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LARGE DEVIATIONS FOR SOME POISSON RANDOM INTEGRALS

by

Zbigniew J. JUREK (Wroclaw) &#x26; Liming WU (Clermont-Ferrand)

In the theory of large deviations one of the main examples is Schilder’s the-
orem. It gives the large deviation estimates for the convergence ~o on

C(~0, oo), Rd) as E ~ 0, for the Brownian Motion W. In this paper we investigate
analogous problems for EN( f ) := E f f dN or EN( f ) := E f fdN where N (resp. N)
is a (resp. compensated) Poisson point process and f is a deterministic function.
We find that this large deviation estimation depends strongly on the tail behavior
of f. This differs from the Brownian Motion case where only the norm of f in L2
is involved. In particular,we get the large deviations principle for the Levy class
L distributions (called also self-decomposable measures). The question about large
deviations for the multiple Poisson integrals is not discussed here. (The case of
Brownian Motion is solved by Ledoux [L].)

1. Notation and basic terminology. Let S be a metric separable and

complete space (or Polish space) with the Borel a-field S. A function I : [0, oo~
such that ~I  L~ are compact subsets of S for all L > 0, is called good rate function.
We say that a family E > 0~ of Borel probability measures on S satisfies large
deviations principle with the good rate I and the speed a(E) provided

(1.1) lim 1 03BB(~) log ~(F) ~ - inf I(s)

for all closed subsets F in S; and

( 1.2) - inf I(s) ~ lim 1 03BB(~) 
log ~(G)

for all open sets G in S.

[Here: A(e) > 0 and A(e) -~ +00 as f 2014~ 0. Also we adopt convention inf ~ _ --oo
throughout this paper]. In short, we write that satisfies LDP. Note that (1.1)
and (1.2) roughly mean that infs~A I(s)].

We require the following variant of comparison technique in large deviation
theory (see e.g. [DS, Exercice 2.1.20, p.47-49] for other versions), whose proof is left
to the reader.

Comparison Lemma : : Let E N, E > 0) be a family of random
variables valued in a Polish space S with metric d(~, ~), defined on a probability space
(5~,,~’, P). . A ssum e

(i) for each n E N, E ~) satisfies as E -~ 0, the LDP on S with speed a(E) and
good rate function In(x) ;
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(it) there is a good rate function I on S such that VL > 0,

(1.3) sup ]In(z) - I(z) ] - 0, as n - ~ ;

(iii) for every 6 > 0,

(1.4) lim lim 1 03BB(~ ) log P (d(Xn~, X~) > 03B4) = -~.n-oo e-o h(e) ~ ’ °

Then P(X~ ~ .), as e - 0, satisfies the LDP on S with speed A(e) and good rate
function I(z) given in (it) above.

Let (E, S, p) be a a-finite measure space and (Q, 7, P) be a probability space.
A mapping

(1.5) N : Q - £ 6x; (at most countable) : zj e E , ,
where 6x denotes Dirac measure, is called Poisson point process with intensity mea-
sure p if

(i) P[N(A) = k] = e-03C1(A) (03C1(A))k k! , k = 0, 1, 2, ... ,

for all A e S such that 0  p(A)  ~ ;

(it) for k > i and Aj e S, j = 1, 2, ..., k, pair-wise disjoint, and 0  p(A;)  cxJ,
random variables N(Ai ) , N(A2 ) , ... , N(Ak) are independent.

We shall often denote the integral E fdN also by N( f), where f is a 03C1-integrable
function. If N is the compensated Poisson point process, I.e., N := N - p, then the
random integral N( f) := E fdN exists for f e L2(03C1) ; cf, [JS]. .

2. Large deviations for integrals N(f) on R~ for bounded f. The main
results will be preceeded by two auxilliary steps.

Step I. If 0  p(A)  cxJ then the probability measures pe(.) := P[eN(A) e .]
on R, e > 0, satisfy LDP with the speed A(e) = ~-1|log e] and the rate function

I(z) = ( ~°° ’ 
for ~’ ~ ~ ~

z , , for z > 0 .

P r o o f. Since for z > 0 we have

(2.1) lim ~ |log ~| [x ~] log [x ~] = x,

therefore the Stirling formula implies that

(2.2) lim ~ |log ~| log([x ~]!) = x,
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where [.] denotes the integral part. From the inequalities

- p(A) (P(A))[ E ]+1  - e-03C1(A) 03C1(A))j j!  03C1(A)[x ~]+1 ([x ~] + 1)!

and (2.1) with (2.2) we conclude that for all x > 0

(2.3) lim ~ log ~| 
log P[~N(A) > x] = -x.

For a closed F in R, with = x > 0 and all 0  03B4  x, one has

E F]  > x]  > x - 8] . .

Hence by (2.3) we conclude

lim e  - inf + 03B4 ,

for all 0  03B4  x, which proves the upper bound (1.1). If infsEF 1(8) = 0 then (1.1)
holds automatically.

For an open set G 3 s, let us choose 8 > 0 such that (s - 03B4, s + 8) C G. Then

P EN A G > P N A E-1 s - 03B4, s > -P(A) P(A)[ s ~]+103B4,s + J)] > 03C1(A)[s ~]+1 ([s ~] + 1)!,
whenever E( [ S + 1) E (s - 03B4, s + 03B4) .

Of course, the last claim is true for all sufficiently small f, and by (2.2) we get

lim ~ |log ~| log P[~N(A) ~ G] ~ -s

for any s E G. Hence follows the lower bound (1.2) and the proof of Step 1 is

completed.
Also note that the rate function does not depend on set A.

Step 2. If 0  p(A,)  oo, and A~s are pair-wise disjoint l = 1, 2, ..., k, then
the probability measures E .] on Rk, satisfy LDP with the
speed log and the rate function

if xl ~ 0, l = 1,2,,..., k ;I((x1,...,xk)) = {+~ , otherwise .

Proof. It follows from Step 1 and Lemma 2.8 from [LS]. .

Theorem 1. Let (E, ~, p) be a finite measure space and f : E ~ Rd be
measurable and bounded function. Let I~ f : conv(supp p o f -1 ~ be the convex hull
spanned by the support of the measure p o Rd, and

qxr (x) := inf ~c > 0 : E I~ f} , dx E Rd 1 ~o~ , qxf (4) :_ ~ ,
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be the Minkowski functional of the set . Then the measures E .] satisfy
LDP on Rd with the speed A(e) = |log ~|/~ and the rate function I(x) = 

Proof. Suppose first that f is a simple Rd-valued function, i.e., for e E E

m

f(e) = > x~ E Rd, a P(Aj ) > 0 ,
j=l

and Aj E ~ are pair-wise disjoint. From Step 2 and the contraction principle we
infer that E .] satisfy LDP on Rd with a(E) as before and the rate function

If(u) := inf{ y1 + ... + ym : yi ~ 0 , 03A3 xjyj = u}~ j=1 J
= inf {03BD(E) : v E M+(E) and E fdv = u

which is equal to zero for u = 0, and for u ~ 0,

there is 

=inf{c> 0: ,

because for simple f we have

(2.4) K f : = 1 and a j > 0 = f dv : v E 
~ ~ j E J

where ,11~f+ and Mt denote the sets of non-negative and probability measures,
respectively.

For a general bounded and measurable function f : jS 2014~ Rd, let us choose
fn: : E ~ Rd, n > 1, simple, measurable such that - fn~~ := sups~E I) f (s) -

~ 0. Since for each 6 > 0

lim 1 03BB(~) lo P E N (fn) - N f > 03B4] - lim 1 03BB(~) logP EN E fn - f ~ ~ 03B4]

= - 

03B4 ~fn - f~~,

where the last equality follows from Step 1, we conclude that

N(f) 11 I _ ~] = °

And it is easy to see that In := qKrn converges to I := qKf in the sense of (1.3).
Now the comparison lemma completes the proof of Theorem 1.
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Remark 1. The assumption in Theorem 1, that p is finite can be replaced by
0)  oo.

Corollary 1. Let E be locally compact metric, separable space and p a Radon
measure such that p(U) > 0 for all open sets ~. Let MR (E) be the space of
nonnegative Radon measures on E, equipped with the vague convergence topology.
Then E.] satisfy LDP on with the speed a(E) _ ~ E > 0, and
the rate function

:= v(E), , v E °

Proof. Let Kn t E, Kn C are compact such that 0  p(Kn)  oo.

We know that the space ~1~(R(E) with vague topology is the projective limit space
of sequences with the weak topology. By Dawson-Gartner (1987) we can
and do assume that E is compact. For every v E fixed, the sets

U(v,f,03B4) := {v’ ~ M+R(E) : |Efd03BD - Efd03BD’|  03B4} ,

where 6 > 0, f : E -~ Rd is continuous, d > 1, form a basis of neighbourhoods of
v. Since

: and 

= inf {I(03BD): 03BD ~ M+(E) and E fdv = u} ,

Vu E Rd, by the proof of Theorem 1, we get by Theorem 1

lim (inf sup) 1 03BB(~) log P[~N ~U(v,f,03B4)] = lim su .1 E g (f ) | 61

~ [- 
inf 

qKf (u), - 
inf qKf

(u)]

= [- inf I (v’) , - .

This implies the weak LDP by [DS, p. 46, (v)]. Furthermore, for any L > 0,
~I  L] =: KL is compact in .II~! R (E) and by Step 1,

lim sup 1 03BB(~) log P(~N ~ KL) = lim sup 1 03BB(~) log P(EN(E) > L)  -L .

e-o e-o ~(E)

This exponential tightness with the weak LDP shown before gives the desired LDP.

Remark 2. This corollary is one counterpart of the classical Schilder theorem
about the Brownian Motion, and it complements a result in [GW], recalled below.
In the setting of the Corollary 1, let NE be the Poisson point process with intensity
measure ep. Then the laws of NE satisfy the LDP with the same rate function
1 (v) = v(E), but with a different speed ~(E) _ (logE~ . .
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Theorem 2. Assume that (E,~,03C1) is an infinite measure space, i.e., /)(E) =
~, and / : : E ~ Rd 6e measurable bounded mJ square integrable, i.e., / G L2(03C1) D
L~. Then /or the compensated Poisson point process N = N - 03C1(dx), we have that

.], ~ > 0, LDP on Rd with the speed A(e) = and the rate

7(.r) =g~(~).

Proof. Note that the integral ~V(/) is well defined for / e L~) U L~, cf.
[JS]. Taking /~ := > 1, we have 0)  oo. Since :=

~ > 0, and the last term goes to zero as ~ -~ 0, therefore by
Theorem 1 and Remark 1, we conclude that e ’] satisfy LDP on R~ with
the rate (-). But (.r) -~ uniformly over compact sets.

By the comparison Lemma, in order to complete the proof it is enough to show
that

(2.5) ~ 03B4] = -co

for each 03B4 > 0. Since (for Euclidean norm)

lim 1 03BB(~) log P[~~(f - fn)~ ~ 03B4] ~ max lim 1 03BB(~) log P[~| (fi - fin) |~ 03B4]

we can and do assume below that / is a real-valued function.
Let F :=/-/~= so ~F))~  n-~ and let

(2.6) A() := lim 1 03BB(~) log E[e03BB(~)~t(F)],  e R .

Then we have

(t) = Hm 20142014 [e~03BB(~)tf - 1 - ~03BB(~)tf] d03C1

~ lim 1 03BB(~) [f|~n-1] e~03BB(~)|tf|1 2(~03BB(~))2t2f2d03C1
~ lim [1 2~|log ~|t2 exp (|log ~| |t|n-1) E f2 d03C1]

= 1 t2  f2 d03C1 lim log ~|~1-|t|n-1 = 0 , for |t|  n .2 c-~0

Hence for t = n - 1 we obtain

= /.) > et03BB(~)03B4]

 lim 1 03BB(~) log(e-t03BB(~)03B4E[e03BB(~)t~(F)])
= -03B4t + = -03B4(n - 1) .
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Similarly taking ~ = 2014(~ 2014 1), we obtain

H~ 201420142014 /.)  -J)  -~ - 1) . °

These two estimations lead to

Thus we conclude (2.5) and the proof of Theorem 2 is complete.

Corollary 2. Suppose / : : E ~ Rd belongs to L2(03C1) and for A(e) = |log ~|/~,
6 > 0, one has

(2.7) H~~logP[6~(/)~~]0, >
for some a > 0. Then / e L~.

Proof. Without loss of generality we assume that / is a real-valued function.
Furthermore note that

- 7(a) := lim 1 03BB(~) log P [~|(f)| ~ a] = -aI(1) ,

and therefore 7(a) > 0 for some a > 0 is equivalent to 7(a) > 0 for all a > 0. Let us
assume that / % L~ and choose r > 2/7(1) such that /9(/y. := /l[r!/!r+i] 7~ 0) > 0.
Observe

(2.8) /r)!  1] > ~ for all sufficiently small e > 0 .

By the independence of 7V(/r) and 7V(/ 2014 /r), (2.8) implies that

> i] > > 2]. p[6~(/ - /.)!  i] > > 2]. .

Hence with Theorem 2 we get

- ~ ~ ~ ~) ~~[~~)! ~ = - ~ ~ (~) > -~ ’
which contradicts the selection of r~ and the proof is complete.

Corollary 3. Let (E, 03BE, 03C1) be 03C3-finite measure space, a / ~ L2(E, ~, 03C1; Rd)
and N 6e the compensated Poisson point process. For A(6) := |log ~|/~, ~ > 0, define

&#x26; := sup {a > 0 : log(1 + ~N(f)~))]  ~}.
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°

P r o o f. For each 0  ~  a we have

~iogp[~(/)!!>6-~]-~ >
for all sufRciently small 6, i.e., P[~(/)~ > ~]  for all sufficiently
large ~. Hence E[exp(yy - J)N(/)log(l + !!~V(/)!!)]  oo for all J > 0 such that

~ 2014 ~ > 0. Thus yy  ~ and hence a  6. One gets the converse inequality using
Tschebyshev’s inequality.

Ii !!/!!oo  oo, then Theorem 2 gives a = ~f~-1~. In fact, we have

a = inf qKf (z) = inf qKf (z) = [[ f[[I .

For f ~ L~, Corollary 2 justines a = 0. Thus the proof is completed.

3. Large deviations on R under exponential integrability. In this

section we consider the case of / ~ L~(E, ~, ~; R). Let us introduce parameters

03B3+ := sup { 03B1 ~ 0: [f~1]e03B1fd03C1  ~} and 03B3- := sup {03B1 ~ 0: [f~-1]e-03B1fd03C1  ~} .

Arguing as in the proof of Corollary 3 we infer that

(3.1) ~ = ~) , and

(3.2) ~- = log p(/ ~ -~) . .

Theorem 3. Assume that / ~ L2(03C1), and 03B3+,03B3- > 0. Then P[e7V(/) ~-],~>
0, satisfy LDP on R with the speed A(e) = ~-1 and the rate 

03B3+x, for x ~ 0 ;
I(x) = 1 -03B3-x , for x  0 .

P r o o f. Let us write / = / . l[)/)i] + / ’ =~ ~o + ~1 + ~-1’
From Theorem 1, for each J > 0

lim ~ |log ~| log [|(f0)| > 03B4] = - 1 ~f0~~,
and hence

(3.3) > 03B4] = -oo .
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Case 1. Now let us assume that / > 1 on .E*. i.e., / = /i. For the upper bound (in
LDP)note

1(t) := lim e log 

= lim e  (etf1 - 1 -tf1)d03C1
~o ~~i]

= lim ~ [f~1] etfd03C1 = {0, for t 03B3++~, for t > 03B3+.

Hence its Fenchel-Legendre transformation is given by

(3.4) I1(x) :=*1(x) = sup[xt - 1(t)] = sup xt = {03B3+x, for x ~ 0,+~ for x  0.

By Ellis-Gärtner Theorem ([DS], Thm.2.2.4), the upper bound of large deviations
holds for ~-],~> 0, on R with the speed A(c) = e"~ and with the rate
function 7i(a?).

For the lower bound observe that /i G L~(/9) and instead of we can

consider 7V(/i). Furthermore, using inequality ~V(/i) ~ > ~) we get, for
a > 0 and t > 1,

>~)>~]
> ~ e-~>~(~>~/~!

A;>a/~

>e-~>)(~>~))~~/([~]+l)!
Choose now t == t(~), a positive function of 6 verifying lim~~0 ~t(~) = +00 and

~-~~~
(possible by (3.1)!). Hence using the above inequality and (2.2), we get

> a] > + > (e)] = 
~-~0 ~~0 

°

Since we used only one term estimate we infer the lower bound for (E (a, ~)]
as well. In other words, the measures P[~./V(/i) ~ ’], 6 > 0, satisfy LDP with the
speed A(e) = 6"~ and the rate function 7i(:r).

Case 2. Applying Case 1 for -f and observing that (2014/)i = 2014/-i, =

- 7V((-/)i) we conclude LDP for ~ -], 6 > 0, with the speed A (e) = ~-1,
e > 0, and the rate function

(3.5) ~)=J-~ ~ ~~~~ )~, , for ~~0.
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Finally since N ( f ) = Ñ(fo) + Ñ(fl) + N ( f -1 ) is a sum of independent variables,
(3.3),(3.4) and (3.5) imply the LDP in Theorem 3 by [LS, Lemma 2.8]. .

4. . Applications to the class L distributions. . For the basic information on
the class L (or selfdecomposable) distributions cf. [JM] p. 177-182. For the purpose
of this application, let us recall that

(4.1) iff  d Z(o) := / o,o> e-sdY(s), , Elog(1 +  oo , >

and Y is a Levy process. Of course,

(4.2) P[Z(t) = ~ .] ~ 03B40(.) ,as t ~ ~ ,

and it is "natural" to ask for LDP for probability distributions in (4.2).
Let Y be without Gaussian component and shift, i.e., Y(l) d ~0, o, M] (these

are the parameters in the Lévy-Khintchine formula of Y(l); M is the spectral Levy
measure). Then

(4.3) Y(t) = t0 RdB{0} xN(dx, ds) , t > 0 , ,

where N is a Poisson point process with the compensator p(dt, dx) = dt x dM on
E := x Rd B ~0~ (dt= Lebesque measure); see [JS]. Thus

(4.4) Z(o) = = N( fo) , for fo(t, x) := .

¿From (4.1 ) we also have that

= °° = °o - t) = d o0 = Z(t) .

Hence (4.2) with (4.4) is equivalent to

E .] ~ 03B40 , as t ~ ~ .

All the above we can summarize in the following

Theorem 4. Let Y(.) be a real Levy process with Y(1) d ~0, o, M~. . Assume
that suppM is compact. Then E .] satisfy LDP on R, as t --~ o0
with the speed a(t) := tet and the rate function

f , f or 0  b := sup(supp M) , x > 0 ; ;

(4.5) := , for 0 , x  0 ;

~ -t-oo , , otherwise . .
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Proof. Note that f o defined in (4.4) belongs to L°° (p i~’ supp M is bounded
in R. In this case fo E L2 ( p) as well. Since supp(p o fo 1 ) = fo (supp p) = [a, b~ where
a = inf(suppM), b = sup(supp M), Theorem 2 gives the conclusion of Theorem 4.

Remark 3. If Y(1) ~= ~0, ~2, 0~, i.e., Y(t) is a Brownian Motion, then Z(t) d
In other words, 2e2tZ d [0, ~2, 0~ = N(o, Q2). By an easy calculation,

E .] satisfy LDP on R, as t ~ ~, with the speed a(t) = 2e2t
and the rate I (x) = x2~2~2, x E R (well known!). .

Corollary 4. If Y(l) === [o, 02, M~ and supp M is compact then

P[Z(t) = 1 (t,oo) e-SdY(s) E .]

satisfy LDP (on R) with speed a(t) := tet and the rate function IM (x) (i. e., Gaus-
sian part does not contribute to the rate function).

P r o o f. Let us write Y(t) = Y1 (t) + Y2 (t), where Y1 and Y2 are independent
Levy processes such that Y1 ( 1 ) ~ ~0, o~2, 0~ and Y2 ( 1 ) d ~0, o, M~ . Defining

:- / t,o> , i = l, 2

one has Z(t) = Z1(t) + Z2(t) (with two independent summands). By Remark 3,
P(Zl(t) E .] satisfy LDP with the speed 2e2t » tet (as t -~ oo), it is then negligible
for the large deviations with speed tet. Consequently, P~Z(t) E .] satisfy the same
LDP as P[Z2(t) E ~~. Then the Corollary follows from Theorem 4.

Since in the theory of large deviations often one needs the existence of expo-
nential moments we complete this section with the following facts about class L
distributions (on Banach spaces).

Lemma. Let Y(l) d [a, R, M], Y be a Banach space valued Levy process. Then
for any A > 0

(4.6) 

for all a > 0. In particular, it is so whenever one has E[exp  oo.

Proof. For an infinitely divisible measure v = [b, S, K] (on a Banach space
B) and submultiplicative (or subadditive) functions ~ : E 2014>- [0, oo)

B03A6(~x~)03BD(dx)  ~ iff ~x~>a 03A6(~x~)K(dx)  ~, for all a > 0.
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(see: [JM], p. 36). If M is the Levy spectral measure of Y(1),_the integral
(class L distribution) has the Levy spectral measure M given by

M(A) := ~0 M(etA)dt, A is a Borel subset (in B).

(cf. [JM] p.120). Hence

[~x~~a] e03BB~x~dM(x) = B ~0 1[~x~~a](e-tx) exp(03BBe-t~x~)dt M (dx)
= [~x~~a] (In(~x~/a)0 exp(03BBe-t~u~)dt M (du)

= [~x~~a] (~u~0 (e03BBs/s)ds) M (du) .

Since fa as s ~ oo, and M is finite on > a] we conclude the
proof of Lemma.

Corollary 5. For Y(l) a [0, ~2, M] on R let us assume that the limits

03B3+ := > a) , 03B3- := log M(x  -a)

are finite and strictly positive. Then P[Z(t) = E .] satisfy LDP

(on R) with the speed A(t) := et and the rate function I (x) := y+x, for x > 0 and
I (x) := -~y-x, for x  0.

Proof. As in the proof of Corollary 4 (or Theorem 4) we can assume that
03C32 = 0 and

Z(t) = e-tZ(0) = e-t ~0 R. e-sx(ds,dx), t ~ 0

where p(ds, dx) := ds x M(dx) is the compensator. Observe for f(s,x) := 

a-1 log/)((5,.r) : : > a) = sup A > 0 : :  

= sup I A > 0 : : /  ~}
= sup a > 0 : : / eaxM(dx)  ~}
= > a) = - 03B3+.

Consequently we proved that

(4.7) ~ e-sx > a) = -~y+ ,
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and by similar arguments we also have

(4.8)  -a) = -~’ .
Now applying Theorem 3 we conclude the LDP described in Corollary 5.

Remark 4. The two main results of this paper, Theorem 2 and 3, show that the
behavior of the tail probability of 1V ( f ) (an element in the first chaos of the Poisson
point process N), depends strongly on that of f. This is essentially different from
the Brownian Motion case. A further interesting question is to investigate the large
deviations of multiple random integrals (or element in the chaos of order ~ 2),
similarly to the work of Ledoux [L] on the Wiener space.
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