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Saturations of Gambling Houses
A. Maitra and W. Sudderth 1

School of Statistics, University of Minnesota
Minneapolis,Minnesota 55455

Abstract

Suppose that X is a Borel subset of a Polish space. Let P(X) be the set of
probability measures on the Borel a-field of X. We equip with the weak

topology. A gambling house r on X is a subset of X x such for each
x EX, the section r(x) of r at x is nonempty. Assume moreover that r is an
analytic subset of X x P(X). Then we can associate with r optimal reward
operators Gr, Rr, and Mr as follows:

= E x E X,

(Rru)(x) = sup dP~, ~ E X,

where u is a bounded, Borel measurable function on X, the sup in the definition
of Rr is over all measurable strategies a available in r at x and Borel measurable
stop rules t (including t = 0), Xt is the terminal state and PQ the probability
measure on H, the space of infinite histories, induced by a;

(Mrg)(x) = sup , ~ E X,

where g is a bounded, Borel measurable function on H and the sup is over all
measurable strategies a available in r at x. The aim of this article is to describe
the "largest" houses or "saturations" for which the associated operators are the
same as the corresponding operators for the original house. Our methods are
constructive and will show that the saturations are again analytic gambling
houses.

1 INTRODUCTION

The point of departure of this article is a beautiful result of Dellacherie and Meyer [5,
38] in gambling theory. We will describe this result in the framework of the Dubins-
Savage ([6]) theory.

Let X be a Borel subset of a Polish space, and let P(X) be the set of probability
measures on the Borel a-field of X. Give P(X) the topology of weak convergence,
so P(X) is again a Borel subset of a Polish space ( see ([10], 17E) for details). A
gambling house on X is a subset r of X x such that each section r(x) of r at
x is nonempty. A strategy a available in r at x is a sequence ao, at, ... such that
ao E r(x) and, for n > 1, an is a universally measurable function on X’~ into P(X)
such that 03C3n(x1, x2, ... xn) E for every x1, x2, ..., xn E X. Such a a defines a

unique probability measure on the Borel subsets of the history space H = XN, where
N is the set of positive integers and H is given the product topology. We will use
the same symbol a for this probability measure. ( See ([3], 7.45) for the existence of

lResearch supported by National Science Foundation Grant DMS-9703285.
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this measure.) If a is a strategy available in r at x and x’ EX, then the conditional
strategy 03C3[x’] is the strategy defined as follows:

(03C3[x’])0 = 03C31(x’)

and, for n > 1,

x2~ ... , xn) _ x2~ ... ,xn)

for xl, x2, ... , xn E X. Note that ~~x’~ is available in r at x’. The set of strategies
(and also the measures induced on H by these strategies) available in r at x will be
denoted by Er (x) .

A stop rule is a universally measurable function t on H into w = N U ~0~ such
that t(h) = k and h =k h’ imply t(h’) = k, where h =k h’ means that h and h’
agree through the first k coordinates. In particular, if t(h) = 0 for some h, then t is
identically zero. If t is a stop rule such that t > 1 and x EX, then the conditional
stop rule t[ x] is defined by

= t(xh) -1, h E H,

where xh is the history obtained by catenating x and h. Note that is again a stop
rule. A pair 7r = (Q, t) where Q E Er(x) and t is a stop rule is said to be a policy
available at x.

In the sequel, none of the results would be affected if we had restricted ourselves
to Borel measurable stop rules.

A measurable leavable gambling problem is a triple (X, r, u), where X is a Borel
subset of a Polish space, r is a gambling house which is an analytic subset of X x P(X),
and u is a bounded, upper analytic function on X, that is, [u > a] is an analytic
subset of X for every real a. Such structures with r and u both Borel measurable
were introduced by Strauch ([19]); the extension to analytic gambling house and upper
analytic utility functions is due to Meyer and Traki ([17]).

If r is an analytic gambling house on X, then Er (x) ~ ~ for each x, courtesy of the
von-Neumann selection theorem ([10], 29.9). Furthermore the set Er = 
Er(x) is analytic in X x P(H), as was established by Dellacherie ([4], Theorem 3).

The optimal reward operator for a measurable leavable gambling problem (X, r, u)
is defined by

(R0393u)(x) = sup u(ht) d03C3, x ~ X, (1.1)

where ht abbreviates ht(h) and the sup is taken over all policies 7r = (7, t) available
inratx.

The Fundamental Theorem of Gambling (see([17]) or ([14], Theorem 4.8) provides
another description of Rr as follows. First we need a definition. We say that a
bounded function g on X is r - excessive if it is upper analytic and  g d03B3  g(x)
for every, E r(x) and x E X. .

Theorem 1.1. (Fundamental Theorem of Gambling) If r is an analytic gambling
house on X and u is a bounded, upper analytic function on X, then R0393u is the least
r-excessive function g such that g > u.
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Note that the function Rru can be defined for every house r for which Er(~) 7~ ~
for each x and any bounded, universally measurable function u on X by using (1.1).

We associate with each analytic house r on X a house rc as follows:

rC(x) = a E Er(x) and t is a bounded stop rule }, x E X,

where 1Pt(h) = ht, h E H. (For t = 0, is defined to be 03B4(x) if 03C3 ~ Er(x).) In
other words, rC(x) is the set of distributions of the terminal state induced by policies
7r = t) available in F at x for which t is bounded. As we will prove in section 3, h~
is an analytic subset of X x P(X).

If Li and L2 are operators that map bounded functions on X (respectively H) to
bounded functions on X, then we will write L1 ~ L2 if L1 = L2 on bounded, Borel
measurable functions on X (respectively H); and we will write Li L2 on
bounded, upper analytic functions on X (respectively H).

We are now ready to state the result of Dellacherie and Meyer which was mentioned
in the first paragraph.

Theorem 1.2. Suppose that r is an analytic gambling house on X. . Then the largest
gambling house r’ such that Rr~ N Rr is defined by

rs (x) = sco r~(x), x E X, (1.2)

where sco denotes the (total variation) norm closure of the strong convex hull
of . In particular, rs is an analytic gambling house.

Recall that if M C l~(X), then the strong convex hull of M,written sco M, is the
set of all v E P(X) such that there is  E P(P(X)) with = 1 and

v(B) = P(X) ~(B) (d~)
for every Borel subset B of X,where * is the outer measure induced by For

M C P(X), we say that M is strongly convex if M = sco M.
The gambling house rs is called the saturation of the gambling house r. Dellacherie

and Meyer [5] define the saturation of r to be the largest house having the same
excessive functions as r. It is easy to see that their definition is equivalent to the
one given above. The statement of Theorem 1.2 differs slightly from the formulation
of Dellacherie and Meyer. In place of the gambling house rc they have a "house"
consisting of sub-probability measures and they remark ([5], p.192) that their proof
depends critically on allowing sub-probability measures in their construction. They
pay a price for this: they need to perform the operation of hereditary closure on the
strong convex hull before taking the norm-closure and then intersect the result with
P(X). In fairness, we must point out that they are aware, as they remark ([5], p.183),
that they could have worked with h~ but chose not to do so as the proof that rc is
analytic is laborious. It turns out that proving the analyticity of rc is not so hard
after all, as we shall see presently.

Given a gambling house r, there are other optimal reward operators of interest.
The aim of this article is to construct "largest" houses or "saturations" keeping those
operators invariant in the spirit of Theorem 1.2. We will now define two such opera-
tors.
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Dubins et al. ([8]) define a measurable non-leavable gambling problem to be a triple
(X, r, ~c*), where X is a Borel subset of a Polish space, r an analytic gambling house
on X, u a bounded, upper analytic function on X and

u* (h) = lim sup u(hn) , h E H.
n

The optimal reward operator for the nonleavable gambling problem is defined by

= sup u* d~, x E X.

Note that Vr is defined even when r is not analytic just so long as Er(x) is nonempty
for each x E X.

For any set E C X x P(H) such that E(x) is nonempty for each x and any
bounded, upper analytic function g on H, we define

= sup gdQ, x E X.

We will also write Mr for Ms in case E = Er for a gambling house r on X. . In this

case, we will say that E is a global gambling house on X.
Here are the main results of the paper.

Theorem 1.3. Suppose that r is an analytic gambling house on X . Then the largest
gambling house r’ such that Mr N Mr~ is

rsl (x) = sco r(x), x E X.

In consequence, is analytic.
In the sequel, we will write sco r for .

Theorem 1.4. Let F be an analytic gambling house on X. . Then the largest global
gambling house E such that M~ N M~r is 

Theorem 1.5. Suppose that r is an analytic gambling house on X . Then the largest
set E C X x such that E(x) is nonempty for each x and ME N M03A30393 is 03A3SCO0393.

Theorem 1.6. For X = { o,1 }, there is a Borel gambling house h on X such that
there is no largest gambling house 1,’ such that Vr N Vr,. .

A word about notation. Throughout the paper, the operations of forming the
strong convex hull and the (variation) norm closure will be performed (vertical) sec-
tionwise on subsets of X x or X x Thus if r is a gambling house on X,
then sco r is the gambling house whose x-section is the strong convex hull of r(x); or
if E is a subset of X x then sco E is the subset of X x whose x-section is
the norm-closure of the strong convex hull of E(x) and E is the subset of X x 
whose x-section is the norm closure of E(x).

For X countable, there are versions of Theorems 1.2 and 1.4 in Maitra and Sud-
derth ([13], 6.8.16 and 6.8.21). A finitely additive version of Theorem 1.2 is in Arm-
strong ([1]).

The article is organized as follows. Section 2 contains a summary of the properties
of the Mokobodzki capacity and related results. In section 3 we prove that rc is an

analytic gambling house. Section 4 is devoted to results in gambling theory. The

proofs of the theorems stated in this section are in section 5.
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2 THE MOKOBODZKI CAPACITY

As in the Dellacherie-Meyer proof of Theorem 1.2, the ad hoc capacity of Mokobodzki
will play a crucial role in our proofs. We will also need the effective analogue of the
Mokobodzki capacity as defined by Louveau ([12]). In this section we summarize
the properties of the Mokobodzki capacity and prove some consequences of these
properties and other related results which will be used in the sequel.

Let X be a compact metric space and let A be a probability measure on the Borel
(7-field of X. For A C P(X), define

I(A; A) = = inf ~sup r~( f ) + a(1- f ) : f E ~},
r~EA

where ~ is the set of Borel measurable functions on X into [ 0, 1] and we write ~c( f )
for  f d  when f ~ 03A6 and  E P(X).
Theorem 2.1. ( jSJ, ~5) For fized a E P(X),
(a) I (~; ~) = I is a capacity on 
(b ) If A is an analytic, strongly convex subset of P(X), then

I(A) = n a) (1), ,
~EA

where 1 is the function that is identically equal to one on X and n is the minimum
operation in the lattice of bounded, signed measures.

Corollary 2.2. (f5~, ~l~). If A is a strongly convex, analytic subset of 1~(X), then

A E norm - cl(A) ~ (Vf E ~)(a( f )  sup r~( f )),
r~EA

where norm stands for the total variation norm.

Proof. The ’only if’ part is easy. For the ’if’ part, the hypothesis is equivalent to the
statement that I(A) > 1. Hence, for each n, there is r~n E A such that > 1- n
by virtue of Theorem 2.1. Now

~~na=a-(~n-a)-~
hence

so that, since a ( 1 ) = 1,

(~n - 03BB)- 1)  1 n
.

Also

~n (A - 
from which it follows that, since (~n - ~)+ _ (A - ~~)-,

Hence,

th. - ~ (~ - ) () + rn ~ ) ()  f >
so [[ A ~~-~ 0 as oo. Consequently, A E norm - cl(A). 0
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Lemma 2.3. If r is an analytic gambling house on X, then sco r and sco r are both
analytic.

Proof. . First note that the set

E = E X x 

is analytic ([10], 29.26). Consequently, the set sco r is analytic, since it is the projec-
tion to the first two coordinates of the analytic set

{(x, v, ~c) E X x E E 
’

and v(.) = (dr~)}.

The set sco r is analytic, since it is the projection to the first two coordinates of the
analytic set

{(x, v, E X x x n E sco r(x), n = 1, 2, ...
and II v (~-~ oo}.

To see that the above set is analytic, use the fact from ([7]) that the map ~c 
is Borel measurable on the space of bounded signed measures (on X) equipped with
the weak topology. 0

Lemma 2.4. Let tc E be such that tcn --~ ~ in norm. Then, for any
bounded, upper analytic function g on X, f g d n ~ f g 

Proof. Choose v E P(X) such that /~ are absolutely continuous with respect to v.
Then there is a bounded, Borel measurable function f on X such that f = g a.s(v).
Hence

g d n =  f d n

and

f 

The conclusion now follows from the fact that f f -~ f f since pn - ~c in
norm. D

We now turn to the effective analogue of the capacity I. Effective descriptive set
theory takes place in recursively presented Polish spaces (see [18] for details). We will
take X to be the recursively presented compact metric space 2w and A to be a L1i
probability measure. For A C P(X), let

J(A; A) = J(A) = in f ~sup r~( f ) + ~(1- f) : recursive on X into ~0,1~}.
r~EA

Theorem 2.5. (f12~, 2.1~, 2.~2(a), ~.Il~(a)) If A is a Ei subset of P(X), then

I(A) = inf {J(C) : C is ~1- recursive and A C C}.

An immediate consequence is



224

Corollary 2.6. If A is a El subset of P(X), A E P(X) is a O1 measure and I(A) 
1, then there is a 039411-recursive function f on X into [0, 1 J such that

sup r~(f)+a(1- f)  l.
r~EA

For the next result, we need a coding of 039411(03B1)-recursive functions on X = 203C9 into
[0, 1], that is, a set Wand a function U with the following properties:
(i) W is a IIl subset of w~’,
(ii) U is a nt-recursive partial function on c~w x w x X into [0, I],
(iii) if (a, n) E W and n, x) is defined), then U(a, n, .) is a Ai(a)-recursive
function on X into [0, 1] , and
(iv) if g is a 039411(03B1)-recursive function on X into [0, 1], then there is n such that
(a, n) E Wand (dx)(g(x) = U(a, n, x)).

Such a coding is easy to construct from the coding of Di (a) subsets of X x [0, 1]
(see ([11], p.13)). For the next result, regard 2w as a lI° subset 

Theorem 2.7. Let F be a Et gambling house on X = Suppose that x -~ tcx is

a 039411-recursive function on a 01 set E C X into P(X). Assume that I(r(x); tcx) =
Ix(r(x))  1 for all x E E. Then there is a A(-recursive function f : E x X -~ (o,1~
such that

sup / y) + (1- f (xr y))  1

for each x E E.

Proof. . Let

P(x, n) t-~ x E E &#x26;(x, n) E W &#x26;(dy)(U(x, n, y) is defined)

&#x26; sup n, . ) d~ + (1- U(x, n, . )) d x  1 .J 7 /
It is easy to check that P is It follows by relativizing Corollary 2.6 that E

E)(~n) P(x, n). So, by Kreisel’s selection theorem ([18], 4B.5), there is a 039411-recursive
function c~ : E -3 c~ such that (‘dx E E) P(x, ~(x)). Set

f (x, y) = U(x, y), x E E, y E X.
r

It is now easily verified that f satisfies the assertions of the theorem. 0

The bold-face version of this theorem is obtained by replacing Et by analytic and
A(-recursive by Borel measurable.

3 THE GAMBLING HOUSE rc

The present section contains the proof that h~ is analytic whenever r is an analytic
gambling house on X. We start with a technical result.

Lemma 3.1. Lemma ~.2~ Suppo-se that X and Y are Borel subsets of Polish
spaces. Then there is a Borel measurable mapping (x, ~) --~ from X x P(X x Y)
to P(Y) such that is a version of the JJ-regular conditional distribution on Y given
x.
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For  E P(X x X) or  E P(H), will denote the p-distribution of the i-th
coordinate, i > 1 ; is a version of the -regular conditional distribution of the
remaining coordinates given that the first coordinate is x such that is jointly
Borel measurable in  and x, as is guaranteed by Lemma 3.1.

Suppose now that r is an analytic gambling house on X. If 0394 ~ X  P(X), denote
by A* the subset of X x P(X) whose x-section A*(x) is 0(x) U~~(x)}. Define next
an operator X that takes subsets of X x P(X) to subsets of X x P(X) as follows:for
A C X x P(X)and x E X, the x-section of x(A),namely, x{~)(x), is defined as the
set of all , E P(X) such that E P(X x X)) satisfying these three conditions

(i) E r(x),

(ii) 03C0-12 = 03B3, and

(iii) (~C~rl 1)*(~ x’ EX: E }) =1.

Here is the outer measure induced by 
We also define an operator 9 that takes subsets of X x P(X) to subsets of X x

P(X) x P(X x X) by letting the x-section of ~{~), namely, ~(~)(x), be the set of
all pairs (y, ~c) in P(X) x P(X x X) satisfying conditions (i), (ii), and (iii) above.

Lemma 3.2. If ~ is an analytic subset of X x then is an analytic gam-
bling house on X.

Proof. First observe that 9(A) is the intersection of three sets, the first of which is
clearly analytic and the second Borel. The third is analytic by virtue of the fact that
A* is analytic and ([10], 29.26). So 9(A) is analytic. Since is the projection to
the first two coordinates of ~(~), it follows that x(0) is analytic. To see that is
a gambling house, note that for each x E X, x(~)(x) ~ X{~) = r(x) and so 
is nonempty. This completes the proof. 0

Define by induction on n subsets rn of X x as follows:

ro=0, and rn+1= n >_ 0.

It is easy to see that Fn C since x is monotone. Also, by Lemma 3.2, the
gambling houses rn are analytic. Finally, set

roo = U rn.
n>0

Then is an analytic house on X.
Here is the main result of this section.

Theorem 3.3. If r is an analytic gambling house on X, then

= U {b(x)}

for each x E X. Consequently, r~ is analytic.
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Proof. For a policy 7r = (cr, t) available in r at x, denote by ~y(~r) the distribution of
the terminal state ht under a.

To start with, recall that if 7r = (7, t) is available in r at x and t = 0 then
= b(x). So to prove the inclusion C, it will suffice to show that if 03C0 = (03C3, t) is

available in r at x and 1  t  n, then E rn(x). The proof is by induction on
n. For n = 1 the assertion is clear. So suppose the assertion is true for n = m. Let
7r = (a, t) be available in r at xo and suppose that 1  t  m + 1. It is easy to verify
that ~c -~ t~x~) is Qo - measurable. Furthermore, t~x~) = ~(x) if = 0
while if 0, then 1  t[x]  m, so that E r m(x) by virtue of the
inductive hypothesis. It follows that t(7r) E rm+1 (xp), since Qo E r(xo) and

’Y(~’)(B) _ t~x~)(B) 

for every Borel subset B of X.
For the reverse inclusion D, we will prove, again by induction, that there is a

universally measurable function ~n : P(X) such that ~n (x, ~y) E Er(x) for all
(x, ~y) Ern, and a universally measurable function tn : r n x H --~ N with tn(x, ~y, .)
a stop rule on H and tn  n for all (x, ~y) E rn such that whenever (x, ~y) E rn,
~ ’ ~)~ ~~ ’).

For n > 1, fix a universally measurable function f n from x(Fn) to P(X x X)
such that (x, y, fn(x, ~y)) E for every (x, ~y) E x(rn). The existence of fn is
guaranteed by the von Neumann selection theorem ([10], 29.9). Use the theorem one
more time to fix a universally measurable selector f * for F. For each x EX, let Q* (x)
be the strategy that uses as initial gamble f * (x) and thereafter uses f * (y) when the
current state is y. Note that cr*(~) E Er(x).

To start the induction, set
(x,’Y))a = ’Y

and the conditional strategy

_ 

for (x, ~y) E ri = r. (Note that a strategy a is completely determined by the specifi-
cation of ao and the collection of conditional strategies E X.) Let

= 1 for (x, ~) E r1andh E H.

Suppose now that ~~,, tn have been defined. Set = ~n on rn and = tn on

rn x H. We will next define ~n+1 (x, ~y) and tn+1 (x, q, .) for (x, ~y) E rn+1- rn. First
let

(Y’n+1(x~ ~))~ - 1

and define the conditional strategies by

(03C6n+1 ( x 03B3))[x1] = {03C6n(x1, (fn(x, 03B3))[x1]), if 

03C3* (x1), otherwise.
Note that 03C6n+1(x, y) E for all (x, y) E rn+1. . Define to be the stop
rule whose conditional stop rules are given by

(tn+1(x,03B3,.))[x1] = {tn(x1,(fn(x, 03B3))[x1]), .), if fn(x, 03B3))[x1] ~ 0393n(x1),
0, otherwise.
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It is easy to verify that and are universally measurable and that tn+1 (x, 03B3, .)
is a stop rule with + 1 for every (x, 7) E 

Finally, let 7 E rn+1 (x) . If ~y E r n(x), then

~l4’n+1(x~ ~)~ ~t ’)) _ ~lY’n(x~ ~’)~ ~~ ’)) ! ~~

by the inductive hypothesis. So suppose that 7 E rn(x). Let B be a Borel
subset of X and define A = (zi : Then

~’(Y~n+1 (x~ 7), tn+ (x~ ~~ ’)) (B)

- ’))~xlJ)(B) 

= / ’))[~i])(~) 

= /’ 03B3((03C6n+1(x, 03B3))[x1], tn+1(x, 03B3,.))[x1])(B)(fn(x, 03B3)03C0-11)(dx1)
+ Ac 03B3(03C3*(x1), t*)(B) (fn(x, 03B3)03C0-11)(dx1)

= A((fn(x, 03B3))[x1])(B)(fn(x, 03B3)03C0-11)(dx1)

+ Ac 03B4(x1)(B) fn(x, 03B3)03C0-11)(dx1)

= ((fn(x, 03B3))[x1])(B)(fn(x,y)03C0-11)(dx1)

- ~)~2 
_ ’Y(B) 

where t* is the identically zero stop rule and the fourth equality is by virtue of the
fact that t* = 0. Consequently, ~y), ~, .)) = ~. This completes the
proof. 0

4 Gambling
We turn to gambling theory in this section. Let r be a gambling house on X. We
associate with r an operator Gr as follows: for any bounded, upper analytic function
f on X

(Grf)(x) = sup x E X.
7Er(x) J

It is easy to verify that if r is analytic and f is upper analytic, then Gr f is upper
analytic.

Lemma 4.1. If r is an analytic gambling house on X, then R0393 ~ G0393c. Consequently,
Rr f is upper analytic if f is a bounded, upper analytic function on X. (Recall that
Rr  Grc means that Rr and Grc agree on bounded, upper analytic functions on X .~
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Proof. Let f be a bounded, upper analytic function on X. Then, by the change of
variable theorem, for any x E X,

= sup f (ht) da : Q E E(x) &#x26; t a bounded stop rule  (Rr f )(x).

For the reverse inequality, let 7r = (a, t) be a policy available in r at x. Then, by the
Dominated Convergence Theorem,

lim f(ht^n) d03C3 = f(ht) d03C3

where (t A n) (h) = min{t(h), n}, h E H. It follows that

f (hc) dQ  °

Now take the sup over all policies 7r available at x to get

~ (Grcf)(x).

The second assertion is now a consequence of Theorem 3.3. D

Lemma 4.2. Let r be an analytic gambling house on X . If g is a bounded r-excessive
function on X, then g is 0393s-excessive.

Proof. . We first prove that g is 0393c-excesssive. Fix xo E X and 03B3 E Choose a

policy 7r = (a, t) available in r at x with t bounded such that ~y = Since g is

r-excessive, it follows that, under a, g(xo), g(hl), g(h2), ... is a supermartingale. So,
by the optional sampling theorem ([6], 2.12.2),

g(xo)

Hence, by the change of variable theorem,

This shows that g is rC-excessive. It is now easy to verify first that g is sco fc-

excessive and then that g is sco 0393c-excessive by using Lemma 2.4. So, by (1.2), g is
rs-excessive. D

Lemma 4.3. 1 f r is an analytic gambling house on X, then Rr N Rrs .

Proof. Let f be a bounded, upper analytic function on X. Note that rg is analytic
by Theorem 3.3 and Lemma 2.3. Moreover, r C rc C rs, so Rr f  Rrs f. . For

the reverse inequality, recall that Rr f is F-excessive by virtue of the Fundamental
Theorem applied to r. Hence, by Lemma 4.2, Rr f is rs-excessive. Also Rr f > f. .
So, by the Fundamental Theorem applied to hs, Rr f > Rrs f . U

The next theorem states that the operator Mr is determined by Gr for analytic
gambling houses. The proof is based on a number of results proved elsewhere. We
will now summarize these results.
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Lemma 4.4. If r and r’ are analytic gambling houses on X and G0393 ~ G0393’, then
Rr N Rr’

Proof. Since Gr ~ it follows that the class of F-excessive functions is exactly the
same as the class of r’-excessive functions. Now use the Fundamental Theorem to see
that Rr ~ Rr~ . U

With each analytic gambling house r on X, we associate the operator Tr as follows:

(T0393u)(x) = sup  u(ht) d03C3, x E X,

where u is a bounded, upper analytic function on X and the sup is taken over all
policies 7r = (7, t) available in F at x such that t > 1.

The next lemma shows that Tr is closely related to Rr.

Lemma 4.5. If r is an analytic gambling house on X, then Tr N Gr o Rr.

Proof. Let g be a bounded, upper analytic function on X. Fix Xo E X. Let 7r = (7, t)
be a policy available in r at xo with t > 1. Then

= ~  (Rr9)(x)  

where the last inequality is by virtue of the fact that 7o E r(xo). Now take the sup
of the left side over all 7r = (cr, t) available in r at xo with t > 1 to get

(Gr(Rrg))(xo).

For the reverse inequality, fix E > 0. Choose such that

d’Yo > (GdRrg))(xo) - e/2.

Next use a selection theorem (see, for example, [15], Lemma 2.1) to choose ’x E rC(x)
such that x ~ 03B3x is universally measurable and

gd03B3x > (Rr9) (x) - E/2
for each x E X.

Now define a policy 7r = (r, t) available in r atxo as follows:

~o = 7o

and

r i == 1’x) Ern - n ~ 1~
~ ~° 

~* ( x ), otherwise,

where ~n, Q* (x) are defined in the proof of Theorem 3.3 and rn is defined just before
the statement of Theorem 3.3; t is defined so that

.),
0, otherwise,
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where tn is defined in the proof of Theorem 3.3. Note that t > 1. Consequently,

d~

- ~ 
- ~ 9(y) 1’o(dx)

> ’Yo(dx) - E/2

~ (Gr(Rr))(xo) - E~

where the second equality holds because 03B3(03C6n(x, 03B3x), tn(x, .)) = 03B3x if 03B3x ~ 0393n-0393n-1
for some n > 1 and = 0 otherwise. Since e is arbitrary, we have: 

This completes the proof.
o

The next result is a characterization of Vru for bounded, upper analytic u.

Lemma 4.6. (~8~, Theorem 7.1~ If r is an analytic gambling house on X and u is a
bounded, upper analytic function on X, then Vru is the largest bounded, upper analytic
function v on X such that Tr(u 11 v) = v, where u ~ v is the pointwise minimum of u
and v.

An immediate consequence of Lemmas 4.4-4.6 is

Lemma 4.7. If rand 0393’ are analytic gambling houses on X such that G0393 ~ Gr, then
V0393 ~ Vr,. .

We now define a class .~’ of relatively simple functions on H, which will be used to
approximate bounded, upper analytic functions. Let:F be the set of all f H -~ [0, 1]
such that f takes on finitely many values and ~ f > c] is a countable intersection of

Borel, open sets for each c E [0,1], where "open" refers to the product topology on H
when X is given the discrete topology.

Let X* = and H* = (X *)N. For h E H, we will write for

(hi h2, ~ ~ ~ , hn). Let ~ : H -~ H* be defined by setting

~(h) = (p~(h)~p2(h), ... ).

Set H’ = ~(H). The next lemma gives a representation for elements of .~’.

Lemma 4.8. If f E .~’, then there is a Borel measurable function u : X* - ~0, l~
such that

f (h) = 
n

for every h E H; that is, f = u* o (~. 
’

Proof. Suppose that f assumes the values al, a2, ~ ~ ~ am with al  a2  ~ ~ ~  am.

By Lemma 6.6 in ([15]), we can choose, for each i =1, 2, ~ ~ ~ , m, a Borel subset Si of
X* such that

~ f > ai] = {h E H : E Si for infinitely many n~, (4.1)
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and X* = 5’i D ~2 D ... D Sm.
Write [Si i.o.] for the set on the right side of (4.1) and e for the empty sequence in

X*. Define u on X* as follows:

u(e) = 0
and, for p E X* - ~e},

u(p) = ai if p E Si - S2+1, i =1, 2, ... ~ m~

where Sm+I = 0.
To complete the proof, suppose that f(h) = a~. Then h E ~S~ i.o.] and h ~’

It follows that h E [5, - 5’,+i z.o.], so that ~(~)) > ai. But ~(~))  ~
because h g [5’,+i i.o.]. Hence u*(~(h)) = ai. 0

The next result implies that the operator Mr is determined by its values on the
class .~’.

Lemma 4.9. (f 16~, Theorem 10.1) If r is an analytic house on X and g : H -~ ~0,1~
is upper analytic, then

(Mg)(x) = inf ~ (M f ) (x) : f E .~ and f > g}
for every x E X. .

Theorem 4.10. If r and r’ are analytic gambling houses on X such that G0393 ~ G0393’,
then Mr ~ Mr, .

Proof. By virtue of Lemma 4.9, it suffices to prove that Mr = Mr’ on the class .~’.
So fix xo E X and f By Lemma 4.8, choose a Borel measurable function
u X* - [0,1] such that f = u* o ~?.

Now consider the nonleavable gambling problems (X*, r*, u*) and (X*, h’*, u*),
where

r*(p) = :1’ E p E X*~
= px, x E X, P E X *, ,

and l(p) is the last coordinate of p if p ~ e, while l(e) = xo.
Similarly, define r’* from r’. Observe that, if a is a strategy available in r* or F’* at
e, then Q(H’) =1. It is then easy to verify that

(Mrf )(xa) = (vr*u)(e)
and

_ 

Consequently, the proof will be complete as soon as we establish that Vr’*.
This in turn will be proved, courtesy of Lemma 4.7, if we can show that Gr,* .
So let g be a bounded, upper analytic function on X*. Then, for any p e X*,

(Gr*g)(p) = (Gr9p)(l(p))
and

(Gr‘*g)(p) _ 
where gp(x) = g(px), x E X. It follows that Gr.g = Gr’*g. This completes the
proof. n
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The converse of Theorem 4.10 holds in a very strong sense.

Lemma 4.11. Suppose that r, I‘’ are gambling houses on X such that Er(x) and
are nonempty for each x E X (so Mr and Mr~ are defined on bounded, uni-

versally measurable functions on H~. If Mr N Mr~ , then Gr N Gr~ .

Proof. Suppose that g is a bounded, Borel measurable function on X. Define 9 on H
by

9(h) = 

Then, for any x E X,

(Grg)(x) = = 

o

For the next theorem, recall that ~ is the set of Borel measurable functions from
X into [0,1].
Theorem 4.12. Suppose that r is an analytic gambling house on X . If f is an upper
analytic function on X into ~0, 1J, then

(Gr f ) (x) = inf{ (Grg)(x) : : g andg > f }

for each x ~ X.

Proof. . Fix xo E X and E > 0. Let

E = ~(x, a) E X x ~0, l~ f(x) > a~.

Then E is analytic. By Corollary 4.4 in ([15]), there is a Borel subset B of X x [0, 1]
such that B D E and

sup (~y x ~) (B)  sup (~y x a) (E) + e, (4.2)

where A is Lebesgue measure on [0, 1]. Define g on X into [0, 1] by

g(x) = 

Then g is Borel measurable and g > f. It follows from (4.2) that

(G9) (xo) ~ (G.f ) Uo) + E.

This completes the proof. D

An immediate consequence of the previous result is:

Corollary 4.13. Suppose that r, r~ are analytic gambling houses on X such that
Gr N Gr,. . Then Gr ~ Gr~ .

We conclude this section with a result on the randomization of strategies. First

we introduce some notation.
For ~c E IP’(H) and n > 0, will denote the p-probability distribution of.

the first (n + 1) coordinates and (x1, x2, ... xn) will denote a version of the -

conditional distribution of xn+1 given xl, x2, ..., xu which is jointly Borel measurable
in p, xl, ~2,... ~ as guaranteed by Lemma 3.1.
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Theorem 4.14. Let r be an analytic gambling house on X . Then

sco Er C Escor.

Proof. . Fix x° E X and v E sco Er (x° ) . So there is a probability measure m on the
Borel subsets of such that

v(E) = / £rzo) 
for Borel subsets E of H. We have to define a strategy 7 available in sco r at xo such
that v = y.

Let

ao(B) = / £rzo> 
for Borel subsets B of X. Plainly, cro E and 7o = 

Suppose that uo, ..., have been defined so that 03C3i(x1, x2, ... , xi) E
for all zi, 2:2, ... and = the u-distribution of the first (i + 1)

coordinates = (v)i, i = 0, 1, 2, ..., n - 1. We will now define By von Neumann’s
selection theorem ([10], 29.9), fix an analytically measurable selector 9 for r. Let

... , xn) _ 
tc(xl, x2, ... xn) if ~c E Er(x°) &#x26; x2, ... xn) E r(xn)

’~’ ~’ ~ ’ ~°~’ ° ° ° ’ ’~ 

if tc E Er(x°) &#x26; x2, ... , , xn) ~ r(xn).
Then cp is universally measurable. Next define a probability measure P on the Borel
subsets of E(xo) x Xn such that

P(S x B) = (B) m(dtc),
for Borel subsets S of E(xo) and B of Xn. Fix a version P(. xl, x2, ... , xn) of the
P-regular conditional probability on the Borel subsets of E(xo) given x1, x2, ... , xn.
Finally set

x2~ ... , x~n)~B) _ xl~ x2~ ... xn)(B) I xl~ x2~ ... , xn)

for Borel subsets B of X and x1, x2, ... , xn E X. Then 03C3n is universally measurable
and x2, ... , , xn) E sco0393(xn).

Now let A be a Borel subset of Xn and B be a Borel subset of X. Abbreviate
x2, ... , , xn) by x in the following calculation:

(03BD)n(A  B) = 03A3(x0) )n (A  B) m(d )

= 03A3(x0) [A 03C6( , )(B) ( )n-1(d)] m(d )

= 03A3(x0) A 03C6( , x) (B) dP03A3(x0) A 03C6( , )(B) dP
= A [ 03A3(x0) 03C6( , x)(B) |)] (03BD)n-1(d)
= A 03C3n()(B) (03C3)n-1(d)

= (Q)n(A x B),
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where the fourth equality is by virtue of the fact that the marginal of P on Xn is
and the penultimate equality is by the inductive hypothesis. It follows that

(v)n = and the induction is complete. So v = 7, hence v E Escor(xo). D

The reverse inclusion Escor C scoEr is also true. See Aumann ([2]) and especially,
Feinberg ([9], Theorem 5.2), who proved the inclusion in the context of dynamic
programming. But we will have no use for the result in this article.

5 Proofs of Theorems in Section 1

Lemma 5.1. Suppose that I‘ is an analytic gambling house on X . Then the largest
gambling house h’ such that Gr N Gr, is sco0393.

Proof. It is easy to verify that Gr f = Gscor f for f E ~. Now scof is analytic by
Lemma 2.3 and, obviously, scor(x) is strongly convex for each x EX. So it follows
from the ’only if’ part of Corollary 2.2 that Gscor f = Gsco0393 f for f E 03A6. Consequently,
Gr rv Gscor . . Suppose next that f’ is a gambling house on X such that Gr, - Gr
. Then Gr, = Gscor on ~. It nows follows from the ’if’ part of Corollary 2.2 that
r’ C sco0393. D

Proof of Theorem 1.2. The final assertion of Theorem 1.2 follows from Theorem 3.3
and Lemma 2.3. By Lemma 4.3, Rr N Rrs. . Suppose then that F’ is a gambling house
on X such that Rr . . Let xo E X and "( E Then, for any g E ~,

9 d’Y ~ (Rrg)(xo) _ 

where the last equality is by virtue of Lemma 4.1. Consequently,

E ~)(’Y(g) ~ sup ~1(9) - sup ~l(g))~
~~0393c(x0) ~~sco0393c(x0)

from which it follows by Corollary 2.2 that, E sco = Since ~y E r’(xo)
and xo were arbitrary, we have : f’ C rs. This completes the proof. D

Proof of Theorem 1. 3. It follows from Lemma 5.1 and Corollary 4.13 that Gr N Gsco0393
since both F and sco r are analytic gambling houses. Hence, by Theorem 4.10, Mr N
Mscor. Suppose next that F’ is a gambling house on X such that Mr. Then,

by Lemma 4.11, Gr, so F’ C scor by Lemma 5.1. D

Proo f of Theorem 1..~. By Theorem 1.3, . Suppose then that E is a

global gambling house on X such that MEr Choose a gambling house f’ on
X such that E = Er. Then Mr - Mr , , so r’ C sco r by Theorem 1.3. Hence,
E = ~r, C D

Proof of Theorem 1. 5. As observed above, Suppose now that E C
X x P(H) such that By arguing as in the proof of Lemma 5.1, it is

easy to show that E C scoEr. To complete the proof, it will suffice to show that

sco Er C Escor. By Theorem 4.14, scoEr C Escor ç Sscor. So we will be done as

soon as we show that is norm-closed for each x E X.
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Fix Xo E X and let k ~ 03A3sco0393(x0),k ~ 1, and assume that in norm. In

order to show that ~c E Escor(xo), we must prove that E scor(xo) and for each
n > l, ~(xl, x2, ... ,xn) E scor(~n) almost surely 

To see that E scor(xo), note that scor(xo) and -~ in

norm. Suppose next that for some n > 1 there is a Borel set E C Xn such that

> 0 and x2, ... , xn) ~ scor(xn) for all (xl, x2, ... , xn) E E. Write £
for x2, ... , and, using the notation of sections 2 and 4, define

Ix(A) = I(A; 

for A C P(X). Since scor(xn) for x E E, it follows that  1 for

all x E E by virtue of Corollary 2.2. Hence, by the bold-face version of Theorem 2.7,
there is a Borel measurable function g : E x X -~ [0,1] such that

sup 9(x~ y)’Y(dy)  9(x~ >

for x E E. Hence

E Xgd( )n = E [g(x,y) (x)(dy)]d( )n-1 > E(Gsco0393gx)(xn)d( )n-1, (5.1)

where gx is the x-section of g.
On the other hand, for k > 1, ,

E X gd( k)n = E[g(x,y) k(x)(dy)]d( k)n- 1 ~ E(Gsco0393gx)(xn)d( k)n-1,

(5.2)

since sco h(xn) almost surely and Gsco0393 ~ Gsco0393 Now, as is easily
verified, the function £ - is bounded and upper analytic. Since ~

in norm for each i > 0, by letting k -~ oo in (5.2), we get, by virtue of Lemma
2.4,

E X gd( )n ~ E(Gsco0393gx)(xn) d( )n-1,

which contradicts (5.1). It follows that E scor(xn) almost surely This

completes the proof. D

Corollary 5.2. If r is an analytic gambling house on X then

sco Er = 03A3sco0393 = 

In particular, sco Er and 03A3sco0393 are global gambling houses on X .

Proof. The first equality is implicit in the proof of Theorem 1.5. The other equality
is proved by observing that sco Er C Escor (Theorem 4.14), so sco Er C On
the other hand, and hence Escor ç since is norm-closed
for each z E X, as was observed in the course of proving Theorem 1.5. D
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Proof of Theorem 1. 6. Let X = ~0,1 } and define a gambling house r on X as follows:

r(o) = f~~o)} = r(1)

Then, for any real-valued function u on X,

(Vru)(0) = u(0) = 

For each a E (0, 1), define a gambling house ra thus:

ra(~) _ ~~(~)}; ra(1) _ {(i - b)~(4) + b~(1) : 0  b  a}.

It is easy to check that Vra = Vr for every a E (0,1). Towards a contradiction, assume
that there is a largest house F*. Then ra for each a E (0, 1). In particular,

r*(1) ~ {(1 - b)~(o) + bb(1) : 0  b  1}.

Now consider the following strategy 7 available in F* at 1 :

03C30 = 1 2203B4(0) + (1 - 1 22)03B4(1)
and, for n > 1,

. , f!(0) 0
~n(xu x2, ... ,xn) = 

(n+2)2 1 ~ L~) ~- 1 - (n+2)2 1 ~(1) If xn ‘ _ l. °

Then

03C3({h ~ H : hn = 1 for all n~ 1}) = 03A0(1- 

1 (n + 2)2) = p(say) > 0.

Hence, for any u : X ~ R,

u*dQ = (1- + pu(1).

Consequently,
> (1 _ p)u(O) + 

so Vr, as can be seen by a suitable choice of u. This yields the desired contra-
diction. Q

The following result is a close analogue of Theorem 1.2.

Theorem 5.3. If r is an analytic gambling house on X, then the largest gambling
house r’ on X such that Tr is sco 

We omit the proof.
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