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A LIMIT THEOREM FOR THE PREDICTION PROCESS

UNDER ABSOLUTE CONTINUITY

HIDEATSU TSUKAHARA

Abstract

Consider a stochastic process with two probability laws, one of which is absolutely
continuous with respect to the other. Under each law, we look at a process consisting
of the conditional distributions of the future given the past. Blackwell and Dubins

showed in discrete case that those conditional distributions merge as we observe

more and more; more precisely, the total variation distance between them converges
to 0 a.s. In this paper we prove its extension to continuous time case using the

prediction process of F. B. Knight.

1. Introduction. Let (En, tn), n E N be measurable Lusin spaces and put

(E, £) _ (1E1 x E2 x ~ ~ ~ , £1 ® £2 ® ~ ~ ~). Suppose that , and v are probability
measures on (E,S) satisfying v  We then denote by ... , and

Zn(xl, ... , the regular conditional distributions for the future (lEn+1 x ~ ~ ~)
given the past Si ® ~ ~ ~ (8) £n under J.L and v respectively. Blackwell and Dubins

(1962) showed that those conditional distributions merges as n becomes large; more

precisely, the total variation distance between them converges to 0 v-a.s. as n - oo.

In what follows, we prove its extension to continuous time case using the prediction

process of F. B. Knight (1975, 1992). 
’

We start with introducing the prediction process, which consists of suitable

versions of conditional distributions of the future given the past in continuous time

setting. For our purpose, it is unnecessary to make any topological assumption on

the state space. Thus we need only the prediction process in a measure-theoretic

setting as developed in Chapter 1 of Knight (1992). Let (E, G) be a measurable Lusin

space and ME the space of B+/E measurable functions as before. Let us define the

pseudo-path filtration by

9

F’t  03C3 (s0 f(w(u))du, s  t, f ~ b~),

and put F’ = F’~ = t>0 F’t. Note that each F’t is countably generated and satisfies

~’t_ _ ~’t for t > 0. We denote by II the set of probability measures on (Ms, ~’’), and
E y). The shift operator 03B8t on ME is defined by 9tw(s) = w(t+s)

and is ~’t+~ / ~’9 measurable for all s, t E 1~+ ~
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It is shown in Chapter 1 of Knight (1992) that the prediction process 
on ~’) is P‘-a.s. uniquely defined by the requirements:
(i) The mapping (z, s. w) H Zzs(2022,03C9) on II x [0,t] x ME is  ~ B[0,t] ~ F’t+/

measurable for each t E R+ and each E > 0.

(ii) For any T and -4 E ~’’, = P‘( 8T1.=1 ~ ~’T+ ) on {T  
Analogously, the left-limit prediction process (Zt- )t>o on ~’’) is P‘-a.s. uniquely
defined by the requirements:
(i) The mapping (z, s, w) ~ Zzs-(2022,w) on II x [0, t] x ME is  ~ B[0, t] ~ F’t/

measurable for each t > 0.

(ii) For any (F’t)-predictable T > 0 and A E y, = Pz(03B8-1T A | F’T ) on
{T  oo}.

We note that even when the space E has been given the prescribed Lusin topology,
the processes (Zt ) and (Zt ) are not related to each other through that topology
ofE (see Knight (1992)).

Furthermore, employing the notation of Meyer ( 1976), we define the processes
Kf and Kt- by

Kzt(f  03B8t) = Zzt(f), Kzt-(f  03B8t) = Zzt-(f)

for f E Hence II is the state space of the Kz’s and they satisfy, besides

measurability conditions,

= Pz( A I ~’T+ ) on {T  oo}, >

for any T and A E ~’’, and

k’T-(A) = Px( A ~ on {T  oo},

for any (F’t)-predictable T > 0 and A E F’,
Following Meyer (1976), we define the optional and predictable a-fields as fol-

lows. The optional a-field (9 is generated by the cadlag processes adapted to (3’t+),
and the predictable a-field P is generated by the left continuous processes adapted
to (~’t_). The utility of Kf and Kt lies in the following result due to Meyer (1976).

Proposition 1.1 For every bounded measurable process X on (ME, ~’’) and
for every z E II,
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defines an optional pro jection of X for z, and

(t.~)~ 

defines a predictable projection for : .

A simple monotone class argument proves the above theorem. We can actually
improve on this result, using a similar monotone class argument. This is also due
to Nleyer (1976).

Proposition 1.2 be a bounded function that is 00’B(R+)g)
~’’ measurable. Then an optional projection for z of the process X ( t, w, t, w) is given
by

(t, w) H 

Similarly, is a bounded function that ® ~’’ measurable,
then a predictable projection for z of the process X(t, w, t, w) is given by

(t, w) ~’ 

Remark 1.3 In Dellacherie and Meyer (1980), VI.43, optional and predictable
projections are defined under the "usual conditions". Here we are not assuming
them, but in view of Lemma 7 of Dellacherie and Meyer ( 1980), Appendix I, we can
choose a version of the optional projection which is optional relative to (~’t+), and a
version of the predictable projection which is predictable relative to (~’t). Thus ac-

cording to our definition of the optional and predictable 03C3-fields , no complications
on those projections arise.

2. Main result. For z, z’ E II, the total variation distance z’) on II
is defined by

z’) ~ sup (z(A) - z’(A)I.

Our main result is the following theorems.

Theorem 2.1 Let z and z’ be two probabilities on ~’’) satisfying z’ ~ z
and let (Zt ) and (Zt ~ ) be their prediction processes. Then the total variation

distance between (Z~ ) and converges to 0 as t --~ oo, 
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Theorem 2.2 Let z and z’ be two probabilities on ~’) satisfying ~’ « ~
and let ( Zt ) and (Zt) be their left-limit prediction processes. Then the total
variation distance between (Z~ ) and (Zt~ ) converges to 0 as t -~ oo. 

To prove the theorems, we need some preliminary results. Let L( w ) = d~l ( w ).
We would like to show first that Kz’t-[Kz’t] is P‘r-a.s. absolutely continuous with
respect to h’t and find a version of Radon-Nikodym derivative. The following
general lemma is well known in the filtering theory.

Lemma 2.3 Let (03A9, F, P) be a probability space and  a sub-a-field of F.
Suppose that we have another probability measure Q which is absolutely continuous
with respect to P. Set L == ~. . Then for any Q integrable :1’ measurable V, we
have

E~’ j ) 
qp~ ) E p ( L , Q-a.s.

It follows from the above lemma that for any f E 

z’ ( rrl _ ’~

Let Lzt = Kzt(L). Then Lt is a càdlàg version of the martingale Ez( L | F’t) since it
is an optional projection of the process L constant in t (L is not bounded, but it is
positive). And we put Lt_ = lims~~tLzs = k’t (L), t > 0. By the same reasoning,

is a predictable projection of L.

Proposition 2.4 For Pz’-almost all w, .Kt r (dw, w) is absolutely continuous
with respect to Kzt(d03C9, 03C9) with the Radon-Nikodym derivative L(w)/Lt (w) for all
t. Similarly, for pz’ -almost all w, is absolutely continuous with respect
to with the Radon-Nikodym derivative for all t > 0.

Proof. We give a proof for K~ case since k’t case can be proved analogously.
As in Chapter 1 of Knight (1992), we may assume that E = [0,1]. There exists a
metric on for which it is compact, and its Borel sets are y. Since 

is separable, we can find a sequence ( f~) in that is uniformly dense in

~ f E 0  f  1 } . By Lemma 2.3, for each r E Q+ and j E N, there is a
set Ar,~ with Px(Ar,j) =1 such that if w E Ar,j,

(2.1) Kz’r(fj,03C9) = fi(03C9)L(03C9)Lzr(03C9) Kzr(d03C9,03C9)
.
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Set

~ = n n n k’’~( f~), k’‘( f~L} and k’‘(L) are right continuous
1 

The processes k’~~( f~), k’‘( f?L) and Ii=(L) are all right continuous since

they are optional projections of the processes which are constant in t. Thus we have

P‘~(.-I) = 1. Since is uniformly dense in { f E f  1} and both
sides of (2.1) are right continuous for w E A, we conclude that if w E A, .

for all f E and all t E R+. In view of the fact that the continuous bounded
functions separate the measures on a metric space, we see that the above is true for

all f E and all t E 1~+, which implies our assertion. 1

To get a similar result for the Z % , we need the splicing operator on ME x R+ x ME
onto ME defined by

(03C9 /t /w)s 
0394

03C9(s), s  t,

w(s - t), s > t.

The mapping (w, t, w) ~ 03C9/t/w is continuous, so it is F’ ~ B (R+)~F’/F’ measurable.
It follows from Lemma 4 of Meyer (1976) that for Pz-almost every w and all t,

k’t (div, w) and k’t (dw, w) is concentrated on the atom of ~’t containing w, which
is the set of w E ME such that w(s) = w(s) for A-a.e. s  t. Moreover, denoting the

mapping w ~ by we have

Kt (f ~ w) = 

= = Zi (f 

and similarly for and Z:-. Thus and are the image
measures of Zt (dw, w) and Zt (dw, w) respectively under It then follows that

z;’(/,~) = / / e M", 
.

Zzt (f,03C9) = f(w) Lzt(03C9) 
Zzt (dw,03C9), f E bF’ ,
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for all t e R+ , and

zil  f, ~J> = / f w zi- dw, v> , f e bJ7 :i- ,w = w 

t °~’. 
t- w,w), f E b’:J ,

for all t > 0.

Proof of Theorem 2. 1. It is easy to see that if =’  =, then, with I = d=’ 

’ Z’ ) # /i>i j (I - I ) dZ .
Using this, we can evaluate the total variation distance between Zzt and Zz’t . We
have, for any e > 0,

03C1TV (Zzt, Zz’t) = {w:-1>0} (L(03C9/t/w) Lzt(03C9) - 1) Zzt(dw, 03C9)

~ ~ + {w:-1>~} L(03C9/t/w) Lzt(03C9) Zzt(d 03C9,03C9 )

" ~ + ~l’ ({ ~ ~ > ~ ’ ~’= E + ~~ w: t ~’ 
-1 ~ ~

= ~ + Kz’t ({ w:L(03C9/t/03B8tw) Lzt(03C9)-1> ~},03C9).
Note that for Pz’ -almost all w and all t, we have w /t /8tw = w /t /8tw = w , Kj’ ( .; v)-
a.e. Thus we get

(2.2) 03C1TV (Zzt Zz’t) ~ ~ + Kz’t ({w: L(w) Lzt(03C9) - 1 > ~}, 03C9).
Now let f(z, y) = 1 jx,y>;, /x-i>ej (z, y) for (z, y) e Clearly this is B(R2) mea-
surable. Put = f(Lf (w), L(w)) , so that we have

~ (  t , w , w> : @ - 1 >  ) ~ ~ ’ ~’ ’ ’~~’ ~ ’(t,CÑ,w): t " -1 >E

(t, w) - Lf (uJ) is O measurable since Lf(w) = Kf (L, w) is the optional projection of
L for Also L measurable. Thus (t,w,w) - (Lf (w), L(w)) is 

measurable, and hence .I(t, w, w) is O © £F’ measurable. It follows from Proposition
1.2 that
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is the optional projection of the process ~(t,;~,w).
By the martingale convergence theorem, as t -~ oo, L~ converges to L, PZ-a.s.

and hence Since L > 0, converges to 1, as t -~ oo.

This implies that ~C ( t, w, ;~~ ) -~ 0, P ‘~ -a.s. Finally, by Dellacherie and Meyer (1980),
VI.50 c), the optional projection of .~C(t,;~,W), i.e. (2.3) converges to 0, P‘~-a.s.

Therefore the right-hand side of (2.3) converges to 0 as t -~ oo, P‘~-a.s., and the
theorem follows from (2.2). 1

By an entirely analogous argument using the predictable counterparts, one can

prove Theorem 2.2. When =’ ~ ~ does not necessarily hold, we still have the

following.

Corollary 2.5 Let T = inf {t > 0: « , where z and z’ are any two

probabilities on ~’’). Then the conclusions of Theorem 2.1 and Theorem 2.2

holds on {T  oo}.

Proof. Since II is the set of probability measures, the set A = 

II2: Zl  ~Z} belongs to ~Z. T is then the first entrance time into 11 by the process

(Zz’t,Zzt), so it is F’t+-optional.
Next we quote the following result due to Yor and Meyer (1976): For any F’t+-

optional S  oo and any z E II, w) = ZZzS(w)t(2022 03B8Sw) for all t > O,Px-a.s.
The corollary then easily follows from this, together with Theorems 2.1 and 2.2, and

the section theorem, N
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