~(s-)c(s,X~(u))du,~0 0  s _ r z~cs->
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where ~ the summation and = Xe(Ze(M)). Hence,

with

and

M2(t) = exp(03A3Z~(s)Z~(s-)c(s,X~(u))du).
Then the first summation on the right-hand side of (5.9) with F~ and M~ is equal to

t 
=i

+ I 
i=l

where the first summation converges, as 5 ~ 0, to

The second summation is equal to

I 1},
=i

and it converges, 0, to

~ 

with

= (5.10)

where

m(0394Z~(s)) = exp(0394Z~(s)0c(s,X~(Z~(s-) + u))du). (5.11)
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Moreover, in view of (4.7), setting SE = (0, t~ X (E, ~) X we have

£ 1 )
0s_r t

= S~f(Y~(s-){m03B8s(Y~(s-)) - 1 }N(dsd03B8dw), (5.12)

where

B

m e(x) = exp( f c(s, ~u(s, x, w))du). (5.13)

Therefore, we have

n

p~~ F~(t‘-1)(Me(r~) - 
t=i
= #Pl 0 c(u, 

+ P[S~f(Y~(s-))M~(s-){m03B8s(Y~(s-)) - 1}N(dsd03B8dw)]. (5.14)

We now compute the second summation on the right-hand side of (5.9) with FE and
.

We first notice that we have, by T’heorem 4.1, ,

Y~(t) = X~(Z~(t)) = x + t003C3(u,Y~(u))03B2dB(u) + 03B2t0 b(u, Y~(u))du

+ (0, 1] (~, ~) 03A9c03BE03B8(s,

Y~(s-), w)N(dsd03B8dw),

where 03BEr(s, x, w) = 03BEr(s, x, w) - x.

Then, by Ito (1951) and Kunita-Watanabe (1967),
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f(Y~(t)) - f(Y~(0)) = 03A3t0 ~f ~xi (Y~(u))03C3ij(u, Y~(u))03B2dBj(u)

+ 03B2 03A3t0 bi(u, Y~(u)) ~f ~xi (Y~(u))du

+ 03B2 03A3t0(03C303C3T)ij(u, Y~(u))1 2 ~2f ~xi~xj(Y~(u))du

+ (0, t] (03BE, ~) 03A9c{f(Y~(s-) 

+ 03BE03B8(s, Y~(s-), w)) - f(Y~(s-))}N(dsd03B8dw),

in the last integral of which we apply Y~(s-) + 03BEr(s, Y~(s-), w) = 03BEr(s, Y~(s-), w).
Therefore, we have

lim P[03A3 M~(ti){F~(ti) - F~(ti-1)}] =P[t0 M~(s)03B2Asf(Y~(s))ds]

+P[r 
JSE

where we have applied equations (5.10), (5.11) and (5.13).

Combining equations (5.9), (5.14) and (5.15), we have

= Pf J 0 + 

+ P[t0dsM~(s-)~~W[f(03BE03B8(s,Y~(s-))m03B8s(Y~(s-)) - f(Y~(s-))]v(d03B8)] ,

(5.16)
where the second integral is equal to

P[t0dsM~(s-)~0 1(~,~)(03B8){P(s)03B8f(Y~(s-)) - f(Y~(s-))} 03BD(d03B8)],
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with f(x) given in (5.3). We notice that ( 1 n 9)V~(d8) is a finite measure and

1 { - .~Y~(s-)) ~ , s  t ,

is bounded, since it converges, as 8 .~ 0, to the generator of Therefore, making
E ~. 0 in equation (S.lb), we have, by the dominated convergence theorem,

t

pff{X {Z(t)))M(t)1-f(x) = pf ~ { + 

(5.17)

where A s is given by (5.5) and by (S.b). Equation (5.17) implies

lim Qc0,tf(x) - f(x) t

=03B2Ac0 f(x) + M(0)f(x), (0,x) ~ D,

for f E by the dominated convergence theorem.

We can prove the case s ~ 0 in the same way. Let XS, x{t) be the unique solution of
equation (4.1 ) with tp = s, and set

F(t) = f (X S, x(s + Z(t - s))), and M(t) = M(s, t).

Then we can repeat the same argument that we have adopted in the case s = 0. However,
to make it simpler, we can apply the integration by parts formula

r r

F(s)M(s) = + (5.18)

and the same approximation argument. We remark that, by Theorem 4.2,

r t

Y(t) = Ys,x(t) = x + 6(r, Y(r))dB(r) + ~i ~ b(r, Y(r))dr
+ (s, t] (0, ~) 03A9c03BE03B8(r,

Y(r-), w)N(drd03B8dw),

where 03BE03B8(r, x, w) = 03BE03B8(r, x, w) - x. Moreover, we have, by Lemma 4.2,
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s
+ Z(t -s)sC(s + Z-1(r - s),Xs,x(r))dr

jt ja’ - 
S>

= fl c(u, Xs, x(s + z(u - s)))du + £ c(r, xs,x(s + u))du
s s,St a’-SF>

= fl jt c(r, Y(r))dr + £ ja’ - 
S> 

c(r, xs,x(s + u))du.
s s,si a,-sy>

Hence, the first integral on the right-hand side of (5.18) is

tsF(r- )dM(r)

= tsf(Y(r-))d{exp( s
+ Z(r - s)sc(s + Z-1(u - s),Xs,x(u))du)}

= j3 j~ c(r, Y(r)) f(Y(r-))M(r)dr
+ £ f( Y(r- ) )M(r-) ( m(AZ(r - s)) - I )
s ,5 1

where

m(0394Z(r - s)) = exp(
0394Z(r - s)0c(r,Xs,x(s + Z((r - s) + u))du ,

and hence

" C(r, Y(r))f(Y(r-))M (r)dr

+ j S, il x 0, -> x Qc M(r- ) f(Y(r-)) ( m,°(Y(r-)) - i )N(drdBdw), s. 19>

where mfl(X) is defined by s. 1 3>. %e second integral of the right-hand side of s, 1 8> is
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tsM(r)dF(r) = tsM(r)03B2Arf(Y(r))dr
+ (s,t] (0,~) 03A9c M(r-)m03B8r(Y(r-)){f(03BE03B8(r, Y(r-), w)) - f(Y(r-)) }N(drd03B8dw)

+ tsM(r) 03A3 ~f ~xi(Y)(r))03C3ij(r, Y(r))03B2dBj(r), (5.20)
JS a 1 dx’

where w) is the unique solution of equation (5.4) and Y(t) = YS,x(t).

Combining (5.19) and (5.20) we have

P[f(X(Z(t)))M(t)] - f(x)

= + 

+ P[~ M(r-) { f(~B(w)) m e(Y(r-)) - f(Y(r-)) }N(drd8dw)],
J (s, r] x (o, ~) x S2 ~

= P[tsM(r)03B2Acrf(Y(r))dr] + P[tsM(r-)M(r)f(Y(r-))dr],
where Y(t) = YS,x(t). We have thus obtained the general form of equation (5.17) on
(s, t~, and we can complete the proof.

Let us consider a special case that a subordinator Z(t) has the Levy measure

03BD(03BA)(d03B8) = 1 203C0 e- 03BA2 03B8 1 03B83/2 d03B8, (5.21)

with a parameter 03BA, and potential functions satisfying

c(t, x) S K2  ~. (5.22)

Then the condition (5.2) is satisfied. We can then generalize the results in Nagasawa-
Tanaka (1998, 1999) as follows.



286

T heorem 5.2. Let X s, x(t) be the solution of the stochastic differential equation
in (4. I ) (to = s) with the subordinator Z(t) which is independent of B(t) aM has the
Lévy measure v(K)(d8) given in (5.21 ), and let c(t, x) be any potential function being
continuous a.e., aM satisfying (5.22). Define evolution operators Q), i by the formula
in (5.7). Then it solves

)? + ?A>U + M>U = °, 5.23>

where

Acs = 1 2 03A3(03C303C3T)ij(s, x)~2 ~xi~xj + 03A3bi(s, x) ~ ~xi + c(s,x)I,
and

Mf = + KI.

Remark. If 03B2 = 0, equation (5.23) reduces to

~u ~s + Mcsu = 0. (5.24)

This generalizes the results on stochastic differential equations of pure-jumps in Nagasawa-
Tanaka ( 1 998, 1999)). Equation (5.24) is the equation of motion for a relativistic spinless
quantum particle in an electromagnetic field mentioned in Introduction, cf. Nagasawa
( 1997) for details.

6. Markov Processes with (Pure) Jumps

Markov processes with jumps determined by the evolution operator Q), i in equation (5.7)
can be constructed with the help of the Schrödinger representation. In this section we

assume that As in (2.3) and A f in (5.5) are given by

As = 1 2 0394 + 03A3 bi(s, x) ~ ~x, (6.1)
2 ; = 1 8x;

and

Acs = 1 2 0394 + 03A3 bi(s, x)~ ~x + c(s, x)I, (6.2)
2 ; = 1 8x;

respectively, where A is the Laplace-Beltrami operator

0394 = 1 03C32(x)~ ~xi(03C32(x)(03C303C3T(x))ij ~ ~xj),
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with a positive definite diffusion matrix 6 6 T (x ), where we denote 6 2 ( t, x ) =

det (66T (x)). To adopt the operators As and Af in (6.1) and (6.2), respectively, we
need to replace the drift coefficient b(t, x) in the preceding sections by

x) = x) + ba(t, x),
with a correction term

b03C3(x)j = 1 21 03C32(x) ~ ~xi
(03C32(x) (03C303C3T(x)ij).

If 6 is independent of the space variables, then the correction is not necessary and

bO(t, x) = b(t, x).

Let be the operator defined by (5.7). Then there exists a transition kernel

qC(s, x ; t, dy) such that

Qs, r.l (x) = x t, dy)f(y), (6.3)

which obeys the Chapman-Kolmogorov equation but 1 ~ l, namely, the normality
condition is not satisfied. To construct the Schrödinger process with jumps we need a

prescribed entrance-exit law {a(x), 03C6b(x)} satisfying a normality condition

dxa(x)qc(a, x ; b, dy)03C6b(y) = 1.

With the triplet (qc(s, x ; t, dy), a(x), 03C6b(x)} we define a probability measure Q by
the Schr6dinger representation (cf. Nagasawa (1993,1997)):

Q[f(Xa, Xt1, ... ,Xtn-1, Xb)]

=dx0a(x0)qc(a, x0 ; t1,dx1)qc(t1, x1 ; t2, dx2) ...

... xn_1 ~ b~ xl~ ... ,

where a  tl  ...  tn - 1  b andf(xo, x 1, ... , xn) is any bounded measurable function
on the product space n = l, 2, .... We thus obtain a Schrödinger process

t 
= a{Xr; rE [a, t]}, and 

a _ t _ b, Q } is a Markov process with jumps by Theorem 4 of Nagasawa (1997) (or
Theorem 3.6 of Nagasawa (1993)).
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