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LARGE DEVIATIONS FOR SOME POISSON RANDOM INTEGRALS

by

Zbigniew J. JUREK (Wroclaw) & Liming WU (Clermont-Ferrand)

In the theory of large deviations one of the main examples is Schilder’s the-
orem. It gives the large deviation estimates for the convergence VeEW = &g on
C([0,00),R?) as € — 0, for the Brownian Motion W In this paper we investigate
analogous problems for eN(f) := € [ fdN or eN(f) =€ f fdN, where N (resp. N)
is a (resp. compensated) Poisson point process and f is a deterministic function.
We find that this large deviation estimation depends strongly on the tail behavior
of f. This differs from the Brownian Motion case where only the norm of f in L?
is involved. In particular,we get the large deviations principle for the Lévy class
L distributions (called also self-decomposable measures). The question about large
deviations for the multiple Poisson integrals is not discussed here. (The case of
Brownian Motion is solved by Ledoux [L].)

1. Notation and basic terminology. Let S be a metric separable and
complete space (or Polish space) with the Borel o-field S. A function I : § — [0, 0o]
such that {I < L} are compact subsets of S for all L > 0, is called good rate function.
We say that a family {u,e > 0} of Borel probability measures on S satisfies large
deviations principle with the good rate I and the speed A(€) provided

(1.1) hm /\—(—)—logpf(F) < - mg‘l(s)

for all closed subsets F' in S; and

. .1
(1.2) —inf I(s) < %%X@log#e(G)

for all open sets G in S.
[Here: A(€) > 0 and A(e) = +oo as € = 0. Also we adopt convention inf ¢ = +oo
throughout this paper]. In short, we write that (i) satisfies LDP. Note that (1.1)
and (1.2) roughly mean that p(A) ~ exp[—A(e) inf,eca I(s)].

We require the following variant of comparison technique in large deviation
theory (see e.g. [DS, Exercice 2.1.20, p.47-49] for other versions), whose proof is left
to the reader.

Comparison Lemma : Let (X?,X.,n € N,e > 0) be a family of random
variables valued in a Polish space S with metric d(-,-), defined on a probability space
(Q,F,P). Assume

(i) for each n € N, P(X? € -) satisfies as € — 0, the LDP on S with speed \(¢) and
good rate function I,(z) ;
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(ii) there is a good rate function I on S such that VL >0,

(1.3) ‘ sup |In(z) —I(z)] — 0, asn — oo}
z€[ILL)

(111) for every § > 0,

(1.4) lim llm/\——logP( (X2, Xe)>68)=—

n—o0 e—0 ( )

Then P(X. € -), as € = 0, satisfies the LDP on S with speed A(€e) and good rate
function I(z) given in (i) above.

Let (E,£, p) be a o-finite measure space and (2, F, P) be a probability space.
A mapping

(1.5) N: Q- {Z dz; (at most countable) : z; € E} ,

where §, denotes Dirac measure, is called Poisson point process with intensity mea-
sure p if

Q PIN(4) = k] = e—o(4) (P(A) (A)) , k=0,1,2,..,

for all A € £ such that 0 < p(A4) < oo ;

(ii) for k> 1and 4; € €, j = 1,2,...,k, pair-wise disjoint, and 0 < p(4;) < oo,
random variables N(A;), N(Az), ..., N(Ax) are independent.

We shall often denote the integral |, E de also by N(f), where f is a p-integrable

function. If N is the compensated Poisson point process, i.e., N:=N- p, then the
random integral N(f) := Is fdN exists for f € L?(p); cf, [JS]

2. Large deviations for integrals N(f) on R? for bounded f. The main
results will be preceeded by two auxilliary steps.

Step 1. If 0 < p(A) < oo then the probability measures p.(-) := P[eN(A) € /]
on R, € > 0, satisfy LDP with the speed \(e) = ¢ |loge| and the rate function

, T <0;
I($):{+oo or T
z, for z>0.

P roof Since for x > 0 we have

(2.1) [Z]10g[= 1=z,

s—>0 |log €l e

therefore the Stirling formula implies that

(2.2) ([ =z,

}—m ]log e|
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where [-] denotes the integral part. From the inequalities

p(A)E+
(HER

€

IA

e—p(A) (p(A))[%H-l € 2] = e—p(A) (p(A))]
@y <FEN@>el= 3 i

and (2.1) with (2.2) we conclude that for all ¢ > 0

(2.3) logP[eN(A) > z] = —

b hog]
For a closed F in R, with inf,cp I(s) =z > 0 and all 0 < é < z, one has

P[eN(A) € F] < P[eN(A) > z] < P[eN(A) >z -] .
Hence by (2.3) we conclude

— .
1—>0|log IlogP[eN( YeEF] < 312%[(3)4-6,

for all 0 < é < z, which proves the upper bound (1.1). If infser I(s) = 0 then (1.1)
holds automatically.
For an open set G 3 s, let us choose § > 0 such that (s — §,s + §) C G. Then

i —p(a) PAIEH?
PleN(4) € G2 PIN(4) € 7 (s = ds +0)] 2 7 gy

whenever e([z] +1)e(s—6,s+9).

Of course, the last claim is true for all sufﬁci.ently small €, and by (2.2) we get

lim logP[eN(A) € G] > —s
€—0 “- I

for any s € G. Hence follows the lower bound (1.2) and the proof of Step 1 is
completed.
Also note that the rate function does not depend on set A.

Step 2. If 0 < p(A1) < oo, and Aj}s are pair-wise disjoint | = 1,2,..., k, then
the probability measures Ple(N(Ay),...,N(Ax)) € -] on R¥, satisfy LDP with the
speed |loge|/e and the rate function
Ti+z2+ ..+, if ,20,101=1,2,,..,k;
+o00 , otherwise .

| I((z1,...,7k)) = {

P roof. It follows from Step 1 and Lemma 2.8 from [LS].

Theorem 1. Let (E,E,p) be a finite measure space and f : E — R? be
measurable and bounded function. Let Ky := conv(supp po f~1) be the convex hull
spanned by the support of the measure po f~! on R¢, and

gk, (z) :=inf {c>0: c'z € K;} , VzeR*\{0}, qx,(0):=0,
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be the Minkowski functional of the set K¢. Then the measures P[eN(f) € -] satisfy
LDP on R? with the speed \(€) = |loge|/e and the rate function I(z) = qx, ().

P r o o f. Suppose first that f is a simple R%-valued function, i.e., for e € E
= szlAj(e) , o €R?, p(4;)>0,

and A; € £ are pair-wise disjoint. From Step 2 and the contraction principle we
infer that P[eN(f) € -] satisfy LDP on R? with A(¢) as before and the rate function

If(u) = inf{y1 +.otym: yi20 ,Exjyj ="}

= inf{u(E) : ve MY(E) a,n:]Efdu = u}

which is equal to zero for u = 0, and for u # 0,

=inf{c>0: there is v € M{(E) and /fdu:g}
E c
=inf{c>0: c'luer},

because for simple f we have

(2.4) K,r:{ixj/\j: i)\jzland)\jZO}z{/Efduz VGM]"(E)}

=1

where Mt and M7 denote the sets of non-negative and probability measures,
respectively.

For a general bounded and measurable function f : E — R, let us choose
fn: E = R% n > 1, simple, measurable such that ||f — fnllco := sup,cg || f(s) —
fn(s)]] = 0. Since for each § > 0

lim ~~~log P[e|| N(fn) = N(f)]| 2 é] < Tim S~

A( ) log P[eN(E)||fa — flloo > 8]

()
§

lfa = flloo

where the last equality follows from Step 1, we conclude that

lim Ty 5~ log PN (fa) = N(/)I| > 6] = -

n—c0e—0 A(€)

And it is easy to see that I, := gk, converges to I := gk, in the sense of (1.3).
Now the comparison lemma completes the proof of Theorem 1.
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Remark 1. The assumption in Theorem 1, that p is finite can be replaced by
p(f #0) < oco.

Corollary 1. Let E be locally compact metric, separable space and p a Radon
measure such that p(U) > 0 for all open sets U # 0. Let M;{(E) be the space of
nonnegative Radon measures on E, equipped with the vague convergence topology.
Then P[eN € -] satisfy LDP on M}E(E) with the speed A(e) = |loge|/e, € >0, and
the rate function

I(v):=v(E), veE ML(E).

Proof Let K, 1 E, K, C K4, are compact such that 0 < p(K,) < oo.
We know that the space M}%(E) with vague topology is the projective limit space
of sequences M%(K,) with the weak topology. By Dawson-Gértner (1987) we can
and do assume that E is compact. For every v € M}(E) fixed, the sets

Uy, f,8) = {u € M}(E ]/fdu—/fdu'|<6}

where § > 0, f : E — R? is continuous, d > 1, form a basis of neighbourhoods of
v. Since

qK,(u)zinf{u(E): v € M*Y(E) and / fdu—u}
= inf{I(u) : v€ MH(E) and / fdv = u} ,
E
Yu € R4, by the proof of Theorem 1, we get by Theorem 1

) inf) 1 inf 1
lim (Sup) o) 108 PleN € U, £,6)] = lim ( )A( )logP[IeN(f) v(f)| < 4]

(== f u),— inf u
[ u: |u—V(f)|<5qK,( ) |u—”(f)|S5qK!( )]
=[- inf I(), - inf I()].

[ v'eU(v, f,6) ( ) v'€U(v,f,0) ( )]

This implies the weak LDP by [DS, p. 46, (v)]. Furthermore, for any L > 0,
[I < L) =: K1, is compact in M}(E) and by Step 1,

1
lircnj(l)lp}‘—(—e—)logP(GN ¢ K1) = lir:ljgpx(l—e)— logP(eN(E) > L)< —-L.

This exponential tightness with the weak LDP shown before gives the desired LDP.

Remark 2. This corollary is one counterpart of the classical Schilder theorem
about the Brownian Motion, and it complements a result in [GW], recalled below.
In the setting of the Corollary 1, let N€ be the Poisson point process with intensity
measure €p. Then the laws of N¢ satisfy the LDP with the same rate function
I(v) = v(E), but with a different speed A(€) = |loge] .
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Theorem 2. Assume that (E,&, p) is an infinite measure space, i.e., p(E) =
oo, and f : E — R? be measurable bounded and square integrable, i.e., f € L*(p)n
L. Then for the compensated Poisson point process N=N- p(dz), we have that
PleN(f) € ], € > 0, satisfy LDP on R with the speed A(€) = |loge|/e and the rate
I(z) = qx, ().

P r o0 o f. Note that the integral N(f) is well defined for f € L%(p) N L, cf.

[JS]. Taking fn := ljs>n-11f, » > 1, we have p(fn # 0) < co. Since eN(fn) :=
eN(fn) — € [ fndp, € > 0, and the last term goes to zero as e — 0, therefore by

Theorem 1 and Remark 1, we conclude that P[eN(f,) € -] satisfy LDP on R? with
the rate gk, (-). But gk, (r) = gk, () uniformly over compact sets.

By the comparison Lemma, in order to complete the proof it is enough to show
that

(2.5) lim T ——log Ple|¥(fa) - N(f)l| 2 6] = —oo

n—o0 e—0 A(e)

for each § > 0. Since (for Euclidean norm)

log Pl N (f — fu)ll > 6] < max Tim —— log P[e|N (i — £5) > 6]

m 1
El_I’Il 1<i<d €0 ,\(e)

0 A(e)
we can and do assume below that f is a real-valued function.
Let F :=f — fo = fljfj<n-1], 50 ||F]loo < n7! and let
—Tm et N(F)
(2.6) AR) == 11_1;% ) log E[e ], teR.

Then we have

— 1
A(t =lim—/ eMI _ 1 —eX(e)tf]dp
O =339 Jusen (1

— 1 1
< Tim — / e MM (eX(€))2t2 F2dp
<0 A(€) Jiifign-1] 3 ()
-1
< lim [= €| log €| #* exp(] log €| |t|n_1)/ f2dp)
€e—0 2 E
_1l. 2 7 Torm 1-|tln=t _
_Et /Ef dp%l_x)l(l)llogek =0, for [|t|<n.

Hence for t = n — 1 we obtain

1

e - ~ _ >

11_1:(1) e log P[eN(f — fr) = 4]
— 1 o

=1 —_— - > tA(e)d
lig 39 1o PlexpM(e)teN (f = fa) 2 1]
T=_1 —tA()Sr A(e)te N(F)

< iy g ol Rl )

= St +A(t) = —8(n—1).
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Similarly taking t = —(n — 1), we obtain

Ty 17 P (f — f2) < =8) < ~d(n —1)

These two estimations lead to

lim Tim —— log P[|eN(f — fa)| > 8] =

n—0o0 €—0 ,\( )
Thus we conclude (2.5) and the proof of Theorem 2 is complete.

Corollary 2. Suppose f : E — RY belongs to L*(p) and for \(¢) = |loge|/e,
€ > 0, one has

(2.7) I 575 g PEIN ()l 2 d) <0,

for some a>0. Then f € L.

P r o o f. Without loss of generality we assume that f is a real-valued function.
Furthermore note that

log P[e|N(f)| > a] = —al(1),

—I(a) := hm

/\()

and therefore I(a) > 0 for some a > 0 is equivalent to I(a) > 0 for all a > 0. Let us
assume that f ¢ L° and choose r > 2/I(1) such that p(f; := fl<|fj<r41) # 0) > 0.
Observe

(2.8) Ple|N(f — <1 > % , for all sufficiently small ¢ >0 .

By the independence of N (fr) and N (f = fr), (2.8) implies that
Ple|N(f)| 2 1] > PIN(f,)| 2 2] - PeIN(f - £,)| < 1] > 27'PleIN(£,)] 2 2] -

Hence with Theorem 2 we get

1 . 2
—-I(1) > lim —1 )| > - >_Z
( )_;!_% e og Ple|N(fr)| > 2] = |u|1>fz aK,, (€) 2 =,

which contradicts the selection of r, and the proof is complete.

Corollary 3. Let (E,¢&, p) be o-finite measure space, a function f € L*(E, €, p;R?)
and N be the compensated Poisson point process. For A(e) := |loge|/e, € > 0, define

- -Im ﬁlog PIN(f)] > 1]

b:=sup {a > 0 : Elexp(a] N (f)|log(1 + |F ()] < o} .
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Then a=b=|f|3.

Proof. Foreach 0<n < a wehave
1
Ae)

for all sufficiently small ¢, i.e., P[||N(f)|| > s] < exp(—nslogs), for all sufficiently

large s. Hence Efexp(n — §)N(f)log(1 + |IN(f)|])] < oo for all § > 0 such that
n—6 > 0. Thus n < b and hence a < b. One gets the converse inequality using
Tschebyshev’s inequality.

If || f|loo < 00, then Theorem 2 gives a = || f||}. In fact, we have

log PIIN(f)| > €] < -1,

a= inf z) = inf z) = -1
Jof g, (@) = ind g, () = | flleo

For f ¢ Lo, Corollary 2 justifies a = 0. Thus the proof is completed.

3. Large deviations on R under exponential integrability. In this
section we consider the case of f ¢ L®(E, &, p; R). Let us introduce parameters

4t :=sup{a20:/» e“fdp<oo}a,nd'y—:=sup{a20:/ e *fdp<ooy.
[F21] [f<-1]

Arguing as in the proof of Corollary 3 we infer that

(3.1) v = —limkseo %log p(f 2 k), and
- _— 1
(3.2) v = —limgse0 Elogp(f < —k).

Theorem 3. Assume that f € L%(p), and y*,y~ > 0. Then P[eN(f) € ], e>
0, satisfy LDP on R with the speed M\(e) = ¢! and the rate function

+ >0:
"z, for z<0.

Proof. Letuswrte f=f lys<y+f Lo+ flypc—ny = fo+ fi + fa.
From Theorem 1, for each § > 0

€

log P[e|N(fo)| > 6] =

Jim b
>0 |loge| Il folloo *

and hence

(3.3) lim elog Ple|N(fo)| > 8] = —c0 .
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Case 1. Now let us assume that f > 1 on E, i.e., f = fi. For the upper bound (in
LDP) note

A1 (t) == !i_r}r(l)elog ElexptN(ef1)/€]

= lime/ (et —1—tf1)dp
[£21]

€—0

0, for t<~t
=lime/ efdp = { o 7 +
€0 Ji5>1) +o00, for t>~4T.

Hence its Fenchel-Legendre transformation is given by

{'y+:c, for >0,

4 Li(z) := Aj(z) = t— M) = t=
(3.4) 1(z) := Al () ?ng[a: 1(t)] = sup z too, for z<0.

t<yt

By Ellis-Gartner Theorem ([DS], Thm.2.2.4), the upper bound of large deviations
holds for P[e]\~7(f1) € -], € > 0, on R with the speed A\(¢) = ¢! and with the rate
function I1(z). N

For the lower bound observe that f; € L!(p) and instead of N(f1) we can
consider N(f;). Furthermore, using inequality N(f1) > tN(fi > t) we get, for
a>0andt>1,

PleN(f1) > a] > P[teN(f1 > t) > q]
> Z e"ﬂ(f1>t)(p(f1 > t))k/k!

k>afet
> e >0 (p(fy > ) E /(2] + 1)t

Choose now t = #(¢), a positive function of e verifying lim._,o et(¢) = +0co0 and
7+ = lim ~loglf > t(¢)]
e—0 t(e)
(possible by (3.1)!). Hence using the above inequality and (2.2), we get
a

et(e)

Since we used only one term estimate we infer the lower bound for P[eN(f1) € (a,b)]
as well. In other words, the measures P[eN(f1) € -], € > 0, satisfy LDP with the
speed A(€) = ¢! and the rate function I;(z).

lim clog P[eN(f1) > a] > lim e(]

€—0

]+ Dlogplfr > t(e)] = —7*a.

Case 2. Applying Case 1 for —f and observing that (—f)1 = —f-i, ﬁ(f_l) =
—N((—f)1) we conclude LDP for P[eN(f-1) € -], e > 0, with the speed A\(¢) = €71,
€ > 0, and the rate function

+o00, for z>0;

(3.5) I_y(z) = {

v |z|, for £<0.
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Finally since N (f) = N(fo) + N(f1) + N(f-1) is a sum of independent variables,
(3.3),(3.4) and (3.5) imply the LDP in Theorem 3 by [LS, Lemma 2.8].

4. Applications to the class L distributions. For the basic information on
the class L (or selfdecomposable) distributions cf. [JM] p. 177-182. For the purpose
of this application, let us recall that

(41) pelL if p22z(0) :=/ e™*dY(s), Elog(1+|Y(1)]) < oo,
(0,00)

and Y is a Lévy process. Of course,
oo
(4.2) P[Z(t) = / e=*dY (s) € ] = So(-) a8 £ = 00 ,
t

and it is "natural” to ask for LD P for probability distributions in (4.2).

Let Y be without Gaussian component and shift, i.e., Y'(1) 4 [0,0, M] (these
are the parameters in the Lévy-Khintchine formula of Y(1); M is the spectral Lévy
measure). Then

t
(4.3) Y(t) =/ / zN(dz,ds), t>0,
0 JR4\{0}

where N is a Poisson point process with the compensator p(dt,dz) = dt x dM on
E :=[0,00) x R%\ {0} (dt= Lebesque measure); see [JS]. Thus

(4.4) Z(0) = /Ee_t:tﬁ(dz,dt) =N(fo), for fo(t,z):=e tx.

iFrom (4.1) we also have that

oo

oo oo
e tZ(0) = / ey (s) = / e "dY (u —t) 4 / e *dY (u) = Z(t) .
0 t t
Hence (4.2) with (4.4) is equivalent to
Pl 'N(fo) €] > b, as t—oo.
All the above we can summarize in the following

Theorem 4. Let Y(-) be a real Lévy process with Y (1) 4 [0,0, M]. Assume
that suppM is compact. Then P[f(t o) e~*dY(s) € -] satisfy LDP on R, ast = oo

with the speed A(t) := te* and the rate function

z/b, for 0<b:=sup(suppM), z>0;
(4.5) Iy(z) =< zf/a, for inf(suppM)=:a<0,z<0;

400, otherwise .
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P roof. Note that fo defined in (4.4) belongs to L*°(p) iff supp M is bounded
in R. In this case fo € L?(p) as well. Since supp(po fo ') = fo(supp p) = [a, b] where
a = inf(suppM), b = sup(suppM), Theorem 2 gives the conclusion of Theorem 4.

Remark 3. If Y(1) 4 [0,02%,0], i.e., Y(¢) is a Brownian Motion, then Z(t) 4

%e_tY(l). In other words, V2% Z < [0,02,0] = N(0,02). By an easy calculation,

P[f(t o) e *dY(s) € -] satisfy LDP on R, as t — oo, with the speed \(t) = 22!
and the rate I(z) = 2%2/20?, z € R (well known!).

Corollary 4. If Y(1) 4 [0,0%, M] and supp M is compact then
P{Z(t) = / e °dY(s) € /]
(tYw)
satisfy LDP (on R) with speed \(t) := te' and the rate function Ip(z) (i.e., Gaus-

sian part does not contribute to the rate function).

Proof. Let us write Y(¢) = Y!(¢) + Y?(¢), where Y and Y2 are independent
Lévy processes such that Y2 (1) £ [0,02,0] and Y'2(1) £ [0,0, M]. Defining

Zi(t) :=/ e™*dY'(s), i=1,2
(t,00)

one has Z(t) = Z'(t) + Z?(t) (with two independent summands). By Remark 3,
P(Z'(t) € -] satisfy LDP with the speed 2e?* >> tet (ast — 00), it is then negligible
for the large deviations with speed te*. Consequently, P[Z(t) € -] satisfy the same
LDP as P[Z%(t) € -]. Then the Corollary follows from Theorem 4.

Since in the theory of large deviations often one needs the existence of expo-
nential moments we complete this section with the following facts about class L
distributions (on Banach spaces).

Lemma. Let Y (1) 4 [a, R, M], Y be a Banach space valued Lévy process. Then
for any A >0

(4.6)  Elexp )| / e ?dY(s)|] < o iff lul| 7t eXMNdM () < 0o
0 [llz)|>a]

for alla > 0. In particular, it is so whenever one has Elexp A\||Y(1)]|] < co.

P roof. For an infinitely divisible measure v = [b, S, K| (on a Banach space
B) and submultiplicative (or subadditive) functions & : E — [0, c0)

/ ®(||z|))v(dz) < 0o iff / ®(||z||)K(dr) <oo, forall a>0.
B llzll>a
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(see: [IM], p. 36). If M is the Lévy spectral measure of Y (1), the integral
f(o, 00y € "dY (s) (class L distribution) has the Lévy spectral measure M given by

M(A) = / M(e'A)dt , A is a Borel subset (in B) .
0
(cf. [IM] p.120). Hence
/ Ml g3 (z) = / / Ljeliza] (=) exp(Ae™ 2] deM (dz)
[lzli>a] BJo

In(llufl/a)
= / (/ exp(Ae™?||ul|)dt M (du)
[llzll>a] JoO

llult
- Amm]( / (€**/5)ds) M (du) .

Since f:’ eM [ydy ~ e**/s, as s = 0o, and M is finite on [||z|| > a] we conclude the
proof of Lemma.

Corollary 5. For Y (1) 4 [0,02, M] on R let us assume that the limits
vt = —limesyea tlogM(z >a) , 77 := —limgste0a ! log M(z < —a)

are finite and strictly positive. Then P[Z(t) = f(t’w) e°dY(s) € ‘] satisfy LDP
(on R) with the speed \(t) := €' and the rate function I(z) := vz, for z > 0 and
I(z) :== —y"z, forz <0.

P roof. Asin the proof of Corollary 4 (or Theorem 4) we can assume that
0?2 =0 and

Z(t) 2 e *Z(0) = e_t/ / e *zN(ds,dz), t>0
0 -

where p(ds,dz) := ds x M(dz) is the compensator. Observe for f(s,z) := ez,

eMdp < +oo}
[F21]

=supqA>0: / e* [zM(dz) < oo
[=>1]

e’ M(dz) < oo}

limg— 400 a ' log p((s,z) : € °z > a) = sup {)\ >0:

=sup{ A>0:
[z>1]

=Tmyyt00 a tlogM(z > a) = —yT .
Consequently we proved that

(4.7) lim,yo0atlogp((s,z) : €%z >a) = —yT,
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and by similar arguments we also have
(4.8) lim, 4000 logp((s,2) : €7z < —a) = —~
Now applying Theorem 3 we conclude the LDP described in Corollary 5.

Remark 4. The two main results of this paper, Theorem 2 and 3, show that the
behavior of the tail probability of N(f) (an element in the first chaos of the Poisson
point process N), depends strongly on that of f. This is essentially different from
the Brownian Motion case. A further interesting question is to investigate the large
deviations of multiple random integrals (or element in the chaos of order > 2),
similarly to the work of Ledoux [L] on the Wiener space.
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