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Some Remarks on the Uniform Integrability
of Continuous Martingales

Koichiro TAKAOKA

In this article we show a property on the tails of the supremum and the
quadratic variation of real-valued continuous (local) martingales, and further-
more use the property to give a characterization of uniform integrable martin-
gales. Our result refines or generalizes the main theorems of the following three
papers: Azéma-Gundy-Yor [1], Elworthy-Li-Yor [2], and the continuous martin-
gale version of Galtchouk-Novikov [4]. The present article is also closely related
to a recent paper of Elworthy-Li-Yor [3].

We should mention two more works on related topics. H. Sato [7] gave a result
on the uniform integrability of stochastically continuous additive martingales.
Concerning exponential local martingales, see Kazamaki’s book [5] and its ref-
erences to earlier papers.

The author obtained the idea of using the technique in Step 4 of the proof
of our main theorem when he attended a course on mathematical finance given
by Professor Freddy Delbaen in Tokyo, February—-March 1998. The author also
would like to thank Professor Marc Yor and Professor Kohei Uchiyama. for their
helpful comments.

Our result is the following

Theorem. Let M = (Mt)te R, be a real-valued continuous local martingale,
with My = 0, on a certain filtered probability space satisfying the usual condi-
tions. Assume M def tlir{.lo M, ezists a.s. and E[|M°°|] < 00. Then both

e‘*:efkum A P[sup, M| >A] and ‘aé—-e-f/\lim AP[(MYL2 > )]
—00 ~—00

ezist in Ry U {00}, and satisfy

¢ = \/ga = sup E[|MU|] —E[|Moo|],

UeT (M)

where T (M) is the set of all reducing stopping times for M. Furthermore, M is
a uniformly integrable martingale if and only if £ =0 = 0.
Remarks.

1. The expression supyer(ar) E[|Mu]] is less complicated than it looks since,
as we will see later in this paper,
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sup E[|My|] = sup E[|My|] = E[Le],
UeT(M) UeT

where 7 is the set of all stopping times and L; is the local time of M at the
origin up to time ¢.

2. Azéma-Gundy-Yor [1] proved the equivalence
“M is a u.i. martingale” & “existsand {=0" & “cexistsand 0 =0"

under the assumptions that M is a martingale and that sup, E[|M;|] < co.
3. The continuous martingale version of the main theorem of Galtchouk-Novikov
[4] shows that, under the same assumptions as ours, E[My] = 0 is im-

plied by a condition weaker than “o exists and o = 0 ” and stronger than
“lim inf AP[(MY2 > 2] =0.”
—00

4. Theorem 1 of Elworthy-Li-Yor [2] and Lemma 1 of Galtchouk-Novikov [4]
use a variant of the Tauberian theorem to prove that if M is bounded below
(actually in a somewhat more general setting), then the two limits £ and o exist
and satisfy £ = /50 = —E[M]. Note that in this case our result agrees
with theirs. Indeed, if (M;); is of class (D), then M7 — Mg in L! for every
sequence T, in T(M) increasing to 0o a.s., so we find that

sup E[|Mol] - E[|Meol] = lim E[|Mr,|] - E[|Mu]

UET (M)
( = 2 lim E[M7,] - E[|Mo|]
= 2E[M] - E[|M|]
= —E[Mx]

(for the validity of the first equality see Lemma below).

5. The assumption E[|Ms|] < oo is essential for our theorem. See Azéma-
Gundy-Yor [1] for an example of how things would go wrong without this hy-
pothesis.

The rest of this paper is devoted to the proof of our theorem. We need the
following easy lemma.

Lemma. For every sequence (T5,)5%, in T(M) increasing to oo a.s., we have

lim E[|Mr,|] = sup E[|Mr,|] = sup E[|My|] = sup E[|Myl],
n—too n UeT (M) UeT

where T is the set of all stopping times.

Proof. For every stopping time U, observe that U AT, € T(M) and that
My = nhr{.lo My, a.s. Hence, by Fatou’s lemma,

E[|My|] < lim E[|Myar,|] < lm E[|Mr|]. O
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Proof of the main theorem. We divide the proof into six steps.

Step 1. We first show the existence of the limit ¢ and the equality ¢ =
sup E[ IMUI] - E[ |M°o|]. For )\ > 0, define the stopping time
UeT(M)

T & inf {¢t : |Me| >\}; (inf(I)d-i-f 00)
then T € T(M) and
E[|Mr1,|] = AP[sup;|M:| > A] + E[|Mocol; sup, | M| <Al

Here the left-hand side increases with A, and the second term on the right-hand
side converges to E[|Moo|] (< 00) as A — oo. Therefore the limit of the first
term on the right-hand side also exists. The desired equality also follows from
this together with the above Lemma.

Step 2. For the proof of the equivalence “M is a u.i. martingale ” < “ =0,
we make the following observation:

(=0 © sup E[|Myl|] = E[|Mw|] (by Step1)
UeT(M)

& T}i_{rgoE[IMTnl] = E[|My]|] for every sequence T, in T(M)
increasing to co a.s. (by Lemma)

& lim Mp, = My in L! for every sequence T,, in T(M)

n—00
increasing to oo a.s.  (since E[|Mo|] < 00)

& M is a u.i. martingale.
Step 8. Next we show the inequality
¢ < Vor lim inf AP[(M)Y2 > 2],
—00

which gives the implication “£ = 0c0” = “o exists and o = 0c0.” We apply an
argument similar to the proof of the main theorem of Galtchouk-Novikov [4].
For = > 0, define the stopping time

S, inf{t: M, >z} (inf 0 < 00)

Since (Mias, )t is a continuous local martingale bounded above, it is proved in
Elworthy-Li-Yor [2] and Galtchouk-Novikov [4] that

T 1 1/2
V¥ Jlim AP[(M)Y? > \] = E[Ms,]
(see Remark 4 after the statement of our Theorem). Also, observe that

E[Ms,] =  P[ sup, M, >z + E[ M ; sup, M, <z,

and thus
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o]y

lim inf AP[(M)Y? > A]
VE Jlim AP[(M){? > )]
z P[ sup, M, >z| + E[Mu ; sup, M, <z].

v

Il

Likewise, replacing (M;); with (—M;): we have
T Yo s 1/2
V% liminf AP[(M)J? > ]
> .’IJP[ inf, My < —x] - E[Moo; inf; M, > —'I].
Therefore
Var liminf AP[(M)4? > )]

> z{P[suptMt >:c] + P[inftMt <—z]}
+E[M°°, suptMt Sx] - E[Moo; inftMt Z —15]
> xP[supt [ My >:1:]
+ E[ My ; sup, M; <z] - E[My; infy M, > ~z],
and by letting £ — 0o we get the desired inequality.

Step 4. In this step we make some preparations for the proof of the existence
of o (in Step 5) and the equality \/To = supyer) E[|Mu|] - E[|My|]
(in Step 6). By virtue of Step 3, we need to consider only the case ¢ < oo (or
equivalently supyez(ay) E[ |My|] < o0), which we will assume for the rest of
the proof. Define the local martingale N = (NV;) tcR, bY

i
N & _ / sgn (M,) dM,.
0

Note that (N). = (M). It also follows from Tanaka’s formula that
IMtI = —N; + Lt, t >0, a.s.,

where L; is the local time of M at the origin up to time ¢. Since this is the
Doob-Meyer decomposition of the local submartingale (|M;|);, we see that

YU € T(M),  E[|My|] = E[Ly],

and hence

E[Lso] = sup E[|My|] < oo.
UeT(M)

Furthermore, it follows from the Skorohod equation argument that

L; = sup N, t>0, a.s.
u€[0,t]

Therefore
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E[ suptNt] < 00,
which is crucial for the rest of the proof.

Step 5. With the assumption in Step 4 and the notations there assumed, we will
here prove

limsup AP[(N)3? >A] < lim  lim AP[(N)2 > )],

A—00

where
s, & inf{¢t: N;>zx}. (inf(l)difoo)

Note that this implies the existence of the limit o since it is trivial that
liminf AP[(V)¥> >A] > lim lim AP[(N)Y% > ]
It suffices to show that, for each fixed 0 < a <1,

limsup AP[(M)Y2 > ] < = lim lim AP[(MYF > )],

A—00 a —00 A\—00
For z > 0, we have
P(N)Y2 > 2] < P[(MY2 <a), (MY2 >A] + P[(N)YS >a)]
and hence
1
. 1/2 < = 1/2
hff:p AP[(MU2 >A] < - ’\11’120 )\P[(N)S 7 > A
+sup AP[(N)S2 <ad, (MY? > 2]
A
Thus it suffices to show
lim sup )\P[(N)l/2 <a), (M2 >A] =
T—+00 by
Fix £ > 0 for the moment. For ¢ > 0, define
Nt(:t) déf NS,,-’+t - st' and j’:-t(z) <i—£-f ]:Sg'+t'

Note that ( N{™)) , is a continuous local martingale w.r.t. the filtration ( Fo "
Also, observe that

sup )\P[(N)}g/mz, <al), (MY >A]
sup AP[ (N2 > /1 —a2 )]
x

1 v (z)\1/2
B Sl;l‘p )\P[(N( )>°</> > /\]

IA

IA

(o] ()
Jicer SUP AP[sup, |N;| > A],  (®
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where the last inequality follows from the well-known good A inequality (see e.g.

8IV.4 of Revuz-Yor [6]), with the constant C universal; in particular, C does not
depend on z. Since

VA>0,  AP[sup, [N > A] < E[INZ],

(Tx Einf {¢: || > A})
it follows that

(*) < -\7—70 sup E[|N{)
179 ver(ne) [1¥571]
( where T(N(®)) is defined the same way as T(M))

Tﬁc 2 sup E[N®*
1-a UET(N(=)) [ v ]

< %= 2 E[(sup,N; — z)*].

The last expression converges to 0 as z — 00, since E[ sup, Nt] < 0.

Step 6. It remains to prove the equality \/ga = sup E[|My| |—E[|Mo| ].
UeT (M)

We assume the notations in the previous two steps. For £ > 0, the same argument

as in Step 3 gives

[V E

Jim AP[(N)J? > ]
= zP[sup, N; >z] + E[Neo; sup, N; <z].

Here the first term on the right-hand side converges to 0 as £ — oo, since
E [ sup, Nt] < oo. The second term converges to
E[Nw] = E[Lw] — E[|Mx|]

sup E[|Myl] - B[|Murl].
UeT(M)

Therefore
Jm VF Jim AP[W)Y2 > 2] = sup B[IMol] — B[],

which together with Step 5 completes the proof. O
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