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A Stochastic Differential Equation with a Unique
(up to Indistinguishability) but not Strong Solution

Jan Kallsen

Abstract

Fix a filtered probability space (S~, ,~, P) and a Brownian motion B on
that space and consider any solution process X (on Q) to a stochastic differential equa-
tion (SDE) dXt = f (t, X) dBt + g(t, X ) dt (1). A well-known theorem states that
pathwise uniqueness implies that the solution X to SDE (1) is strong, i.e., it is adapted
to the P-completed filtration generated by B. Pathwise uniqueness means that, on any
filtered probability space carrying a Brownian motion and for any initial value, SDE

(1) has at most one (weak) solution. We present an example that if we only assume
that, for any initial value, there is at most one solution process on the given space
(~, ~~ p))~ we can no longer conclude that the solution X is strong.

1 Introduction

Consider the following stochastic differential equation (SDE)

Xt = X0 + t0 f(s,X) dBs + t0 g(s,X) ds, (1.1)

where f, g : R+ x C(R+) ~ R are predictable mappings and B denotes Brownian motion
(~(~+) := {f : R~ -~ R : : f continuous} denotes Wiener space and predictability is
defined as in Revuz &#x26; Yor ( 1994), IX,§ 1 ). There are at least two fundamentally different
concepts of approaching SDE (1.1).

Firstly, one can start with a filtered probability space (H, .F, P) and a Brownian
motion B on that space. SDE (1.1) is then interpreted as an equation only for processes
defined on 0 and by B one always refers to the same Brownian motion on Q. Existence
and uniqueness of a solution means in this context that, for any initial value Xo there is (up
to indistinguishability) exactly one solution process on Q satisfying Equation (1.1). This
concept is applied e.g. by Protter (1992) and it easily extends to arbitrary semimartingales
as driving processes.

Alternatively, one may regard SDE (1.1) independently of a fixed underlying probabil-
ity space and a fixed Brownian motion. In this context, SDE (1.1) has a (weak) solution
whenever there is a probability space and two processes X and B on that space such that B
is a Brownian motion and Equation (1.1) holds for this particular choice. Here, the space
(~, .F, P) and the Brownian motion are part of the solution. Pathwise uniqueness
holds if, for any two solutions (0, F, P, (X, B)) and .~, P, (X, B))
with (0, F, P) = .E~ B = B~ and Xo = Xo, the solutions X and
X are indistinguishable. The concept of weak solutions is discussed in many books (see
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e.g. Revuz &#x26; Yor ( 1994), Karatzas &#x26; Shreve (1991)). Clearly, a solution on a fixed space
is always a weak solution. Also, pathwise uniqueness implies uniqueness on a fixed space.
For a thorough account of both viewpoints see Jacod (1979).

Following Revuz &#x26; Yor (1994) we call a (weak) solution (5~,.~, P, (X, B))
strong if X is adapted to the P-completed filtration generated by the driving Brownian mo-
tion B. A well-known theorem due to Yamada &#x26; Watanabe (cf. Revuz &#x26; Yor ( I994), The-
orem IX. 1.7 ; for a generalization to SDE’s involving random measures see Jacod (1979),
Theoreme 14.94) states that pathwise uniqueness implies that any (weak) solution to SDE
( 1.1 ) is strong.

Now, consider the following situation. Starting from a fixed probability space (Q, T,
P) and a fixed Brownian motion B, we are given a solution X to SDE (l.l) and

we know that X is (up to indistinguishability) the only solution on that space starting in
Xo. Is it, in general, true that X is a strong solution? (Note that we do not assume pathwise
uniqueness, as pathwise uniqueness involves weak solutions on other spaces as well.) We
give an example that the answer is no. More precisely, we present a SDE having no strong
solution, having exactly one solution (for a fixed initial value) on some probabilty space
and more than one solution on others. The example will be closely related to Tsirel’son’s
SDE (cf. Revuz &#x26; Yor ( 1994), p. 373).

We use the following notation: [.] denotes the integer part of a real number, A is
Lebesgue measure. For random variables U, V we write P~, pUl v, for the dis-
tribution (under P) of U, the conditional distribution of U given V, the factorisation of
the conditional distribution of U given V, respectively. xi and 7r2 : R2 -3 R denote the
projection on the first and the second coordinate.

2 The example
Consider the SDE 

Xt = Xo + Bt + T(s, X) ds, (2.1)

where B stands for standard Brownian motion and r : R+ x C(R+ ) ~ R is defined by

(t,03C9) := 03B1 {03C9(tk)-03C9(tk-1) tk-tk-1)} for tk  t ~ tk+1,0 for t = 0 or t > 1,

where {x} denotes x modulo 1, the function a is defined by a(x) := + (x +
l/4)l[i/2,3/4)(~) + (x -1/4)1~3~4,1~(x), and is a strictly increasing sequence of
numbers such that to == I and = 0.

As for Tsirel’son’s example (where we have the identity instead of a) T is predictable
and bounded and a weak solution (S~, ~’, P, (X, B)) to SDE (2.1) with Xo = 0
exists (see e.g. Revuz &#x26; Yor (1994), Theorem IX.1. I 1 ).

By and we denote the P-completed natural filtrations of B resp. X. .
Let (Xt)t>o be another weak solution defined on the same filtered probability space, with
respect to the same Brownian motion B, and with Xo = Xo = 0. If we set for tk  t  t~+1

~ 

t_tk ~ 
’ ~t ~= 

t-tk 
’
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we have that for tk  t ~ t~

~=~+E~~D(~-~-i)+Q({~})(~-~) (2.2)
t~t

and hence

~=~+a({~J), (2.3)
and accordingly for ~ and 77.

Now the following statements hold:

1. . For any 0  s  t~ 1 we have ~ = r({~}) V .

2. For any k E -N there is a probability measure p on [0,1/4) and constants ci, c~ > 0with Ct + C2 = 1 (independent of k) such that the distribution of ({~tk}, {tk - ~tk})is

03BB|[0,1) ~ (03C1|(0,1/4) * 1 4(~0 + ~1/4 + ~1/2 + ~3/4)
+ c103C1|{0} + c203C1|{0} * 1 3(~1/4 + ~1/2 + ~3/4)),

where the asterisk denotes convolution and e. is the Dirac measure in a.

3. For any k 6 -N the random vector ({~ }, {~ }) is independent of .

4. X is not strong.

Since (~ JF, (X, a weak solution ofSDE (2.1), let us assume =

for the following. Then we have in addition:
5. For any k E - N there is a measureable mapping 03B2 : R ~ R such that =

03B2({~tk}) P-a.s. 

6. (Xt)t~0 and are indisfinguishable.
7. On (n,JF, and for any a E R, the process X" := X + a is (up toindistinguishability) the unique solution to SDE (2.1) starting at a in t = 0 but it isnot strong. 

 n~

Remark Statement 7 can be strengthened in that, for any T > 0 (and for any fixed initialvalue), there is no other process on that space solving SDE (2.1) on [0, T] .

3 Proofs

Proof of Statement 1.
The inclusion follows hom the definitions and from Equation (2.2). Since (2.3) implies{~tk} = 03B1({~t- ~t}) for tk  t ~ tk+1, the inclusion "~" follows easily from Equation(2.2).
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Proof of Statement 2.
We will proceed in four steps.

Step l: Definition of several Markov kernelsWe start by defining mappings 
Sy :[0, 4) ~ [0, 4), , x ~ 03B1({x}) + [4{03B1({y + [x]//4 + x}) - 03B1({x})}]

for any y E ~0,1/4). For k = 0, ... ,15 we set

Ak := {(x, y) : y E (0,1/4), x E ~k/4, (k + 1)/4 - y) },

Bk := {(x, y) : y E ~0,1/4), a E ((k + 1)/4 - y, (k + 1)/4)}. .
With this notation, we have the following simple graphical representation of the mapping
(0, 4) x [0,1/4) - ~0, 4, 0,1/4), (x, y) ~ y). The image of

under this mapping is

Consider, for example, (x, y) E B7, i.e., x E (2 - y, 2). It follows

= a({x}) + (4~a({y + (x~/4 + x~) - 
= ~ - 1 - 1/4 + [4{a({~/ + 1/4 + ~}) - (~ - 1 - 1/4)}]
= ~-5/4+[4{~/+1/4+~-2-(~-5/4)}]
= x-5/4+2=x+3/4.

Hence, B7 is shifted in x-direction by 3/4 on B10.

Now, we define Markov kernels KY, Ly,b (for any fixed y E ~0,1/4), b E R) from ~0, 4)
to [0,4) as follows:

A) := (A) for x E [0, 4), A E Li([0, 4))

and

Ky(x,A) := 03BAy(x, x’) dx’ for x ~ [0,4), A ~ B([0,4))

with

~) := ~~~~ } +T~ - ,

nEZ

where (~ denotes the density of the standard normal distribution.

Lemma 3.1 Forx E (0,1), we have K°(x, (1, 4)) = 0. Forx E ~1, 4), we have K°(x, ~0,1))
= 0.
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Proof. Since [S°(x)~ = 0 for x E [0,1), we have x’) = 0 for x E [0,1), x’ E [l, 4),
hence K° (x, [1, 4) ) = f ~~,4) x’) dx’ = 0 for x E [0,1 ). From the graphical represen-
tation of Sy one observes 0 for x E (1, 4), hence x’) = 0 for x E [l, 4),
x’ E (0,1). It follows K°(x, [0, 1)) = f ~°,1) x’) dx’ = 0 for x E [l, ~). D

Therefore, we can define Markov kernels Kl from [0, 1) to [0, 1) and K2 from (1, 4) to

[1, 4) by

Kl(x, A) := K°(x, A) for x E [0, I), A E ~i([0,1));
K2 (x, A) := K° (x, A) for x E [l, 4), A E ~i( [l, 4) ) .

Step 2: Fixed points of the Markov kernels defined in Step 1

Notation. Let I be an interval.

1. For any Markov kernel K from I to I, we denote the corresponding Markov operator
,IL( 1 (I ) -~ Nl’ (I } again by K (i.e., KQ : A ~ f I K(x, A}Q (dx) for Q E :=

{Q : Q probability measure on I }, A E ~i(I )).

2. We set Dr := {g E : g > 0, f I gda =1 }. If a Markov kernel K from I to I
has a transition density r~ I x I ~ R+ (i.e., K(x, A) = ~A x’) dx’), then we
denote the mapping L1 (I ) -~ L1 (I), g H ~g with

(~9)(x~) ~_ dx~

also Observe that r~~~~ C DI.

3. Powers of a transition density ~ : I x I - R+ shall be defined recursively by
= I~(x, x’) and = JI x~~) dx". .

Lemma 3.2 1. For any y E [0,1 ~4}, b E l~, the distribution 4 ~ ~ ~0,4) E J~I 1 ( [4, 4) } is a
fixed point of the Markov operators KY and 

2. E ,I~ll ([0,1)) is a fixed point of the Markov operator Kl. .

3. 3 a ~ ~1,4) E ,N11 ( [1, 4) ) is a fixed point of the Markov operator K2.

4. For any b E 1~ and any cl, c2 > 0 with cl + c2 = 1, the distribution +

E 4) ) is a fixed point of the Markov operator 

Proof.

1. Fix y ~ [0,1/4), b ~ R. For any A ~ B([0,4)), we have

Ky(1 403BB|[0,4)) (A) = 1 4 [0,4)A03BAy(x,x’)dx’ dx

- 1 4 A ~S~)-l~~~z’~~~~’~+1)) + n - a({x})) dx dx’
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= 1 4 A [[x’,],[x’]+1) 03C6( {x’} + n - 03B1( {Sy(x")})) dx" dx’

= 1 4 A [[x’],[x’]+103C6({x’} + n - {x"}) dx" dx’
= 1 4 A dx’ = 1 403BB(A),

where the third equation follows from the fact that A is invariant under SY = 
(because SY is a permutation of the intervals Ai, BK, k = 0, ... , 15), and the fourth
equation follows from (SY (z") ) = a( (z") ) for any z" E [0, 4) . Similarly, we obtain
for any A E B( (0, 4) )

Ly,b(1 403BB|[0,4))(A) = 1 403BB(A).
2., 3., and 4. follow along the same lines (Observe that S° (z) E (0, 1 ) for z E (0, 1 )
and S° (z) E (1 , 4) for z E [1 , 4) ). D

step 3: Convergence of iterates of the Markov kernels defined in Step I

Lemma 3.3 Let I be an interval, K a Markov kernel from I to I defined by a transition
density K : I x I - R and suppose that there are j E N, s > 0 such that K’ (z, z’) > s for
any z , z’ E I. Further assume that § is a fixed point of . Then we have

sup - §][ Li , - 0 for n - cxJ.

Proof. Since xng - § = - §) and - = - 

] [ xn ( g - for g E DI, n E N (cf. Lasota &#x26; Mackey ( 1985), Prop. 3. I . I ), it suffices
to show that  (i - A(I)s) )) h)] Li I> for any h E L~ (I) with £ h dA = 0.

Let h E ( (0 ) with £ h d03BB = 0, and denote c : = ] [ h+ [ [ Li I> = . For any
g E DI, z’ E I, we have = dz > s, hence - s)~ = 0. By
h+ /c E DI, h~ /c E DI, it follows /c) > s, /c) > s. Therefore,

~ " ~ S) d°l’ " 1 ~ A(1) ~’

and accordingly /c) - s]]LiI> = I - A(I) s. Together, we obtain

][ ~i , = (h+ /c) - s) - (h~ /c) - s) ]] ~i 1>
~ c(~j(h+/c) - s~L1(I) + ~03BAj(h-/c) - s~L1(I))

= 2c(1 - A(I)s) = (I - .

D

In order to apply the preceding lemma to the kernels KY , Ki , K~ we state

Lemma 3.4 1. Let y e (0, 1 /4). 7here is as> 0 such that, for any z, z’ G [0, 4), we
have (K~)~ (z> z’) > S.
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2. 7here is a s > 0 such that, for any x, x’ E ~0,1), we have x‘) > s and, for any
x, x’ E (1, 4), we have (~°)3(x, x’) > s.

Proof. Since the mapping ~0,1~ x (o,1~ -~ R, (u, v) H- ~(~c + n - v), is positive
and continuous, it has a lower bound m > 0. Hence, we have x’) > m for any
y E ~0,1/4) and any x, x’ E ~0, 4) with = ~x’~.

For y E ~0,1/4), k = 0, ... ,15 define the sets

Ak := ~x : (x~ y) E Bk := ~x : (x~ y) E 

In the following cases (among others), we have x’) >_ m:

x ~ (Sy)-1([0,1)) , x’ ~ By1 x ~ By1 , x’ ~ [1,2) x ~ By5 , x’ ~ [0,1)
x E (Sy)-1(~1, 2)) , x’ E A4 x E A4 , x’ E ~1, 2) x E A4 , x’ E (1, 2)
x E (S~)-1((2, 3)) , x’ E A9 x E A9 , x’ E ~1, 2) x E A5 , x’ E ~2, 3)
x E (Sy)-1(~3, 4)) , x’ E Ai5 x E Ai5 , x’ E ~1, 2) x E A6 , x’ E (3, 4). .

l. . Fix y E ~0,1/4). There is a b > 0 such that > b, a(B~) > b for k = 0, ... ,15.
Define s := m303B42 and observe that, for x’ E [0,1),

[1,2) 03BAy(03BD,x’) dv ~ B m dv ~ m03B4,
and accordingly for x’ E [1, 2), , [2, 3), (3, 4) (with A4, A5, instead of B5 ). It

follows for x E (Sy)-1 ((o,1)), x’ E ~0, 4): :

(03BAy)3(x, x’) = [0,4)[0,4) 03BAy(x,u)03BAy(u,v)03BAy(y, x’) du dv

~ [0,4m03BAy(y,v)03BAy(v x’) du dv

~ du [1,2) m203BAy(v,x’) dv

~ m303B42,

and accordingly for x E 2)), x E (S~)-1(~2, 3)), x E (Sy)-1(~3, 4)) (with
A4, A9, instead of Bf).

2. Obviously, = 1/4 for k = 0, ... ,15. Define s := min{m, m3/16}. . For

x E ~0,1), we have S°(x) = a({x}), hence = 0. Therefore, x’) =

03A3n~Z 03C6({x’} + n - a({x})) > m for any x, x’ E [0,1). The second statement fol-
lows as in l. (but this time with Bf = ~ = B5 ). 0

Corollary 3.5 If we denote the transition densities of Kl, K2 by ~2 (i.e., : ~0,1) x
~o,1) .-~ 1R, x’) - x’); r~2 : ~1, 4) x ~1, 4) -~ R, ~Z(x, x’) = x’) j, we obtain

1. " lI4IIL1((o,4)) ~ 0 for n ~ oo, for any y E (o, ll4),

2. supg~D[0,1) ~(03BA1)ng - 1~L1([0,1)) ~ 0 for n - 00,
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3. supg~D[1,4) ~(03BA2)ng - 1/3~L1([1,4)) ~ 0 for n --r oo.
Proof. Lemma 3.2, Lemma 3.3 Lemma 3.4. p

Step 4: The joint distribution of ({r~~k }, -’~tk }~
Define the mapping 03C8 : [0, 1) x [0, 1) ~ [0, 4) x [0, 1/4) by (x’, y’) ~ (x’+(4y’], {4y’}/4). 
03C8 is a bijection with converse 03C8-1 : (0, 4) x (0,1/4) ~ [0, 1) x [0, 1), (x, y) ~ ({x}, y +
(x~/4). Further we define, for any probability measure Q on (0, 4) x (0,1/4), the Markov
kernels K(Q) and, for any b E 1R, Lb(Q) from (0,1/4) to (0, 4) by

A) ~_ - f A) 

L~~)~y, A) ~_ - ~ A) 

for any y E (0,1/4), A E B([0, 4)). One easily checks that K(Q), Lb(Q) are indeed Markov
kernels. For any k E -IY, we denote by ~Ck the distribution of ~({~tk}, - 

.

Lemma 3.6 For any k E -N, we have ~ck = 

Proof. For k E -N let (Uk Vk) :_ ~({~t, }, - Then we have

(Uk, Uk) = 
- + - 

= ({~tk + 03B1({Uk-1})} + [4{03B1({Uk-1 + Vk-1 + [Uk-1]/4}) - 03B1({Uk-1)}] - 03B1({Uk-1})}],
a~~~7ek_~ })}}~4)

= ({~tk + 03B1({Uk-1})} + [SVk-1(Uk-1)], {4{~tk-1- ~tk-1}}/4)

= ({~tk + 03B1({Uk-1})} + [SVk-1(Uk-1)], Vk-1). (3.1)
Since ~tk is independent of and N(O, I)-distributed, we have for any A E Li((0, 4) x
~0,1/4))

- J~ + a({u~)} + v) dw

= IJ + v)) dw’

= [0,1)1A(03C9’ + + n - a( {u})) dw v)) )

= [[Sv(u)],[Sv(u)]+1)1A(w",u)03C6({w"} + n - 03B1({u}))dw" k-1(d(u, v))

v) ~ + n - dw" v))
R nEZ 

’

= lA‘~n~,U~~u,,~~,~’, 
- ~ 

D
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Lemma 3.7 Fix k E -N. Then we have:

1. . does not depend on l~. We denote this distribution by p.

2. = 4~I~p,4) p-a.s. for y E (0,1/4). There are constants cl, c2 > 0 with

ci + c2 = 1 and such that = + c23a~~1,4) p-a.s. In addition, cl, c2
are independent of k.

3. does not depend on k. We write ~ :_ pk.

Proof

1. . This follows by induction from Lemma 3.6.

2. Since, by Lemma 3.6, ~~; ~"z-~ (A) = f A f x’) dx’ for p-almost

all y E ~0,1/4), A E fi(~0, 4)), we conclude that has a Lebesgue density
E for any k’ E -N.

It suffices to show:

= 0 for p-a.a. y E (0,1/4)

and, if p({0}) > 0, then there are ci c2 > 0 with ci + c2 = 1 such that

~ll~~~l) + c231f~~4) Li(I0,4)) =0. °
By Lemma 3.6 and induction, one has that for any d E N:

9k = A-a.s. for p-a.a. y E (0,1/4)

and

9k(’) = l~~)~9k-1 - (~1)19k-tl(0~1)1(~~1)(~) + (~2 ‘9k-t (1~4)1I1~4)(~) ~-a.S.,

hence

9k(’)~(°,1) = (~1)l9k-tIf4~1) ~-a.s., 9k(’)I(1,4) = (~2)j9k-II(1,4) (3.2)

Let ~ > 0 and choose l E N big enough to ensure

sup ~~(~y)I9 -1/4~~L~((o,4))  E for y E (0,1/4)

and

sup II(~1)‘9 -  ~~ sup )!(~)~ - l/3~i([l,4))  ~.
’ ’

Then we obtain

= ~~(~~)t9k-t -  ~ for y E (0,1/4).
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We define real numbers ci := /~([0, 1)) = ~ ~ and C2 := =

~. By Equation (3.2), ci, ~2 are independent of ~. Since ~
and 6 P[i,4), we obtain 

!~-~1~+C2~1~)~~~
= 

= -i!! ~ L ~ (I°, 1 )) +c2!)(~f~ ~ -~j L ~ (il ,4))
 CiC + C2~ = e.

3. This follows immediately from 1. and 2. Q

Corollary 3.8 p, ci, 02 satisfy Statement 2 in Section 2.

Proof Fix k ~ -N. By v we denote the distribution of ({%}, =

~(~). Then we have for any A E B([0,1) x [0,1)):

v(A) = 
= p,(A n ([0,1) x [0,1/4))) + /.((~ n ([0~ 1) x [1/4,1/2))) + (1, -1/4))

+ ~((~ n ([0,1) x [1/2,3/4))) + (2, -1/2))
+~((~n([0,l)x[3/4,l)))+(3,-3/4))

= (~![0,1)~~!(0,1/4))(~)+ 
+ (~!(o.i/4) * ~1/4)) (A) + 61/4)) (A)
+ (~!(0.1/4) * ~1/2)) (A) + 0 61/2)) (A)
+ (~!(0,1/4) * 63/4)) (A) + 0 63/4)) (.4)

= 03BB|[0,1] ~ (03C1|(0,1/4) *1 4(~0 + ~1/4 + ~1/2 + ~3/4)

+ c103C1|{0} + c203C1|{0} * 1 3(~1/4 + ~1/2 + ~3/4)) (A). .
a

Proof of Statement 3.
Fix k ~ -N. It suffices to show that is independent of (Bt -

for any l E N. This follows from

Lemma 3.9 ~bra~ ~ N, .

Proof. We prove the lemma by induction on l. For 1 = 0 this holds, because (Bt -
independent of Ftk. Assume that the lemma holds for f - 1 ~ N (regardless
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of k). By Equation (3.1 ), by assumption, and by Lemmas 3.7.2 and 3.2, we have for any
.4 E ~(~o, 4) x ~o, ~l4)):

(~)
= + a( {u} )} + v) (d(~~ v)) )

- a({~c})} + (s"’(~)J~ v) v))

= lA( u’, v) ~~1I~2 v(d2t) 
= (~) ® (A)
= p(A)

a

Proof of Statement 4.
This follows easily from 3. and the fact that the distribution of } is and hence not

degenerate.

Proof of Statement 5.
We have

{tk = E({tk}|FX1) = E({tk}|03C3({~tk})  FB1 = E({tk}|03C3({~tk})) P-a.s.

where the third equality follows from Statement 3 (cf. Bauer (1991), Satz.15.5).

Proof of Statement 6.
Observe that

= 

= P{tk-~tk}|{~tk}

= (03C1|(0,1/4) * 1 4(~0 + ~1/4 + ~1/2 + ~3/4)
+ + 3 1 (Ell4 + Ei/2 + E3/4) / ).

This is only possible if p~ (0,14) = o, c2 = 0 and hence {~~k } _ ~3( {r~tk }) _ P-a.s.

By Equations (2.3), (2.2), and according equations for X, we conclude that {~tt } _ 
P-a.s. for any 1 E - N and therefore Xt = Xt P-a.s. for any t > 0.

Proof of Statement 7.
Xa is obviously a solution to SDE (2.1). By 4., it is not strong. For any solution Xa start-
ing at a, the process Xa - a is a solution starting at 0 and hence indistinguishable from X .
Thus, Xa is indistinguishable from Xa. ..

Proof of the remark.
The whole proof works analogously if all processes are restricted to [0, T] for any T > 0.
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