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CONVERGENCE OF

A ’GIBBS-BOLTZMANN’ RANDOM MEASURE

FOR A TYPED BRANCHING DIFFUSION

by

Simon C. Harris

Department of Mathematical Sciences,
University of Bath, Bath, BA2 7AY, United Kingdom.

1. Introduction

We consider certain ’Gibbs-Boltzmann’ random measures which are de-

rived from the positions of particles in the typed branching diffusion introduced
in Harris and Williams[6]. We prove that, as time progresses, these random
measures almost surely converge to deterministic normal distributions (corre-
sponding to the type distributions of the ’dominant’ particles contributing to
the measure at large times). The random measures considered are closely linked
to some martingales of fundamental importance in the study of the long-term
behaviour of the branching diffusion. The method of proof relies on a martingale
expansion and the study of the behaviour of various families of martingales.

(1.1) The Branching Model

The typed branching diffusion we consider has particles which indepen-
dently move in space according to a Brownian motion with variance controlled
by the particle’s type process. The type of each particle evolves as an Ornstein-
Uhlenbeck process and also controls the rate at which births occur. This model

was introduced in Harris and Williams [6], a paper which forms the foundations
for this work. Although the paper deals entirely with one family of such branch-
ing diffusions, analogous results and similar martingale methods may well be
applicable in a variety of other typed branching diffusions where the spatial
Brownian motion and the breeding rate are controlled by a type process moving
as a finite state Markov chain or sufficiently ergodic Markov process.

Consider the typed branching diffusion where, for time t > 0,

N(t) is the number of particles alive,
Xk (t) in IR is the spatial position of the kth-born particle,
Yk (t) in 1~ is the ’type’ of the kth-born particle,

(N(t); Xi (t), ... , XN(t); Yl (t), ... , YN(t)) is the current state of the system.
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The type moves on the real line as an Ornstein-Uhlenbeck process associated
with the differential operator (generator)

03B8 := 03B8 2(~2 ~y2 - y ~ ~y)
where 8 is a positive real parameter considered as the temperature of the system.
The spatial motion of a particle of type y is a driftless Brownian motion with
variance

A(y) := ay2, where a > 0.

The breeding of a type y particle occurs at a rate

R(y) := ry2 + p, where r, p > 0,

and we have one child born at these times (binary splitting). A child inherits its
parent’s current type and (spatial) position then moves off independently of all
others. Particles live forever (once born!).

The model has a very different behaviour for low temperature parameter
values and throughout this paper we consider only values above the critical tem-
perature, that is 8 > 8r. All the above parameters of the model are considered
as fixed for the rest of this paper, unless otherwise stated. We use and 
with x, y E R to represent probability and expectation when the Markov process
starts with an initial state (N; X, Y) = (1; x; y).
(1.2) Convergence of a ’Gibbs-Boltzmann’ random measure

Let a, A E I~. For t > 0 and 1  j  N(t) we define

J03B1,03BB(t,j) := exp(03B1Yj(t)2 + 03BBXj(t)) 03A3N(t)k=1exp(03B1Yk(t)2 + 03BBXk

(t))

so that we have

N(t)

Ja,a(~ , ~ ) > 0 and ~ Ja,a(t, k) =1.
k=1

We consider as a random probability measure on l~ with a mass of
size at type position for each j =1, ... , N (t) .

Under certain parameter constraints, this random probability measure
almost surely converges to a certain (deterministic) normal distribution. The
very crude large-deviation heuristics in Harris and Williams[6] go some way to
explaining why this convergence may be anticipated, as well as providing some
motivation for looking at these random measures. These heuristics lead us to
suspect that the distribution of the types of the ’majority’ of particles which are
to be found with spatial positions in the ’vicinity of fÀ t’ is normal with variance
(2~a )-1. It is precisely these particles that the random measures end up
concentrating on.
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Before stating the result, we need to introduce a couple of key definitions
(the significance of which will become clearer in later sections) :

03BB := 03B8(03B8 - 8r - 4a03BB2) 2 , 03C8±03BB := 1 4 ± 03BB 203B8

. ._ - 2(8 - 8r)(8p + 2p2 + r9)
( ) ’’" 

a8 ( + 4 p) 2

(1.3) Theorem.

Suppose a  1/4 and ~a~  a(8), then for each starting law the random

probability measure Ja,a(t) almost surely weakly converges to a (deterministic)
normal distribution with mean 0 and variance := {2(~a - a)}-1, , denoted
by 

’

t --~ oo.

Equivalently, for every continuous bounded function f : l~ ~ R

IRf(y)J03B1,03BB(t,dy) := 03A3f(Yk(t))J03B1,03BB(t,k) ~ IR f(y)e-y2/203C3203B1,03BB 203C003C3203B1,03BBdy

almost surely as t - 00.
We shall actually prove some stronger limit theorems which will combine

to yield this theorem. The methods we shall employ will require the study of
the long-term behaviour of various martingales for the branching diffusion. In
fact, study of these martingales will essentially yield the asymptotic behaviour of
the normalization constants in the above Gibbs-Boltzmann random measures, as
well as identifying the normal distribution limit of the measures themselves. The
reader should also see Chauvin and Rouault [4] concerning Gibbs-Boltzmann
random measures in the branching random walk.

2. Martingales and The Main Convergence Theorem

Define .

(2.1) y := -03B8 - 8r 4a .

Let A E l~, with the following convention which we always use for A:

(2.2) 03BBmin  A  0.

(Note that Amin is the point beyond which ~a is no longer a real number.)
In Harris and Williams[6], we proved the almost sure speed of the spatially

left-most particle by making use of the following martingales:
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(2.3) Lemma. The ’ground-state’ martingales. For t > 0, let

N(t)

(2.4) Za (t) := ~ exp (~a Y~ (t)2 + A (Xk (t) + ,

A:=i

where

(2.5) c-03BB : - ( p + 03B803C8-03BB) /a,

This defines a martingale Za (under each measure).
Since the martingale is non-negative it must converge. It is easy to check

that the function c- is convex on and achieves its minimum at the

unique point (03B8). We used this simple geometric fact and an idea of Neveu[10]
in proving the following:

(2.6) Theorem. Convergence of the ’ground-state’ martingales. The

martingale Z~ is uniformly integrable and has an almost sure strictly positive
limit if A E (a(8), 0).

Similar martingales have been studied for standard branching Brownian
motion and they are also strongly linked to travelling waves of the related FKPP
reaction-diffusion equation (see McKean[8],[9] and Neveu[10] for example). The
two-type branching Brownian motion model of Champneys et al. [3] is also

closely related to our current continuous-type model and indeed most of the
ideas of this paper should translate to models where the type of each particle
evolves as a finite state irreducible Markov chain.

(2.7) The ’one-particle picture’
We now remind the reader how we can go about calculating certain ex-

pectations for branching diffusion by making use of a ’one-particle picture’ as
follows:

Let (~, r~) be a process behaving like a single particle’s space and type
motions in the branching model described above. Thus, $ is a Brownian motion
controlled by an Ornstein-Uhlenbeck process r~, and (~, r~) has formal generator
H, where

(HF)(x,y) = 1 2A(y)~2F ~x2 + (03B8F)(x,y) = 1 2A(y)~2F ~x2 + 03B8 2(~2F ~y2 - y~F ~y) .

Of course, ~ is an autonomous Markov process with generator 03B8 and with
(standard normal) invariant density

~(y) := (- 2 y2) ~ .

For functions hl,h2 on I~, we define the L2(~) inner product:

(hn h2)~ : ~* 
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Also recall from Harris and Williams [6] that we made important use of the
following lemma:

(2.8) Lemma: ~From One to ManyB For any non-negative Borel function
f on R x R, we have

IEx,y ( 03A3f(Xk(t),Yk(t))) = IEx,y( exp (
tR(~s)ds) 

f(03BEt,~t)).1E:J:,y f (Xk(t), = 1E:J:,y Uo R(17B) / f(çt, / .

Now, we try to find functions f and real constants E that will give us a
martingale of the form

N(~)

Jk=i

Exploiting lemma 2.8 tells us that

N(t) ~

~ = 

A;=l

and utilising the standard exponential martingale for a Brownian motion we
have 

IEx,y(e03BB03BEt| 03C3(~s : s ~ t)) = e03BBx+1 203BB2t0A(~s)ds

Then combining these observations and looking for a martingale requires that

/(2/) = 

and now the Feynman-Kac formula suggests

{~(~-~)+~~~~-~~=~
(2.9) Eigenfunctions for a linear differential operator

Define the differential operator

~(~-~;)~-~’’’~
which is essentially self-adjoint with respect to the L~(~) inner-product  -,’ >~.
This should remind you of the harmonic oscillator equation, a point which now
enables us to perform further explicit calculations.

Consider A E (Amm? 0) fixed. There is a set of ortho-normal eigenfunctions
for the self-adjoint operator /~ represented by

= Vn e {0,1,...},
~~ = Vm, n e {0,1,...},



244

with

~n~a (~J) ~ = >

and

hn,03BB(y) := 1 203BB 1 2n!2n Hn( 03BB 03B8y) ,

E03BB := 03C1 + 03B803C8-03BB = -03BBc-03BB,

where Hn is the nth Hermite polynomial so that

H~ (z) - + 2nHn(z) = 0,

Hn(z) = (-1)nez2 dn dzn(
e-z2) ,

so in particular, H0(z) ~ 1, H1(z) = 2z, H2(z) = 4z2 - 2, etc.
The eigenfunctions are complete; they form an ortho-normal basis for

L2 (~). Given any f E L2 (~) we have the L2 (~) convergent expansion
00

f (y) _ ~ fi ~_ ~f 
i=0

(In fact, later on we will need to make use of certain ’smooth’ functions that
have uniformly convergent eigenfunction expansions.)

There is another strictly positive ’eigenfunction’ of ,Ca satisfying

= 

given by
03A803BB,+(y) := e03C8+03BBy2 , E+03BB := 03C1 + 03B803C8+03BB,

but we note that it is not normalisable, that is L~(~). However, this
’eigenfunction’ will still give rise to a martingale which proves to be of important
use later on.

(2.10) Other martingales.

Combining the above ideas with the branching-property yields a further family of
martingales that will be very helpful in understanding the type-space behaviour
of the particles.

(2.11) Lemma. Let A E (a(8), 0) .
(a) For each n E {0,1,...} and t E [0, oo),

N(t)
;_ ~ k=l

defines a martingale for each starting law.
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(b) For t E ~0, oo),

N(t)

Z~ (t) := 
k=1

defines a martingale Za for each starting law.

We now suggest the motivation for studying the long-term behaviour of
these martingales in our present context.

(2.12) Main Convergence Theorem.

We are interested in studying processes of the form

N(t)

~ (t ~ 0).
k=1

Now, for ’nice’ functions f that are square integrable with respect to the stan-
dard normal distribution, at least formally, we can write f as its eigenfunction
expansion so suggesting that

03A3 f(Yk(t))e03BBXk (t)-E03BBt = 03A3{ 03A3 fn03A8n,03BB (Yk (t))}e03BBXk(t)-E03BBt

00

_ ~ 
n=0

If we further restrict our attention to functions of the form f (y) =
where p~ is a polynomial of degree n, then the previous eigen-

function expansion becomes exact with

N(t)

~ = foZa (t) + +... 

k=,,1

Later on we prove that - 0 almost surely for all n > 1 (see
corollary 3.5) and whence

N(t)

~ ~ 

k=1

where we have
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and q2 = In particular, recalling that for A E (A, 0) we have Za (oo) > 0
almost surely (see theorem 2.6), we find that the moments of the corresponding
random measure converge almost surely to the moments of a (deterministic)
normal distribution. Yet, it is well known that the convergence of moments to
the moments of a normal distribution implies weak convergence to the normal
distribution (see Breiman[2], for example). Thus, the polynomial pn can be
replaced by any bounded continuous function p and the convergence will still
hold.

It should now seem at least plausible that we can further extend this
convergence to cover all continuous functions f that are (safely) square integrable
with respect to the standard normal distribution to give the following theorem:

(2.13) Theorem. Let A E (~(B), 0)) and a  1/4. For each starting law
and every continuous bounded function f : l~ H l~, we have

f ~~’ f o .

Jb=l

where

fo ~= dy

Simply combining this result with the known convergence of the ’ground-
state’ martingales from Theorem 2.6 will yield the ’Gibbs-Boltzmann’ random
measure convergence to the (deterministic) normal distribution in Theorem 1.3.

3. Martingale Convergence Results

We first present a theorem which gives sufficient criteria for the convergence of
the Hermite polynomial based martingales.

(3.1)Theorem. Let n E N and a E (a(9), o). . For each starting law, the

nth Hermite ‘additive’ martingale, Zn a, converges almost surely and in ,C" for
a E (1,2] if the following inequalities hold simultaneously:

+  0,

(3.2)Definitions. Let aÀ to be the a value which minimises subject to the
constraints a~a  and a E [1, 2~. . Further, let na to be the largest integer
n satisfying n  - 

These values now get the ’best’ from the theorem as follows.



247

(3.3) Corollary. Let A E (~(9), o). . For each starting law, 

... , Z~~,a}
is a set of uniformly integrable martingales, where, for all a  aa,

-~ a.s. and for all n = 0, ... , na.

[Remarks. The result for the ground-state martingale, Za , was also given in
Harris and Williams[6] but this proof would not cover the other signed mar-
tingales. The reader can check that the integer nÀ does indeed take non-zero
values for some choices of parameters in the model. Some large-deviation heuris-
tics suggest that this result is the best possible, see Harris[7] and further papers.
We conjecture that the conditions given in Theorem 3.1 are necessary as well
as sufhcient for the convergence and, in particular, for n > na the martingales
Zn,a fail to converge.]

We can also give bounds on the growth of all the martingales as follows:

(3.4) Theorem. Let n E N and a E (~(8), 0). . If a E (l, 2~ with

~ := - + > 0,
 ~a , ,

then for all e > 0 and for every starting law, 

~ 0 a.s.

[Remarks. This theorem is only useful when n > na, otherwise Theorem 3.1
can be applied and the martingale actually converges. The ’best’ control on the
rate of growth of the martingales in this theorem is again found with 

The next corollary was used in the previous section’s discussion of a re-
stricted version of the convergence Theorem 2.13. The actual proof of Theorem
2.13 will require elements from the proof of Theorems 3.1 and 3.4 as well as
further work to enlarge the space of functions for which the convergence holds.

(3.5) Corollary. Let n E N and a E (a(9), 0). . For every starting law, 

0 a.s.

In Git and Harris [5], we will show that the ground-state martingales with
parameters A E a(e)~ tend to zero almost surely (so cannot be uniformly
integrable). The other positive martingales Za for A E also tend to
zero almost surely and study of the rate of this convergence in [5] will give
almost sure outer bounds on the asymptotic shape in the space-type plane of
the branching particle system, whilst some large-deviation results will prove this
bound is actually attained.
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4. Proofs of Martingale Convergence Results
For details of the standard martingale results relied upon throughout this section,
see Rogers and Williams [12]&#x26;:[13] or Revuz and Yor [11]. .
Proof of Theorem 3.1 and Theorem 3.4. ,

We have the Hermite martingales

Zn,03BB(t) = 03A3en 03BBt03A8n (Yk(t)) e03BB(Xk(t)+c-03BBt).
k=1

Clearly,

Zn,03BB(t + s) = 03A3e03BB(Xk(s)+c-03BB s)+n 03BBsW0,ykk (t)

where the (t) are independent conditional on 0s and each look like Zn,03BB (t)
when the branching process is started with one particle at (x, y) = (O,Yk), with
yk = Yk (s), run for time t. Then,

Zn,03BB( s + t) - Zn, 03BB (s) = 03A3 e03BB(Xk (s)+c-03BB s) +n 03BBs{W0,ykk (t) - W0,ykk(0)}

where (0) = (Yk (s)) .
Conditional on ~Wk’~k (t) - (0) } are independent and the mar-

tingale property gives

~~ (t) - (o) } = o.
We now make use of the following important lemma, which was drawn to our
attention by a paper of Biggins [1] which studies related (complex valued) mar-
tingales for the branching random walk.

(4.1) Lemma. If Xz are independent and IEXi = 0, or they are martingale
differences, then for a E [l, 2],

Q!

i i

is a martingale null at s = 0, then Zn,a (s + t) - is
a submartingale for a E [1,2], hence + t) - is non-decreasing
in s. We are interested in finding out when the martingales are bounded.
Now,

N-I 
a

+ t) - = ~ ~ + 1)s + t) - + t)~
j=o

N-1

~ 
j==o



249

as we have martingale differences of the Zn,03BB martingale so can apply lemma
4.I. Also,

[Zn,03BB(s + t) - Zn,03BB(s)|03B1 = | 03A3e03BB(Xk(s)+c-03BBs)+u 03BBs{W0,ykk(t) - W0,ykk(0)}|03B1

,

k=I

where the entries on the last summation are mean-zero and independent condi-
tional on 3is ; hence, applying Lemma 4. I conditional on Fs, we get

IE{ |Zn,03BB(s + t) - Zn,03BB(t)|03B1 |Fs}
N(s)

 2a £ ,

k=I

where Wk looks like Zn,03BB started from one particle at (0, yk ) where yk = Yk (s) .
Now we want an estimate (small times will do) to bound the £° norm.

Currently, we are interested in having n fixed to try and get the best bounds
for a single Hermite martingale (in a later result, at this point we shall employ
a bound that holds uniformly over all n e FQ . The following lemma (proved in
section 5) works effectively.

(4.2) Lemma. Let n e N be fixed. Given e > 0, there exists K e R and T > 0
such that for all a e [1, 2],

IE0,y ( |Zn,03BB (t) - Zn,03BB (0) |03B1) ~ K e03B1(03C8-03BB +~)y2 ~t ~ [0, T], ~y.

Returning to the previous inequality,

IE{ |Zn,03BB(s + t) - Zn,03BB(s)|03B1| Fs}
~ 203B1 03A3e03B103BB(Xk(s)+c-03BBs)+n03B1 03BBsIE0,yk |Zn,03BB(t) - Zn,03BB(0)|03B1

k=I

N(s)

 g £ ~° +6) (Xk S)+cis) +na>x S
k=I

where this holds Va e [1 , 2] , Vt e [0, T] , ~s ~ 0.
Hence,

IE| Zn, 03BB (s + t) - Zn, 03BB (s) |
03B1 
~ IE (03A3 e03B1 (03C8-03BB +~) Yk (s)2 +03B103BB (Xk (s)+c-03BB s) +n03B1 03BB s)

= exp (03B1s {03BB(c-03BB- c-03B103BB) + n 03BB }) E (03A3 e03B1 (03C8-03BB +~) Yk (s)2+03B103BB (Xk (s)+c-03B103BBs))
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We can now calculate the last expectation above explicitly, using Lemma 2.8
and a change of measure between OU processes (see Harris and Williams [6] pp
137-138). In particular, the value is bounded by a constant for all times s if

(otherwise there is an explosion at some finite time and the bound is useless for
our purposes). In this case then

+ t) - Vs.

Defining
~ := + 

then for all t > 0, N E N and s E [O,T],

N-I

IE|Zn,03BB(Ns + t) - Zn,03BB(t)|03B1 ~ 203B1 03A3 IE |Zn,03BB((j + 1)s + t) - Zn,03BB(js + t)|03B1
j=o

N-1

 2a K’ ~ ea~(~s+t)
j=o

= 203B1K’e03B103B2t( 11 - eN03B103B2s 1- e03B103B2s)
203B1K’e03B103B2(t+Ns) if 03B2 > 0,~ {203B1K’(1 - e03B103B2s)-1e03B103B2t if 03B2  0.

If we have a case where a E (1,2] satisfies both  ~ a and ~3 =
+  0 then it follows that we have ,Ca boundedness for Zn,a,

hence Doob’s ,C~ inequality reveals that the martingale converges almost
surely and in ,Ca (so it is a uniformly integrable martingale). This completes the
proof of Theorem 3.1.

Otherwise, suppose we have a case where a e (1,2] satisfies  ~ a
and 03B2 = + n 03BB > 0. Then there exists a K’ such that for all t > 0,
N E ~Y and s E [0, TJ,

ea,QNs
 

.

Doob’s submartingale inequality tells us that for any f > 0

IP ( sup|Zn,03BB(u) - Zn,03BB(0)| > ~) ~ IE|Zn,03BB(s+t) - Zn,03BB(0)|03B1 ~03B1
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so, for a fixed s E [0, T~ and all N E N,

I~ sup Z~,a (0) ~ > e

 1~ sup Zn,aO)I > 

- 

- 

~ {203B1K’e03B103B4s 03B1(e03B103B2s - 1)}e-03B1(03B4-03B2)Ns
When 03B4 > 03B2, we can sum over the N and apply a Borel-Cantelli argument to
conclude that Zn,a(0)~ > e only finitely many times, yet since
e > 0 was arbitrary this yields

- 0 a.s.

as required. D

Proof of Theorem 2.13.

Suppose f E LZ(~) with the eigenfunction expansion coefficients

fn :=Rf(y)03A8n(y)03C6(y) dy = IR {e-y2 4f(y)}03C6n(y) dy

where := e-y2403A8n(y) and n E {0, 1, ...}. Suppose also that the eigenfunc-
tion expansion

e-y2 4f(y) = 03A3fn03C6n(y)
n=0

is uniformly convergent so that for all e > 0 there exists ME E N such that

|e-y2 4f(y) - 03A3fn03C6n(y)|  ~ ~y ~ IR, ~m ~ M~.
n=0

Then for all m ~ M~ and all t > 0,

|03A3 f (Yk(t))e03BB(Xk(t)+c-03BBt) - 03A3fne-n 03BBtZn,03BB(t)|
k=1 n=0

= | 03A3 {f (Yk(t)) - 03A3 fn03A8n (Yk (t))}e03BB(Xk(t)+~-03BBt)|

~ 03A3|f(Yk(tt) - 03A3fn03A8n(Yk(t))|e03BB(Xk(t)+c-03BBt)f (Yk(t)) fn’I!n(Yk(t)) 

N(t)

~ ~ 03A3e1 4Yk(t)2+03BB(Xk(t)+c-03BBt) .
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We now let ~ decrease with time sufficiently fast that

~t 03A3 e1 4Yk(t)2+03BB(Xk(t)+c-03BBt) ~ 0 a.s.

~=i

This choice of e~ is possible by a simple comparison with the Z~ martingale
which is positive and hence must converge. It then only remains to show that
whenever Mt - +00 as t -~ oo, we also have

Mt

~ -~ a.s.

~=0

Now we proceed along very similar lines to those found in the proof of
Theorems 3.1 and 3.4. There we found that for a e [1,2]

IE{|Zn,03BB(s + t) - Zn,03BB(s)|03B1|Fs}
~ 203B1 03A3 e03B103BB(Xk(s)+c-03BBs)+n03B1 03BBsIE0,yk|Zn,03BB(t) - Zn,03BB(0)|03B1

~=i

but this time we proceed onwards utilising the following bound (proved in section
5) that is uniform over all the Hermite martingales.

(4.3) Lemma. There exists K ~ ? and T > 0 such that for all a 6 [1,2],

IE0,y(|Zn,03BB(t) - Zn,03BB(0)|03B1) ~ K n03B1 2e03B1 4y2 ~t ~ [0,T], ~y ~ IR, ~n ~ N.

Hence we get

IE|Zn,03BB(s + t) - Zn,03BB(s)|03B1
~ n03B1 2e03B103BB(c-03BB-c-03B103BB)+n 03BB}sIE( 03A3e03B1 4Yk(s)2+03B103BB(Xk(s)+c-03B103BBs)

where now to keep the last expectation bounded over all s we require that

a/4  ~B. When this is the case, the submartingale inequality yields

P sup > c)  6-~ 
~ ~ /

for some constant C E ?. Then

03A303A3IP (sup e-n 03BBu|fn||Zn,03BB(u) - Zn,03BB(0)| > ~ n3/2)"’ /

=C~-03B1(03A3|fn|03B1n203B1)( 03A3e03B103BB(c-03BB-c-03B103BB)ls)= C ~-03B1 (03A3 |fn|03B1n203B1 ) (03A3 e03B103BB(c-03BB -c-03B103BB)ls )
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which is finite if we can choose an a such that

a/4  ~ a, , aa(ca -  0,
oo

03A3 |fn|03B1n203B1  ~,
n=1

the first two of which are certainly satisfied for a near to 1. The Borel-Cantelli
Lemma then says (almost surely) that for only finitely many pairs of (I n) is

Sup Zn,~(~)I > En3/2
so there exists a (random) T E l~ s.t.

e-n 03BBt|fn||Zn,03BB(t) - Zn,03BB(0)| ~ ~ n3/2 ~n ~ 1, t > T

hence

|03A3fne-n 03BBtZn,03BB(t)| ~ 03A3e-n 03BBt |fn||Zn,03BB(t) ~ 03A3 ~ n3/2  ~ ~t > T.

Since this is true for all E > 0, we have

~’‘ t (t) ~ 0 a.s.

n~>1
Finally, we give some explicit functions that enable us to satisfy the above

conditions and complete the proof of the theorem. Consider the function

= ( 1+T2 ) -le~~~+~1+~}~~~2
where ~T~  1 so that f E L2(~). Using, for example, Nlehler’s formula we find
that 

e 4 y f (y) = ~, 
n=0

where the coefficients are given by

f2n = (03B8 03BB)
1 4 

2n(2n)!1 2 2nn! .

This eigenfunction expansion is uniformly convergent for each ||  1 which can

readily be checked using the uniform bound (see, for example, Szegö [14])

(4.4) |H(x)| ~ K2n 2 (n!)1 2 e x2 2 ~n,x

so that we have a constant C such that | ~ C for all n and y, the Weier-
strass test and the ratio test. From Stirling’s formula, ni N (203C0n) nne-n, we
also find that

T2n
^’ 

(n~) 9
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so this geometric decay of the coefficients ensures that all the requirements of
the previous arguments hold for f T when ||  1. This proves Theorem 2.13

for every a  1/4 in the special case when the bounded continuous function is
constant.

Next, it is easy to check that for any q E N, yq f T (y) will also have

an eigenfunction expansion that satisfies all our requirements. We therefore
have that the moments of the Ja,a (t) probability measure all converge to the
moments of the required normal distribution, which implies weak convergence
of the measure. 0

5. Proof of Lemmas 4.2 and 4.3.

We go through the proof of lemma 4.3, which is a modification of the
proof of the corresponding lemma used in Harris and Williams [6] combined with
the use of raising and lowering operators and uniform bounds for the relevant

eigenfunctions.
The branching process has state space

I := U ({n} x 

n>1

Its formal generator 0 is given by

(5.1) 
where for n ~ 1, x, y ~ IRn, we have

(AF)(n;x;y) = 03A31 2A(yk)~2F ~x2k,
(5.2) (03B8F)(n; x; y) = 03A303B8 2{~2F ~y2k - yk~F ~yk},

(RF)(n;x;y) = 03A3R(yk){ F(n + 1; (x,xk); (y,yk)) - F(n;x;y)}

,

k=1

where (x, := (xl, ... , , xn, xk) E 

(5.3)Proposition. Local-martingale condition. If F : [0, ~)  I ~ IR and

{(~ ~t + ) F}(t;n;x;y) = 0 for t ~0,n~1,x,y ~ IRn,

then F(t;N(t);X(t);Y(t) is a local martingale.
We know that

’ 

n

(5.4) hm,a(t; ~; Xi Y) W ~ 
k=1

leads to the martingale = 
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Now, jumps only when a new particle is born; but any jump of 
is of magnitude no greater than the largest magnitude of the individual particles
contributions, therefore, introducing the stopping times

Vn:= inf{ t : 03A3 |03A8m,03BB(Yk(t)) | e03BBXk (t)-Em,03BBt ~ n} ,

then stopped at Vn never exceeds 2n. Thus, Zm,03BB is locally in 2 (relative
to any so can now conclude that

~m,A(~ - Am(t) is a local martingale
where

{(~+~) ((~A)~(~~);X(.);Y(~))~.
It is easy to calculate that

(5.5) dAm d6 (t) = 03A3( {(a03BB2 + r)Yk(t)2 + 03C1 }03A8m,03BB(Yk(t))2+

03B8{d03A8m,03BB dy(Yk(t))}2)e203BBXk(t)-2Em,03BBt
Now, utilising the raising and lowering operators

~=2~,-~ ~==~-2~
where

~~,A = ~~(~+l)~+i~ = ~~~
and the uniform bound for the eigenfunctions (see (4.4))

(5.6) ~ Key2 4 ~n ~ N,y ~ IR
it is relatively straight forward to show that

Cm ~~+~-~.~ E N.dt 
&#x26;=1

The one-particle picture and a change of measure methods (see Harris and
Williams[6]) can now give bounds on and in particular show that
it is finite for small t.
We can use Fatou’s Lemma to deduce from the fact that is a local
martingale that 

’

(5.7) [Z~(~]  + 
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Combining these ideas with the monotonicity of ,Cp norms now leads to Lemma
4.3. Sacrificing the uniformity over m for better control of the exponential
growth bound in (5.6) will give Lemma 4.2 instead.
Acknowledgement. We thank the referee for their comments. We especially
thank David Williams for originally suggesting this model and, moreover, for all
the encouragement and inspiration he has given over the years. We wish him all
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