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TIME DEPENDENT SUBORDINATION
AND MARKOV PROCESSES WITH JUMPS

Masao NAGASAWA! and Hiroshi TANAKA?

Abstract

Bochner's subordination is extended to time-inhomogeneous Markov processes and the
Feynman-Kac formula is generalized to the time-dependent subordination. As an
application it is shown that stochastic differential equations with jumps can be directly
solved with the help of the time-dependent subordination and consequently that the
equation of motion for relativistic quantum particles is solved.

1. Introduction

For a prescribed drift coefficient b(s, x) and a potential function c(s, x), we prepare a
pair of operators
&= %(o V + b(s, ) + c(s, x) 1,

and
Al = %(o V- b(t, 0))% + c(t, ©)1,

which are formal adjoint of each other, and set

ME=-N-Af + K21 + xI, IEC= -V-Xf+ K2 + k1.

We then consider
a—‘/’+M;~'<p=0, (1.1)
os
3P , men
-—+M,p=0
ot tQ s (1.2)
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which is the equation of motion of Nagasawa (1996, 1997) for a relativistic (spinless)
quantum particle(s). The movement of a relativistic quantum particle is described by
Markov processes of pure-jumps {Y(?), ¢ € [a, b], Q} such that the distribution of Y (¢)
is given by

QLY () € dx] = §(t, x)@(t, x)dx,

where ¢(¢, x) and @(t, x) are solutions of equations (1.1) and (1.2), respectively. In the
Schrédinger representation we have

QLf¥Y®) 1= f Pa(x)dxq(a, x; t, y)dyf(y)q(t, y; b, 2)Pp(2)dz,

where g(s, x; t, y) is the fundamental solution of the pair of equations (1.1) and (1.2)
which are in duality with respect to dtdx, and { @,, @b} is a prescribed entrance-exit law,
for details cf. Nagasawa (1996, 1997). Nagasawa-Tanaka (1998, 1999) discussed the
existence and uniqueness of solutions of equation (1.1) in terms of stochastic differential
equations of pure-jumps. The objective of the present article is to solve equation (1.1)
more directly, through extending Bochner's subordination to temporally inhomogeneous
diffusion processes and generalizing the Feynman-Kac formula to the time-dependent
subordination.

2. Time-Dependent Subordination

2.1 Bochner's Subordination

We begin with a remark that it is immediate to construct a pure-jump Markov process
{Y,, t € [a, b], P} with the fractional power generator

M=-9Y-A+ k2 + I,

where

d . 2 d R
4=1% (ooTim)—2—+3 b2, @.1)
21',}':1 a a 3

xi0xj o X;

which does not depend on time. In fact, we apply the subordination of Bochner (1949) to
the semi-group P; of the temporally homogeneous diffusion process {X(¢),t 20, P}

with the generator A in (2.1), i.e., we set

Y= X(Z(®), te [0,e0), 22

where {Z(¢), t € [0, o), P} is the subordinator of Sato (1990), which is independent of
the diffusion process X() (cf. also Vershik-Yor (1995)). Then the subordinate process
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{Y;=X(Z(1)), t 20, Py} is a temporally homogeneous Markov process of pure-jumps
with the transition probability

Q:f(x) = Py AX(Z(1)))] =f Psf)P[Z(¢) € ds],
0

and the generator M of the semi-group Q; has the expression

M flx) = f {Pf(x) - fx)} v(dr),
0

where V(dr) is the Lévy measure of Z(¢). However, if the coefficients of the operator in
(2.1) depend on time, Bochner's subordination in (2.2) is no longer applicable.

2.2. Time Dependent Subordination

A typical example of time-dependent coefficients appears in the equation of motion in (1.1).
We consider a stochastic process governed by

M= --As + 2 + xI,

with
A

d .. aZ d )
LY (ooT)i(s, x) +Y bis, )=, 2.3)
2 ij=1 ax,-axj i=1 aXi
Let B(t) be a d-dimensional Brownian motion and Z(¢) be a subordinator which is
independent of the Brownian motion, and define the inverse function of Z(¢) by

ZY@¢) = inf {5 : Z(s) > 1}, (2.4)

which is right-continuous in z. 'We denote by X, ,(¢) the unique solution of a stochastic
differential equation

t t

X@)=x+ f o(to+Z (s - to), X(5))dB(s) + f b(to+Z (s-19),X (s))ds.
to to

2.5)

The key point in equation (2.5) is the inverse function Z ~1(s - #p) in the time parameter of
the coefficients G(s, x) and b(s, x). We assume that the entries of the matrix 6(s, x) and
vector b(s, x) are bounded and continuous in (s, x), Lipschitz continuous in x for each
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fixed s, and the Lipschitz constants are bounded in s, so that equation (2.5) has a unique
solution. We then set

Yio,x(8) = Xio, x(t0 + Z(2 - 10)),

which will be called time-dependent subordination of the solution Xy, x(t) of equation
(2.5). Itis clear that Yy, x(f) satisfies

to + Z(t - t0)
Yo, x()=x+ f o(to+Z (s - 1), X(5))dB(s)

o

to+Z(t - to)
+ f b(to+ Z (s - 1), X(s))ds.
to

To avoid notational complexity, let us set 2o = 0, and denote Y(£) = X(Z(¢)), where
X(2) is a solution of equation (2.5) with #o = 0, that is,

t t
X =x+ f o(Z "Y(s), X(s5))dB(s) + f b(Z\(5), X(s5))ds.

0 0

Then Y () = X(Z(t)) satisfies

Z@) Z(1)
Y)=x+ f o(Z "1(5), X(s))dB(s) +f b(Z "\(s), X(s))ds.

0 0

Putting Z “1(5) = u formally, we obtain a stochastic differential equation for ¥ (¢)

Y)=x+ [ o(u, Y(u))dB(Z(u)) +f b(u, Y(u))dZ(u),

0 0

which, however, does not give the right expression, but a more careful treatment of jumps
of the subordinator Z(¢) will prove that X(Z(r)) satisfies

Z(s) Z(s) .
XZ®)=x+ Y, o(s, X(w)dBw) + Y, b(s, X(u))du,
O0<s<t JZs-) O<s<t JZs-)
(2.6)

where we assume Z(¢) is a pure-jump process.
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On the other hand, let W(dw) be the Wiener measure on the space . of all
continuous paths, and 5,(.5‘, X, w) be the unique solution of

t t
D =x+ f o(s, Eu))dw(u) + f b(s, Ew))du, 2.7
0 0

where s is fixed. Then, as will be shown in Section 4, equation (2.6) is equivalent to the
stochastic differential equation of pure-jumps

YY) =x+ f {Eo(s, Y(s-), w) - Y(s-)}N(dsdBdw),
0,41%(0,00) X2

that was discussed in Nagasawa-Tanaka (1998), where N(dsd@dw) is a Poisson random
measure with the mean measure ds W d@)W(dw), and W(d0) is the Lévy measure of the
subordinator Z(¢).

3. Lemmas

Let Z(?) be a right continuous non-decreasing function on [0, o) such that

ZO=Bt+ Y {Zw)- Z(u-)}, 3.1

O<us<t

where 8 2 0 is a constant.

Lemma 3.1. Let Z(t) be given in (3.1), and define Z 'l(t) by (2.4). Then

Z(1)
FZ71(s), g(s))ds

0

t Z(s)
=ﬂf0 f(u, g(Zw)))du + Y, f(s,gw)du, (3.2)

0<s<t JZ(s-)

for any R%valued continuous Sunction g(s) on [0, o) and real-valued continuous

function f(s, X) on [0, ) XR%. In applications, equation (3.2) is often expressed in
another form as
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Z(1) t
FZ7s), g(s))ds = B f f(u, §(Z(w)))du
0 0
AZ(s)
+ Y f(s, 8(Z(s-) + w))du,
0<s<tJO

where AZ(s) = Z(s) - Z(s-).

Proof. (i) At the first step, we assume that the set of jump times of Z(f) has no finite
accumulation point, and denote them by

0<s1<s5s2<83<...,

in natural order. Let us assume 8> 0. The case 8 = 0 is simpler, and can be handled in

the same way. If 0 < ¢ < 51, then Z(f) = Bt and Z "1(s) = 5/B for 0 < 5 < Z(¥).
Therefore, we have

Z(t) t
f(Z 'l(s), g(s)ds = ﬁf f(u, g(Z(u)))du. (3.3)
0

0

When 51 < < 57, we have

Z(s1)

Z(6) Z(s1-) 1
f F(Z7X(s), g(s))ds =f F(Z7(5), 8(s))ds + » )f(sl, g(s))ds
0 0 S1-

f(s1+—=——=, g(s))ds,

N fz(sl)"'ﬁ("sl) 5= Z(Sl)
Z(s1) B

on the right-hand side of which the first integral is equal to
S1
ﬁf fu, g(Z(w)))du,
0

in view of equation (3.3), in the second integral we have applied the property that Z ~(s)

remains constant in the interval (Z(s;-), Z(s1)] and hence Z “1(s) = Z "1(Z (51)) = 51,
and the third integral is equal to
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t
B f f(u, 8(Z(u)))du,

for which we put u = 51+ (s - Z(51))/B and s=Z(s1) + B(u - 51) = Z(u).
Therefore,

Z(f) Z(s1)

FZ7(s5), g(s))ds = ﬁf fu, 8(Z(u)))du + f(s1, 8(w))du.
0

0 Z(s1-)

Repeating the same argument, we have, for §, < £ < Sp+ 1,

Z()) Z(s)

AZ7X(s), g(s))ds = Bf f(u, g(Z(w)))du + i S(sk, g(w))du,
0

0 k=1 JZ(s-)

(3.4)
which yields equation (3.2) in the special case of no accumulation point, and also

Z(t)
FZX(s), g(s))ds

0

t n [AZ(sp)
=B f f(u, g(Z(w)))du + Y, f f(sk, 8(Z(sk-) + u))du.
0 k=1

0

(ii) In the general case, we set

Zdty=Bt+ 3, {Z(s) - Z(s-)} g, )(Z(s) - Z(s-)),

O<s<t

for £> 0. Then Z(?) satisfies the condition of the first case, and hence

Z(t)

fZ(s), g(s))ds
0

¢ Z(s)
=p ] fu, gZw))du+ Y, f(sk, g(u))du,
0

O0<s<t JZg(s-)

in view of equation (3.4). Since Z¢(f) T Z(£) and ZZ (D) L Z71(¢) as £ 1 0, we have
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equation (3.2). This completes the proof.

Let B(t) be a d-dimensional Brownian motion, and Z(¢) be a subordinator which is
independent of the Brownian motion. By definition the subordinator Z(¢) is expressed as
in equation (3.1) and its Lévy measure Wd0) satisfies

f (1A0)V(dO) < co.
0, )
We define

F(B)=0{B(s);0<s<t}, F(Z)=0{Z(t) ; t 20}, and ¥; = F(B)vF2).
Then B(¢) is an {¥}}-Brownian motion.

Let g(s) be an R%valued continuous { ¥} -adapted process, and f(s, x) be a real-
valued continuous function on [0, &) X R?. Then fZ 1), g(2)) is a right-continuous
{¥:}-adapted process. Therefore, the Itd integral

t
f f(Z7(s), g(s))dB(s)
0
is well-defined.

Lemma 3.2. Let g(s) bea R%valued continuous {¥:}-adapted process, and

f(s, x) be a real-valued continuous function on [0, o) XR 4 Let Z (t) be a
subordinator of the form in equation (3.1) with the Lévy measure V(dr). Then

Z(0) t _
f(Z7X(s), g(s))dB(s) = f Sf(u, §(Z(u)))dB(u)
0 0
Z(s)
+ > f(s, g(u)dB(w), (3.5)
O0<s<t JZ(s-)

where B () is the continuous part of the Lévy process B(Z(t)), which is equal to
'\/[—33 () in law.

Proof. We can and will proceed as in the proof of Lemma 3.1. (i) We first assume
V((0, o)) < oo, and denote the jump times of Z(¢) as 0 < 51 < 52 < §3< .... The
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equation (3.5) then turns out to be

Z(t) t ~
FZ7X(s), g(s))dB(s) = f f(u, g(Z(u)))dB(uw)
0

0

Z(sp)
+ Y fGr, gW)dBm).  (3.6)

O<sp<t JZ(sg-)

Let us prove equation (3.6).

If0<t< sy, then Z(¢) = Btand Z '(s) = s/B for 0 < s < B5). Therefore, we
have

Z(1)

Bt t
f(Z7(s), g(s))dB(s) = f(ﬁ, 8(s))dB(s) = f f(u, g(Bu)))aB(Bu).
0 0 0
Hence, defining _
Bo(u) = B(Bu), for u< s,

we have, for 0 <t < sy,

Z0) t ~
f(ZX(s), 8(s))dB(s) = f f(u, 8(Z(u)))aBo(u). 3.7)
0

0

Let# >0 and 51 < 51 + ¢ < 2. Then Z(sy + &) = Z(s1) + B¢, and

Z(s1 +1) Z(s1-)
f F(Z"'(s), g(s))dB(s) = A(ZY(s), g(s))dB(s)

0 0
Zsi) Zsi +1)
+|  f(s1,8(5))dB(s) + f FZ71(s), 8(s))dB(s),
Zsi-) Zs1)
(3.8)

where, in view of equation (3.7), the first integral is equal to

f f(u, g(Z(u)))dBo(u),
0
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and to the second integral we have applied that Z ~'(s) = Z"XZ (s1)) = 51 for
s € (Z(s1-), Z(s1)]. In the third integral on the right-hand side of (3.8), we have

Z Y(s) = 51 + (s - Z(51))/B, and hence it is equal to

Z(s1)+ Pt S1+1 -
f fls1+ ﬁ%@, g6NdBGs)= | fau, g@w)dBi(w), (3.9)
Z(s1) St
where we set, for 51 < u < 57,
Bi(u) = B(Z(s1) + Plu - 51)) - B(Z(s1)). (3.10)

We can verify equation (3.9), going back to the definition of the stochastic integral. In
fact, let

Z(s)) =<t <..<ty=Z(s1) + Bt

and set
=5y + X228 Zsy)
B
Then
te = Z(s1) + P(uy - 1),
and

S1=uy<up<..<up=s51+1t

By definition, the left-hand side of equation (3.9) is the limit of

ti-1 - Z(s1)
B

= Zf(uk_l, 8(Z(s1) + Bluk.-1 - 51)))
k

> fs1+ » 8- D){B(te) - B(tk-1)}
x

X{B(Z(s1) + B(ux - 51)) = B(Z(s1) + B(ug -1 - 51))}

where Z(s1) + B(ug - 51) = Z(uy), if 51 + t < 52, and hence,

= 2 fluk-1, 8(Z(ue 1)) {B(Z(w)) - B(Z(ux 1))},
k

from which we get the right-hand side of equation (3.9) in view of (3.10). Thus we have,
fors)+¢ < s2,
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Z(s1+1) 1 -
f AZ7\(s), 8())dB(s) = f f(u, 8(Z(u)))dBo(u)
0

0
Z(s1) S1+1 -
+ f(51, 8())dB(s) + f(u, g(Z(u)))aB1(w).
Z(s1-) s
(3.11)
Moreover, defining E(u) by
§(u) = §o(u), for 0 < u<sy,

= §(s1) + §1(u), for s1Su< sy,
we have, for 51+ < $2,
Z(s1 +1)
f F(Z7X(s), 8(s))dB(s)
0
s1+t - Z(s1)
= fu, g(Z(u)))dB(u) + » )f (51, 8(5))dB(s).
0 S1-

Applying the same argument, we have, for s < < 53,

Z(t)
FZ7X(s), g(s))dB(s)

0

t - 2 Z(sp)
=f f(u, g(Z(w))dBu) + 3, f(sk, g(w))dB(u),
0 k=1 JZ(s-)
(3.12)

where we set
Bo(u) = B(Z(s2) + B(u - 52)) - B(Z(s2)), for s2<u<ss,

and then define B (u) by
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§(u) = Eo(u), for 0Su<ys,
=§(s1) + El(u), for siSu<sy,
=§(S2) + Ez(u), for s Su<s3. 3.13)

It is clear that B (u) is the continuous part of B(Z(u)) and equal to '\/EB (u) in law.
Repeating this procedure we obtain equation (3.6).

(ii) For the case of V((0, o)) = co. Let N(dtd6) be a Poison random measure
which is independent of B(t), with the mean measure dtV(d6), and set

Z() = Pr+ f ON(dsd6),
(0,1%(0, )
(3.14)
Ze(t)= Pt + f ON(dsdb).
(0, 1] x (g, 0)
Then we have
Z(t) = Z(@®), as €10, (3.15)
Z\)= 2\, as €l 0, (3.16)
and
B(Zt)) = B(Z(t)), as €10, 3.17)

where we may take € = 1/n and "=" denotes the uniform convergence on each finite
time-interval almost surely. Let us denote by V¢ the Lévy measure of Z¢(¢). Then
Ve((0, o0)) < oo, Therefore, in view of equation (3.6), we have

Zg(1) t ~
FZEN(s), g())dB(s) = f Fus 8Zeku)))dB )
0 0
Ze(s)
+ 3 (s, g(w))dB(w), (3.18)
0<s<t JZs-)

where B () is defined by (3.13) with Z(¢) in place of Z(f). We notice that B, (1) and
B(¢) are the continuous parts of B(Z(t)) and B(Z(r)), respectively. Let us define
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JO=1lim Y {B(Z()) - B(Z(s-))},
R gcs<t

AZ(s)>1/n
where AZ(s) = Z(s) - Z(s-), and set

JO) = Y (B(Z«s) - B(Zes-))}.

O<s<t

Then
B(Z(¢)) = E(t) +J(t), and B(Z (1)) = Eg(t) + J&(o).

Moreover,

Bt) = B(2), as €10,
(3.19)
Jt) = J(), as €1 0.

Therefore, we have equation (3.5), making € 4 0 in equation (3.18), because of (3.15),
(3.16), (3.17) and (3.19). This completes the proof.

4. Stochastic Differential Equations with Jumps

Let X, x(f) be the solution of a stochastic differential equation

X@®=x+ f o(to+ Z(u - to), X(u))dB(u)

0
t
+ f b(to+ Z (u - 19), X(u))du, 4.1)
to

where B(f) is a d-dimensional Brownian motion and Z(¢) is a subordinator which is
independent of the Brownian motion. Generalizing the subordination in (2.2), we set

Yto,x(t) = Xto,x(tO + Z(t - t0)), 4.2)

which will be called time-dependent (or time-inhomogeneous) subordination of the
solution Xy, x(2) of equation (4.1). Then Xj, x(to + Z(t - tp)) satisfies
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to+ Z(t - to) 1
Xio,x(to + Z(t - t0)) =x + f o(to+Z" (u- to), X1p,x(u))dB(u)

o

to+ Z(t - to)
+ f b(to+Z \(u- t0), Xy x(W))du.  (4.3)
. ,

0

We first consider the case #p = 0, to avoid notational complexity. Let X(f) be the
unique solution of equation

t t
X()=x+ f o(Z Y(w), X(w))dB(u) + f b(Z '), X(w)du.  (4.4)
0 0

Then X(Z(t)) satisfies

Z(t) Z(1)

o(Z " (), X(u))dB(u) + f b(Z ' (u), X(w))du,
0

XZ@®)=x+ f

0

and hence by Lemmas 3.1 and 3.2

t - Z(s)
XZ@)=x+ f o(u, X(Z(u)))dB(u) + 2 o(s, X(u))dB(u)
0

O<s<t JZ(s-)

t AZ(s)
+ [Sf b(u,X(Z(u)))du + Z b(s,X(Z(s-) + u))du. (4.5)
0

0<s<t JO

We first treat the case that V((0, o)) < o, and denote the jump times of Z(¢) by
D@)={0< 1< < 13<..,where ;= T{(w),i=1,2,...}). We decompose
Brownian paths B(¢, ®) depending on jump times of Z(¢). Let us denote

AZ(T) = Z(%) - Z(75-) > 0,
and set
B () = B@(1:-) + unAZ(1)) - BZ(5:-).
Then

B = (B w), 0 <u< AZ(7)) 4.6)

are Brownian motions with the life-times AZ(7;). Enlarging the basic probability space, if
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necessary, we can introduce independent Brownian motions B (1), T=T1, 72, T35 vers

~(7)
with infinite life time such that () B () =B (T)(u) for 0 < u < AZ(7), and (ii) the
family {B ™ 7=1, B, T, ... } is independent of B(¢) which is the continuous part of
the Lévy process B(Z(t)) and equal to «/BB (¢) in law. Then

p(t, ®) = (AZ(7), B), 7€ D(w). @.7)
is a stationary Poisson point process with the characteristic measure (d@)W(dw). Let
N((0, s]1xd6dw) = #{1e D(w): T< s, p(T, @) € dBdw)

be the counting measure of the point process p(7, @). Then it is a Poisson random
measure with the mean measure ds (d @)W (dw), where W(dw) is the Wiener measure
on the space £, of all continuous paths. We will sometimes write 7= 7; , for simplicity.

We rewrite equation (4.5) as

t

X(Z@®)=x+ f

0

t
ou, X(Z(u)))dB(w) + B f b(u, X(Z(u)))du
0

AZ(7) AZ(1)
+ Y | o(7, X(Z(7-) + u))dB P(u) + f b(7, X(Z(7-) + u))du).
0< 1<t 0 0
4.8)

Let (Q, P) be a probability space, and W be the Wiener measure on the space 2. of all

continuous paths on Rd, and consider a stochastic differential equation
t t
ED=x+ f o(s, E(u))dw(u) + f b(s, &(u))du, (4.9)
0 0

where s is fixed. For fixed s and x, we denote by §t(s, X, w) the unique solution of
equation (4.9), and set

E(s, x, w) = Es, x, W) - x. (4.10)

Lemma 4.1. Let X(t) be the unique solution of equation (4.4), and define
X ®(8),1 < AZ(D), by
X O) = X(Z(7-) + 1). @.11)
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Then X *Xt) satisfies equation (4.9) with x = X ©(0) = X(Z(-)) and w = B®.
Proof. In view of equation (4.4), we have, for t < AZ(7),

X O = X(Z(r-) + 1)

Z(T-)+1 Z(T-)+1
=x+ f o(Z "'(u), X(u))dB(u) + f b(Z '(w), X (w))du,
and 0 0
X (0) = X(Z(1-))
Z(t-) Z(1-)
=x+ f o(Z "Y(u), X(w))dB(u) + f b(Z (), X(w))du.
0 0
Subtracting, we obtain
Z(1-)+t
X ) - XD(0) = o(Z "\(u), X(u))dB(u)
Z(t-)

Z(T-)+t
+ f b(Z (w), X(u))du.
Z(1-)

Since Z ') = 1, foru € (Z(7-), Z(7)], we have, for t < AZ(7),

t t
X% - xD0) = f o(7, X P(w))dB D(u) + f b(1,X Pw)du, (4.12)
0 0

on the right-hand of which we have used equation (4.11). This completes the proof.

In particular, equation (4.12) yields

AZ(1)
X (AZ(s)) - X(0) = f o(7, X D(u))dB P w)
0

AZ(T)
+ f b(7, X O(w)du,
0
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which implies

- AZ(T)
Eazn(T, X P(0), BP) = f o(7, X ®(u))dB ®(u)
0

AZ(T)
+ f b(t, X D(w))du,
0

where E,(s, X, W) is defined by (4.10). Therefore, equation (4.8) can be expressed in
terms of §az(z)(T, X (T)(O), B (t)) as

t

XZ@®)=x+ f

0

- t
o(r,X(Z(u)))dB(u) + B f b(u, X(u))du
0

+ Y Eazeey(T, X(Z(7-)), BD), 4.13)

0<1<t
where

Y Eazey(t,X(2(7-),BD)

0<zst

f Eos, X (Z(s-)), w)N(dsdOdw), 4.14)
(0,£]%(0,0) X Q.

with the counting measure N(dsdO@dw) of the Poisson point process p(7T, @) =

(AZ(7), B (1)) given in (4.7). Equation (4.13) together with equation (4.14) implies that
Y(t) = X(Z(1t)) satisfies

t t
Y()=x+ f o(u, Y(u))JBdB(u)+ﬁf b(u, Y(w))du
0 0

+ f {&o(s, Y(s-), w) - Y(s-)}N(dsdOdw). 4.15)
0, 1%(0,2)x Q¢

In general, for the case that W((0, o)) = oo, let Z(¢) and Z(¢) be defined by (3.14).
Then (3.15), (3.16) and (3.17) hold. Let X(f) be the unique solution of equation (4.4)
with Z¢(2). Then Y (t) = XA(Z(t)) satisfies equation (4.15) with N(dsdOdw),
whose mean measure is dsV((€, ) NdB)W (dw), that is,
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t t
Ye() =x+ f o(u, Ye(u))JﬁdB(u)+[3f b(u,Y (u))du
0 0

+ f {Eo(s, Ye(s-), w) - Ye(s-)}N(dsdOdw). (4.16)
(0. A% (€, )X Q¢

Letting € 4 0, since

Ye(D) = XA(Z(2)) = Y(©) = X(Z(1)), as €l 0, 4.17)

we have
Theorem 4.1. Let Z(t) be a subordinator of the form as in equation (3.1). Then

the time-dependent subordination Y (t) = X(Z(t)) of the unique solution X (t) of
equation (4.4) satisfies

t t
Y(t)=x+ f o(u, Y(u))JBdB(u)+ﬂf b(u, Y(u))du
0

0

+ f {Eo(s, Y(5-), w) - Y(s-)}N(dsdOdw), (4.18)
0, 11%(0, ) x Q¢

where E(s, X, w) is the unique solution of equation (4.9).

For the case fo # 0, we apply, instead of Lemmas 3.1 and 3.2,

Lemma 4.2. Let Z(t) be given in (3.1), define Z 'l(t) by (2.4), and denote
AZ(s) = Z(s) - Z(s-). Then

to+ Z(t - to)
f flto+ Z 7 u - t0), g(w))du

0

t
=p f Sf(u, g(to+ Z(u - tp)))du
to

AZ(s - to)

+ f(s, g(to+ Z((s - to)-) + w))du,

to<s<t JO
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for any RC-valued continuous function g(s) on [ty, °°) and real-valued continuous
function f(s, x) on [to, w)de.

Lemma 4.3. Let B(t) be a d-dimensional Brownian motion, and let f(s, x) and
g(s5), s € [to, =), be as in Lemma 3.2, and Z(t) be a subordinator of the form as in
equation (3.1). Then

to+ Z(t - to)
f fto+Z7\(u - t0), g(u))dB(u - to)
I

0

t - Z(s - to)
= f f(u, g(to+ Z(u - 10)))dB(u - 1) + Y, f(s, g(to + u))dB(u),

to to<s<t J Z(s-1t0)-)

where B(u) is defined by (3.13) and equal to N B B(u) in law.

Proofs of the lemmas can be carried over in the same way as for Lemmas 3.1 and 3.2.
Then, applying Lemmas 4.2 and 4.3, we obtain the general forms of equation (4.8) and
equation (4.18) on a time interval (fo, £]. Hence we have

Theorem 4.2. The time-dependent subordination Y 1, x(t) = Xy, x(t0 + Z(t - tp))
of the unique solution X, () of equation (4.1) satisfies a stochastic differential equation
with jumps

YO =x+ f o(u, Y(u)WBdB(u - to) + ﬂf b(u,Y(u))du

0

+ f {&o(s, Y(s-), w) - Y(s-)}N(dsdBdw),
(t0,1%(0, %) X Qe

where {«/BB(t) 1120} ={B(t):t20}, in law, which is the continuous part of
the Lévy process B(Z(t)), &i(s, x, w) is the unique solution of equation (4.9), and
N(dsd8dw) is a Poisson random measure with the mean measure dsV(d@)W(dw),
where V(d0) is the Lévy measure of Z(t), and W(dw) is the Wiener measure defined
on the space S of all continuous sample paths.

Theorem 4.2 solves the problem of constructing Markov processes with jumps in the
case of no scalar potential. To solve the case with potential functions, we shall generalize
the method of Kac to the time-dependent subordination.
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5. A Formula of Feynman-Kac Type
Let X, x(t), a < s < t < b, be the unique solution of the stochastic differential equation

in (4.1) with #o = s, defined on a probability space {2, P}. Let c(¢, x) be continuous
a.e. and bounded above

c(t, x) £ cp < oo. (CH))
We define

s+Z(t-5)
M(s, 1) = exp( f c(s +Z Y- 5), X;,x(u))du),

taking it for granted that the right-hand side is well-defined, where Z(¢) is the same
subordinator adopted to define X, x(f) in (4.1). We set

c(t, x) = c*(t, x) + c~(¢, x),
with ¢t = (c)vO0and ¢ = (¢)AQ. Then

M(s, ) = M D(s, oM )5, 9),

where
s+Z(t-5)
M ®(s, 1) = exp( f cH(s+Z7 (- 5), X x(u))du),
s
and
s+ Z(t-5)
M )(s, 1) = exp( c(s+ZN(u- 5), X x(u))du).
)
Moreover, by Lemma 4.2

MO, 1y = M5, oM (s, 1), M5, 1) = ME(s, HM @ s, 1),

with
t
MO3(s, 1) = exp(B f ct(r, X x(s + Z(r - 5)))dr),
and '
Z(r-s)
s<r<t JZ(r-s)-)
where

0 Mg, n, M@ s, <1,
and, by (5.1),
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PM (s, 1)] < e Beokt-9),
We then assume

PIM % ¥)(s, 1)] < ear¢-9), (5.2)
so that M @ is well-defined. We notice that

M@, n<exp(co Y, (Z(r) - Z(r-))) = exp(coZ(t - 5)),

0< r<t-s

and hence

PIM ® (s, )] <exp((t - 5) f (e - )Ud6)).
0

Therefore, a sufficient condition for (5.2) is

fm (e%f -1)W(d6) = ¢ < oo.
0

In this case we have (5.2) with this constant ¢1 < oo,
Lemma 5.1. (i) Let Y ,(t) = X x(s + Z(¢ - 5)). Then
Y (t)=Ysy, (), r<s<t
(ii) Denote the functional M(s,t) as M (s, x, t, ®). Then
M(r,x, t, ®) = M(r, x, s, O)M(s, Y, x(s), t, W), r<s<t
The proof of the lemma is routine and omitted.

For fixed s we define a semi-group P ® ¢ >0, by

POf(x) = W[ fE(s, x))exp( f c(s, & (s, x))dr)), (5.3)
0

with the unique solution &(s, x) of

D) =x+ f o(s, E(u))dw(u) + f b(s, &(w))du. (5.4)
0 0
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We assume that the semi-group P,(s) is a strongly continuous on Co(Rd), whose generator
is

%”21 (00T )i(s, x) =2 — x,ax, + E,l b(s, x )a—+ c(s,x)I, (5.5

with a core Cy' (Rd). Moreover, we apply Bochner's subordination with

Z9p = ON(drdo),
(0, 11 (0, )

(see (3.14)) to the semi-group P,(S). Then the subordinate generator is given by

MO f(x) = f (PSf(x) - fix)} V(dB), 56
0

where W(d0) is the Lévy measure of Z (¢), and Cg (R%) is a core of M),

Let us define

s+ Z(t-5)
T(s, x) =supf{t>s: f c(s+Z\u-s), X, x(u))du) > -oo},

(sup ¢ = s),

and set

D= {(s,x):P[s<T(s,x)] =1}.
We define Qf ; by

Q5,1 f(x) = P[A(Y5, ()M(s, 1)), for (s, x) € D. (5.7
We set Q5 ,f(x) = 0, for (s, x) € D. Then we have

Theorem 5.1. Ler c(s, X) be any potential function being continuous a.e., and
satisfying the conditions in (5.1) and (5.2), and let Qg +f be defined by the formula in

(5.7). Assume M©ORx) is continuous in (s, x). Then
tim SO T _ g )« MO0, (5,5) € D,

tis

forany f € Cg(RY).
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Proof. To avoid notational complexity we set s =0 and (0, x) € D, and consider

Z(t)
Q5,.f(x) = PLAX(Z(@®))exp(|  e(Z (), X(w))du)), (5.8)
0

where X(¢) is the unique solution of equation (4.4). Let us denote

F() = IX(Z(0)),

and

Z(f)
M(2) = exp( f o(Z “Y(u), X(u))du).
0

Let 0=1t9<# <t3<...<t,=Db be a partition of [0, b], and 6 = max |¢; - t;_1 |.
Then

FM D) - fix) = i {(F(e)M(t)) - F(ti- )M (8:-1) }

i=1

n n
=Y Fti . ){M@) - M(ti_ )} + Y, ME){F(@) - F(ti-1)). (5.9)
i=1 i=1
WesetD(@)={T: AZ(7) > €} = {0< 1< T < T3 < ... }, since V((0, o))
may be infinite, and denote by p(7, @) = (AZ«(7), B (T)) the point process defined on
D (), where Z(t) is given by (3.14). Let X(f) be the solution of equation (4.4) with
Z(1). Let us set

Fe(t) = X e(Z(1))),

and

Z0)
M) = exp(f o(Ze ' (), X (u))du).
0

We have, by Lemma 3.1,

Ze()
f c(Ze (), Xe(uw))du
0

t Ze(s)
= Bf c(u, Ye(w)du + Y, c(s, Xe(u))du,
0

O<s<tJZgs-)
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where § = T in the summation and Y o(4) = X(Z(u)). Hence,

M(2) = My (OM(D),

with
t
M;(2) = exp(B f c(u, Y (u))du),
and °
Z(s)
Ms(t) = exp( Y, c(s, X(u))du).
O<s<t JZgs-)

Then the first summation on the right-hand side of (5.9) with F'z and M is equal to

3 Felti- DMa(t) (Mr() - M (1))

i=1

+ 3 Felti- DMy ) (Mot - MGt 1),

i=1

where the first summation converges, as & 4 0, to

ﬁf c(u, Y e(u)) f(Y e(u-))M (u)du.
0

The second summation is equal to

3. Felti- DMt DMa(ti 1) (Ma(t)/Matt 1) - 1),
i=1

and it converges, as 6 4 0, to

Y AYe(s-)M(s-){(m(AZ(s)) - 1},

O<s<t

with
m(AZ(s)) = Mg(s)/M (s-),

where
AZ(s)

m(AZ(s)) = exp( c(s, X(Ze(s-) + u))du).

0

(5.10)

(5.11)
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Moreover, in view of (4.7), setting S¢ = (0, £] X (€, 00)X Q. , we have

2 f¥e(s-)Me(s-){m(AZ«(s)) - 1)

O<s<t

=1 f(Y(s-)IM(s-){mE(Y(s-)) - 1}N(dsd@dw), (5.12)
Se

where

0
mf(x) = exp( f c(s, Eu(s, x, w))du). (5.13)
0
Therefore, we have

lim P[g,l Folti- 1) (Me(t) - Me(ti-1)}]

= BP[ f c(u, Y () f(Y (u-))M (w)du]
0

+P[| f(Ye(s-))Me(s-){mE(Ye(s-)) - 1}N(dsdOdw)]. (5.14)
Se

We now compute the second summation on the right-hand side of (5.9) with F¢ and
M.

We first notice that we have, by Theorem 4.1,
t t
Ye(£) = Xe(Ze(1)) =x + f o(u, Ye(u))VBdB(u) + B f b(u,Y(u))du
0 0

+ f Ed(s, Y(s-), w)N(dsd@dw),
0, 11X (g, ) X Q¢

where &,(s, x, w) = &(s, x, W) - x.

Then, by It6 (1951) and Kunita-Watanabe (1967),
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t

d .
fY D) - (X 0)) = 3, aa—f (Y u))0¥(u, Y () v BaB ()

i=1 Jo Ox'
d L p)

+BY | b, Yeu)) 2L (Yo(w))du
i=1Jo oxi

d t .. aZf
+B Y | (00T, Yeu) L —2L (Ye(u))du
ij=1J0 2 oxidx/

+ f {f(Ye(s-) + Eg(s, Y(s-), w)) - AY (s-))}N(dsd6dw),
(0, 1] X(€,0) X Q¢

in the last integral of which we apply Y ¢(s-) + E,(s, Ye(s-), w) = &(s, Y(s-), w).
Therefore, we have

lim P[i M) Fe(t) - Fe(ti-1)}] =P[ f M{(s)BA;s (Y (s))ds]
0

i=1

+P[| M(s-)mIY (s-){ fo(s, Ye(s-), w)) - f(Ye(s-)) IN(dsdOdw)],
S
) (5.15)
where we have applied equations (5.10), (5.11) and (5.13).

Combining equations (5.9), (5.14) and (5.15), we have

P[XZ(D)M(1)] - fix)

t
=P[ f M(5)B{A (Y e(5)) + (s, Y(5) (Y e(5-)) }ds ]
0

t oo
+P[ f dsM (s-) f WLA(Eo(s, Ye(s-)) mI(Y e(s-)) - (Y e(s-))IV(d0)],
0 £

(5.16)
where the second integral is equal to

P[f dYMe(S-)f 1. (O{PE AV e(s-)) - R (s-))} (dB)],
0 0
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with P((gs) f(x) given in (5.3). We notice that (1 A 8)W(d0) is a finite measure and

15 (POAY s-)) - RYels-)), s<t,

is bounded, since it converges, as 010, to the generator of P((;s). Therefore, making
€1 0in equation (5.16), we have, by the dominated convergence theorem,

P[AX(Z(2))M(D)] - f(x) =P[ ] ({M(s)BAEX(s)) + M(s-)MOAY(s-)}ds],
0
5.17

where A £ is given by (5.5) and M by (5.6). Equation (5.17) implies

lim Q5,f(x) - fix) = BASfx) + MOf(x), (0,x) € D,

tl0 t

forfe Cg (R%), by the dominated convergence theorem.

We can prove the case s # 0 in the same way. Let X x(#) be the unique solution of
equation (4.1) with fg = §, and set

F(@) = (X5, (s + Z(t - 5))), and M(t) = M(s, ?).

Then we can repeat the same argument that we have adopted in the case s = 0. However,
to make it simpler, we can apply the integration by parts formula

t t
F(OM() - F(s)M(s) = f F(r-)dM(r) + f M(r)dF(r), (5.18)

and the same approximation argument. We remark that, by Theorem 4.2,

Y()=Y; () =x +f

s

t . t
o(r, Y(r))dB(r) + ,Bf b(r,Y(r))dr

+ f Ee(r, Y(r-), w)N(drdB@dw),
(5,81 X (0,0) X Q,

where Eg(r, x, w) = Eg(r, x, w) - x. Moreover, we have, by Lemma 4.2,



284

s+Z(t-5)
f c(s+Z7(r - 5), X, £(r))dr
S

t r - 5)
= ﬂf c(u, X5, (s + Z(u - 5)))du + Y, c(r, X5 (s + u))du
s s<r<t JZU(r - s))

t Z(r - 5)
=p f c(r,Y(r)dr + Y, c(r, Xs, (s + u))du.
s s<r<t JZ(r - 5)-)

Hence, the first integral on the right-hand side of (5.18) is

f F(r-)dM(r)

t s+ Zr - 5)
= f f(Y(r-)) d{exp( f (s + Z7Yu - 5), X;, ,(w))du))

t
=B f c(r, Y(N) [Y (r-))M (r)dr

+ Y fX(r-)IM@r-){m(AZ(r - 5)) - 1)

s<r<t
where
AZ(r - 5)
m(AZ(r - s)) = exp( c(r, X5 x(s + Z((r - s)-) + u))du ,
0
and hence

t
=B f c(r, Y(r) f(Y (r-))M (r)dr

+ f M(r-) (Y (r-)){m2(Y(r-)) - 1}N(drd6dw), (5.19)
(5, 11% (0,%9) X Q

where m,o(x) is defined by (5.13). The second integral of the right-hand side of (5.18) is
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t t
f M(r)dF(r) = f M@)BA f(Y(r))dr

+ f M(r-)mB(Y (r-)){ f(€e(r, Y(r-), w)) - (Y(r-))}N(drd6dw)
(s,1] X (0,0) X Q.

[ M S % (Y(r))oii(r, Y(r)) ¥ BdBI(r), (5.20)
1

s i,j=
where &(s, x, w) is the unique solution of equation (5.4) and Y(f) = Y, x(£).

Combining (5.19) and (5.20) we have

PAX(Z()NHM ()] - f(x)

t
_p[ f M@E)BIARY(P) + c(r, YA ()} dr]

+P[ M(r-){ f(Eew)) mA(X (r-)) - f(Y(r-))} N(drd6dw)),
(5,11 X (0,00) X Q.

t t
=P[ f M(r)BAS fY(r))dr] + P f M@r-MORY(r-))dr],
s S
where Y (¢) = Y, x(f). We have thus obtained the general form of equation (5.17) on

(s, t], and we can complete the proof.

Let us consider a special case that a subordinator Z(¢) has the Lévy measure

v(dg) = L_¢-x26_1_g49 5.21
(d6) 2me 37 (5.21)

with a parameter K, and potential functions satisfying
c(t, x) € K2 < oo, (5.22)

Then the condition (5.2) is satisfied. We can then generalize the results in Nagasawa-
Tanaka (1998, 1999) as follows.
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Theorem 5.2. Let X ,(t) be the solution of the stochastic differential equation
in (4.1) (to = S) with the subordinator Z(t) which is independent of B(t) and has the
Lévy measure V(¥)(d0) given in (5.21), and let c(t, x) be any potential function being

continuous a.e., and satisfying (5.22). Define evolution operators Qg,, by the formula
in (5.7). Then it solves

ou

e —+ BASu+Miu=0, (5.23)
where
d
=1 TV, a i g
5 2=, (60! )Y(s, x) 3%, + 121 b'(s, x) P + c(s, x)1,
and

-V-Af+ K2 + kL

Remark. 1f B = 0, equation (5.23) reduces to

‘3" +Mfu=0. (5.24)

This generalizes the results on stochastic differential equations of pure-jumps in Nagasawa-
Tanaka (1998, 1999)). Equation (5.24) is the equation of motion for a relativistic spinless
quantum particle in an electromagnetic field mentioned in Introduction, cf. Nagasawa
(1997) for details.

6. Markov Processes with (Pure) Jumps

Markov processes with jumps determined by the evolution operator Qﬁ ¢ in equation (5.7)
can be constructed with the help of the Schrodinger representation. In this section we
assume that Ag in (2.3) and A in (5.5) are given by

As=%

1

+ E bi(s, x) (6.1)
i=1 ax

and

%A + 2 bi(s, x) a— + (s, 0)I, (6.2)

i=1 Xi

respectively, where A is the Laplace-Beltrami operator

— «/oz(x (GGT(x))” d )

4/ 62(
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with a positive definite diffusion matrix 6GT(x), where we denote G2(t,x) =
det (667(x)). To adopt the operators A and Ay in (6.1) and (6.2), respectively, we
need to replace the drift coefficient b(Z, X) in the preceding sections by

b°(t,x) = b(t, x) + bs(t, x),

with a correction term

bs i-1_ 1 i T,
(xy 2 Yoyl 9 Vo2(x) (607 (x))")

If ¢ is independent of the space variables, then the correction is not necessary and

b°(t, x) = b(¢, x).

Let Qgt be the operator defined by (5.7). Then there exists a transition kernel
q°(s, x ; t, dy) such that

Q5 f(x) = f q¢(s, x5 t, dy) f(y), (6.3)

which obeys the Chapman-Kolmogorov equation but QS ;1 # 1, namely, the normality
condition is not satisfied. To construct the Schrédinger process with jumps we need a

prescribed entrance-exit law {aa(x), dp(x)} satisfying a normality condition
f dxaa(x)qC(a, x;b,dy)pp(y) = 1.

With the triplet {g°(s, X ; ¢, dy), §a(x), Pp(x)} we define a probability measure Q by
the Schrodinger representation (cf. Nagasawa (1993, 1997)):

Q[f(Xa, thv LI th -1 Xb)]
= f dxocfa(xo)q"‘(a,xo s t1, dx1)q(t, x1 5 t2, dxa) -+

o qc(tn-l, Xn-15 b’ dxn)¢b(xn)f(x0, X1s eee s xn),

wherea<t) < - <t,.1<band f(xg, X1, ... , Xn) is any bounded measurable function
on the product space (Rd)'“' 1'n=1,2,.... We thus obtain a Schrodinger process
{X;, Farvf}b, a<r<t<s<b,Q}, where E,‘ = o{X,;re [a,t]},and {X,, Fa‘,

a<t<b,Q} is a Markov process with jumps by Theorem 4 of Nagasawa (1997) (or
Theorem 3.6 of Nagasawa (1993)).
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